Final Filtration

with microporous membrane filter cartridges

Conor O’Hara
Global Marketing Director – Food & Beverage

Kentucky Fruit & Vegetable Conference
January 5th, 2012
Do Filters Harm Wine?

- They can - but only if used carelessly, just like any other operation in the winery.

- Benefits far outweigh potential problems
 - understand how and when to use given filters
 - proper operation minimizes any negative effects

- General agreement that desirable wine components are significantly smaller than the 0.45 micron pore size.
 - Refer to work of Dr. Christian Butzke - President ASEV
When to Filter

- RS of 2 g/L and above
 - enough “food” for microorganisms to grow on
 - wines with >40 CFU/ml yeast

- ML (malolactic) incomplete, or blended wines
 - refermentation possible
 - wines with > 200 CFU/ml malolactic bacteria

- Turbidity of >1 NTU
 - can be indication of microbial activity

- Instance of Brett (or bacterial) infections
Before Membrane Filtration

- Wine must be free of turbidity: NTUs <1
 - Careful racking
 - Fining agents
 - Primary filtration (“pink” DE, cross flow)
 - “sterile” grade sheet/depth cartridge filtration

- If using a depth filter step, conduct final membrane filtration within 24 hours

- Have proper equipment/supplies on hand
 - Clean filtered water (ambient, warm ~55°C, and hot ~80°C)
 - Integrity test equipment, including nitrogen/compressed air
 - Storage solution
 - Pump, valves, gauges, fittings
SEM photograph of *Saccharomyces cerevisiae* on Nylon 0.45 µm LifeASSURE™ Membrane
Oenococcus oeni (formerly *Leuconostoc oenues*) on a 0.45 Micron LifeASSURE Membrane
Yeast And Malo-Lactic Bacteria
Microorganisms in Wine

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>Critical Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactobacillus sp.</td>
<td></td>
</tr>
<tr>
<td>L. brevis</td>
<td>0.7 µm</td>
</tr>
<tr>
<td>L. casei</td>
<td>1.5 µm</td>
</tr>
<tr>
<td>L. plantarum</td>
<td>0.9 µm</td>
</tr>
<tr>
<td>Pediococcus sp.</td>
<td></td>
</tr>
<tr>
<td>P. damnosus</td>
<td>0.6 µm</td>
</tr>
<tr>
<td>P. parvulus</td>
<td>0.8 µm</td>
</tr>
<tr>
<td>P. pentosaceus</td>
<td>0.8 µm</td>
</tr>
<tr>
<td>Leuconostoc oenos</td>
<td>0.5 µm</td>
</tr>
<tr>
<td>Saccharomyces sp.</td>
<td>3 µm</td>
</tr>
<tr>
<td>Brettanomyces sp.</td>
<td>3 µm</td>
</tr>
</tbody>
</table>
Final Membrane Filters

- Long history of use in wineries
- Thin, micro-porous membranes made from non-reactive polymers
- Pleated (to increase surface area)
- Contained in disposable filter cartridges
- Remove microorganism through size exclusion
- Require prefiltration of wine for best economics
Membrane Filter Cartridge Construction

- Adapter
- Outer Cage
- Inner Core
- Endcap
- Double O-rings
- Membrane
- Membrane Supports
- Wine Flow

© 2008 3M Company. All Rights Reserved.
3M Purification (formerly CUNO)

Membrane Filter Vessel

Sanitary Gauge Port
Sanitary Vent
Housing Dome
Membrane Filter Cartridge
Housing Base
Clean Chamber
Sanitary Outlet
Sanitary Inlet
Flow
3M Purification (formerly CUNO)

3ZWB3 Model: three 30” filters
Important Membrane Filter Attributes

- **Retentive Ability**
 - Should be demonstrated with wine specific organisms (Oenococcus, Brett) and not pharmaceutical organisms
 - 0.45 µm and 0.65 µm most common ratings

- **Integrity Testable**
 - Ensures that the filter is operational and retentive

- **Durability**
 - Repeated hot water
 - Sanitation chemicals (if used)

- **High Throughput**
 - Consider the entire filter chain
 - Maximize each unit operation for overall best performance
“Sizing” a Filter System
- what size/how many filters do I need?

1. Choose your desired flow rate
 - Typically this will be the flow rate to the filling machine

2. Determine what you want for a “clean” or initial pressure drop
 1. Commonly between 1 and 5 psid

3. Select your desired filter and micron rating

4. Review the flow vs pressure drop data

5. At your desired initial pressure drop, determine the flow per 10” filter

6. Divide you desired flow rate by the flow per 10” filter to determine how many 10” equivalents are needed at your flow rate.
 - A single 10” or 30” filter are most common for smaller wineries
 - 3 x 30”, 12 x 30” assemblies are most common for larger wineries
“Sizing” a Filter System
- what size/how many filters do I need?

- Filling machine flows at 6 GPM
- Want to start at a clean pressure drop of 1 psid
- From the data in the membrane filter literature, you determine that a 10” filter deliver a flow rate of 2 GPM at a 1 psid pressure drop.

6 GPM (desired flow rate) = three 10” filters, or one 30” filter

2 GPM/10” filter
Membrane Filter Preservation

- can I save the filter after filtration to reuse?

- **Short Term - Sanitation water (80°C)**
 - sanitize 30 min., close valves to isolate housing
 - typically 1 - 2 days

- **Intermediate – Chemical Sanitizer Solution (check for compatibility)**
 - Oxonia Active (Ecolab, Inc.) – 1% solution
 - Up to 50 days, ambient temperature

- **Longer Term - Preserve in 500-1000 ppm sodium metabisulfite**
 - Adjust to pH < 5 with citric acid
 - In filter housing - 1-2 days
 - In sealed container - up to 3 months in some cases
 - Check concentration periodically
 - Flush with water prior to reuse
Membrane Filter Integrity Test

Tradition Blended with Innovation
Membrane Filter Integrity Test

- Non-destructive test to determine if the filter is installed and operating correctly.
- Where appropriate, validates retention performance at the rated pore size.
- Three methods
 - Bubble Point
 - Diffusion Flow Test
 - Pressure Hold Test
Integrity Test

- Pressure Hold test is easiest, fastest, least ambiguous.
- Conduct test manually or with an automated test unit.
- Different membranes have different integrity test parameters.
 - Parameters are influenced by housing volume.
 - Check with supplier for correct values (pressure and allowable drop)
- Wet o-rings with water or wine to allow for easier insertion.

- If a negative test is recorded, consider the following
 - Check O-rings
 - Check the retention rating and filter identity
 - Flush with 2x water, or at 2x the pressure (partially close downstream valve to increase system pressure)
Integrity Test – Pressure Hold

- Measures the pressure decay on the upstream side of the housing.
 - Wet out filter, drain
 - Pressurize upstream side of housing to recommended pressure
 - Close gas valve and open downstream valve, record upstream pressure and time.
 - At 5 minutes, record upstream pressure and consult filter specifications
 - Good integrity – slow diffusion of gas across the membrane
 - Bad integrity – rapid diffusion of gas across the membrane
 - Indicates a fault in the membrane on insufficient wetting
Flush filter with water
Close upstream valve
Slowly apply specified gas pressure
Close gas supply and mark time

Gas Source (Air or Nitrogen) → Pressure Regulator → Upstream Valve → Pressure Gauge → Inlet Valve → Outlet Valve
At 5 minutes, read pressure gauge
Reading the Pressure Hold Test

- If pressure drop/minute is **less** than manufacturer specification
 - Record result and proceed with filtration

- If pressure drop/minute is **greater** than specified by manufacturer
 - Check O-rings, micron rating, and look for any other damage
 - Leak test housing and fittings upstream of filter
 - Rewet filter (2x flow rate or 2x time)
 - Retest
How Filters Plug

and How to Make them Last Longer
Gradual Pore Plugging

Soft colloid collection on walls of pore

Pressure Drop

Throughput Volume

Gradual pore Plugging
What Plugs Membranes?

- Gradual pore plugging
 - most all wines plug membranes according to this model
 - colloidal carbohydrates gradually collect on the walls of pores until they become obstructed*

* Based on *Investigation of Plugging Colloids on Microporous Membrane Filters*, Meier, P.M. et al., ASEV Poster, Anaheim, California, June 29, 1989
3M Purification (formerly CUNO)

Plugged Membrane Filters

Laboratory Plugged with Glucan-Protein-Tannin

Winery Plugged

© 2008 3M Company. All Rights Reserved.
5 Ways to Make Final Filters Last Longer
(and reduce operating costs!)
Increasing Filter Life

- reduction of face velocity

- Face velocity: flow per unit of filter area
 - i.e. - a filter with 10ft² of membrane flowing at 2 GPM has a face velocity of 0.2 GPM/ft².

- Rule of thumb
 - drop the face velocity by one half and 25% to 30% more throughput for area is achieved
 - or
 - double the amount of surface area in a system, while keeping the system flow rate constant, will also provide an additional 25% to 30% of throughput

- Rule of thumb: double the cartridges, throughput goes up 2.5X
Increasing Filter Life
- reduction of face velocity

- Why?

 Rice & Screen concept

 - Pouring a bag of rice through a screen at a fast rate blocks the screen quickly.

 - Pouring a bag of rice through a screen slowly allows more rice to pass through.

 - Bridging and gradual pore plugging accelerate as flow increases resulting in lower throughputs

Flow slower, or use membrane filters with more surface area per filter
Increasing Filter Life
- Warm Water Regeneration

- Warm (55°C) filtered water flush
 - Conduct before sanitation
 - Conduct before dP builds
 - Water must be filtered
 - 15 minutes to drain
 - Same flux as filtration run

- Can result in 25-30% more throughput

Note: Regeneration water MUST be flushed to drain and not onto the next filter in series.
Warm Water Regeneration

Effect of warm water regeneration on filter differential pressure and consequently, filter life. 25-30% improvement

© 2010 3M Company. All Rights Reserved.
Increasing Filter Life

-proper depth filter choice

Relative Membrane Service Life Test with Various Depth Prefilter Grades

Differential Pressure (psid)

Total Throughput

- Unprotected
- 10H
- 30H
- 50H
- 60H
Increasing Filter Life
- a balanced system

- Filters are typically changed base on achieving a terminal differential pressure across the filter (usually 20-35 psid)
 - This indicates that they are plugged and must be changed

- Filters that do not exhibit differential pressure at all are not helping!
 - If there is no dP build-up, it is not removing anything!
Unbalanced system – favors prefilters

Increased cost/gallon, change-outs, system downtime
Increasing Filter Life

- Preparing the Wine

- Final membrane filtration is really an insurance policy against spoilage and refermentation

- Wine should be free of noticeable turbidity
 - Combination of racking, fining agents, DE/cross flow, depth filtration

- Using final membrane filters for clarification is not economical
Conclusion

- Use membrane filters only when needed

- Prepare the wine for filtration

- Select membrane filters that are made for wine filtration, are integrity testable, durable, and have demonstrated retention.

- Pressure hold integrity test is the easiest and fastest integrity test.
3M Purification (formerly CUNO)
Thank You!

Conor O’Hara
3M Purification Inc.
cjohara@mmm.com
(203)238-8923