The Role of Finances on Student **Success: The Overwhelming Influence of Unmet Need DRAFT** as of 10/7/2015

Associate Director for Institutional Research, Craig Rudick

with

Institutional Research & Advanced Analytics

UNIVERSITY OF **Director** of Institutional Research, Roger Sugarman Senior Vice Provost, Analytics and Technologies, Vince Kellen Data Scientist, Adam Lindstrom

The Punchline

Institutional Research & Advanced Analytics

Institutional Research & Advanced Analytics

- 1. Unmet Need and other Financial variables
- 2. Predictors of Student Success
- 3. Attrition Timing
- 4. The increasing Unmet Need burden
- 5. Need-based aid to improve retention

FAFSA Financial Variables

Institutional Research & Advanced Analytics

- Adjusted Gross Income (AGI): the student's family income, adjusted for specific deductions.
- Expected Family Contribution (EFC): the Government estimate of the amount a student's family can pay for college.
- Gross Need: Cost of Attendance minus Expected Family Contribution; the total amount of aid a student needs receive in order to afford college.
- Unmet Need: Gross Need minus total aid package; the amount of need left over after aid has been received.

FAFSA Completion (GRS Cohort)

	No FAFSA	FAFSA
Fall 2011	21.8%	78.2%
Fall 2012	21.0%	79.0%
Fall 2013	19.6%	80.4%
Fall 2014	20.5%	79.5%
Overall	20.7%	79.3%

Retention vs. Financial Variables

 Unmet Need has by far the strongest association with Retention.

Residency

Institutional Research & Advanced Analytics

 In-state students are more strongly affected by Unmet Need than Out-of-state students.

Academic Readiness

Retention vs. Readiness Variables

Institutional Research & Advanced Analytics

HS GPA is a better predictor than ACT HS Readiness Index combines the two to maximize predictive power HSRI = \bigcirc HS GPA * 10 + ACT / 2

Unmet Need and HSRI

Institutional Research & Advanced Analytics

 High Unmet Need students are retained at lower rates than lower Unmet Need peers at all levels of academic readiness.

Unmet Need and HSRI - First Fall GPA

First Fall GPA vs. HSRI split by Unmet Need

Institutional Research & Advanced Analytics

 High Unmet Need students also under-perform lower Unmet Need peers in the classroom.

College Capability Index

UNIVERSITY OF KENTUCKY

Institutional Research & Advanced Analytics

- College Capability Index is a single variable optimally combining HSRI plus Unmet Need.
- CCI = HSRI
 - + Unmet Need / \$1000

CCI In The Wild

UNIVERSITY OF KENTUCK

- CCI is ideal for program a Research effectiveness studies.
- CCI is NOT for program selection!
 - FAFSA data can only be used for financial aid decisions
 - Post-hoc analyses are implicitly comparing programs to need based aid

First Spring Retention

1st Spring Retention vs. 1st Fall GPA split by Unmet Need

UNIVERSITY OF KENTUCKY

Institutional Research & Advanced Analytics

 Unmet Need has a particularly strong impact on 1st Spring Retention.

First Spring to Second Fall

UNIVERSITY OF KENTUCKY

Institutional Research & Advanced Analytics

 Academic performance has a much stronger influence on retention behaviour after the 1st Spring term.

1st Spring to 2nd Fall Retention vs. 1st Spring GPA split by Unmet Need

The Survivor Effect

3rd Fall to 4th Fall Retention vs. HSRI split by Unmet Need

Institutional Research & Advanced Analytics

In general, we see a "survivor effect", whereby Unmet Needs exerts less influence on progression and persistence for upper division students.

Unmet Need is Growing

Institutional Research & Advanced Analytics

The number of students with high unmet need is growing rapidly. The distribution of unmet need is widening (more at high and low)

Unmet Need Driving Attrition

Institutional Research & Advanced Analytics

- The increasing Unmet Need burden is likely to be leading to lower retention rates.
- We can create "what-if" models to measure the retention rate given changes to the Unmet Need distribution
 - Assumes that Unmet Need is a cause, not a symptom, of attrition.
 - Without more direct tests of causation, it is possible that Unmet Need co-varies with other hidden variables which are the true drivers of attrition

Retention Losses from Unmet Need

- Simulate retention of Fall 2013 class, if Unmet Need matched that of Fall 2008.
 - Use rank-matching to assign a "Simulated Unmet Need" to each Fall 2013 cohort student
- Use L.R. to calculate new "simulated" retention probability for each student.

Simulation Results

Because students with high Unmet Need have a lower "simulated" Unmet Need, their retention probability increases.
The net effect is a 1.6% point increase in the overall retention rate.

UNIVERSITY OF KENTUCKY

Targeting Need-Based Aid at Retention

- If Unmet Need is driving retention losses, then need-based aid could amend this.
 - How much money does retention cost?
 - What is the most efficient way to disburse aid?

Institutional Research & Advanced Analytics

 Eliminating Unmet Need

 Set all students with positive Unmet Need to 0, and re-calculated predicted retention rate

Cohort Term	Actual Retention Rate	Predicted Change in Retention Rate	Cost of Eliminated Unmet Need
Fall 2009	81.8%	2.4%	\$7,270,762
Fall 2010	81.5%	2.9%	\$9,569,360
Fall 2011	81.3%	3.4%	\$10,521,664
Fall 2012	82.5%	3.5%	\$12,619,187
Fall 2013	82.2%	4.3%	\$14,858,680

Optimizing Need-Based Aid

- If we want to maximize the impact on retention, how would we distributed Need-Based aid?
 - Simulate decreasing each student's Unmet Need and determining the predicted effect on retention.
 - In order to find the optimal distribution of aid, we iterate:
 - Increase the aid package of each student by \$1000
 - Find the student whose predicted retention is increased by the largest amount
 - Apply the \$1000 to the student's simulated aid package
 - Repeat the process, simulating starting from the new simulated aid packages.

Optimizing Need-Based Aid Results

Total Student Award

- \$1M buys about 0.5% points of retention
 - \$20M buys about 6.5% points

Conclusions

- 1. Unmet Need is a strong driver of retention.
 - a. At least as predictive as pre-college academic readiness.
 - b. Particularly important for 1st semester attrition.
- 2. The number of students with high Unmet Need burdens is growing rapidly.
- 3. Shifting resources to need-based financial aid may be necessary to improve retention.
 - a. Draft UK Strategic Plan: "Align institutional scholarship and financial aid awards... to minimize students' unmet financial need".

Institutional Research & Advanced Analytics

Appendix: Supplemental Data and Statistical Results

Correlations Between Variables

- Students with low Gross Need or high EFC cannot have positive Unmet Need.
- Although all the financial variables are correlated, Unmet Need is a uniquely strong predictor of Retention.

Unmet Need v. Other Financial Variables

Correlations Between Variables, cont.

- Gross Need, EFC, and AGI are all highly correlated.
- Gross Need is particularly correlated with EFC. The upper locus contains out-of-state students; in-state students fall in the lower loci.

Univariate Financial Variable Models

 Each of these models uses a single financial variable as the independent variable and 2nd Fall Retention as the dependent variable in a logistic regression analysis.

Univariate Logistic Regression Results

Financial Variable	Beta*	Odds Ratio*	pseudo- R ²	AUC
Unmet Need	-0.70	0.50	0.073	0.689
Gross Need	-0.51	0.60	0.016	0.601
Adjusted Gross Income	0.36	1.44	0.011	0.591

*Standardized

* Students without FAFSA information have been removed.

Demographics with HSRI

- HSRI is useful to see the effects of demographics
- First Generation, Appalachian County and On Campus Housing all are significantly associated with retention

Unmet Need vs. HSRI

Institutional Research & Advanced Analytics

- Unmet Need is somewhat correlated with HSRI
 Low readiness students are much more likely to have high Unmet Need than higher readiness students
 - This is likely to be due to merit-based financial aid

Summary of Logistic Regression Models

 Each model uses a different set of independent variables, with 2nd Fall Retention as the dependent variable

Model	pseudo-R ²	AUC
Unmet Need	0.073	0.689
Unmet Need + Residency*	0.083	0.691
HS GPA	0.069	0.688
ACT	0.032	0.626
HS GPA + ACT (HS Readiness Index)	0.073	0.693
Unmet Need + Residency* + HS GPA + ACT	0.121	0.734
Unmet Need + Residency* + 1st Fall UK GPA	0.268 *Includes inter	0.818 raction term

Multivaria	ate L	ogistic	Regressions		R S I T Y
HS Academics Unmet Need [†]	plus ps AU	eudo-R ² = 0.12 [,] IC = 0.734	1st Fall GPA plus Unmet Need [†]	pseudo-R ² = AUC = 0.818	1 U(0.268
Variable	p-value	Odds Ratio	Variable	p-value	Oc
HS GPA*	<0.001	1.68	Vanabio	p-value	Ratio
ACT*	0.059	1.07	1st Fall UK GPA*	<0.001	3.
Unmet Need**	<0.001	0.91	Unmet Need**	<0.001	0.9
Residency*** (out-of- state)	0.015	0.85	Residency*** (out-of- state)	<0.001	0.
Unmet Need, Residency interaction	<0.001	1.06	Unmet Need, Residency interaction	<0.001	1.
intercept	<0.001	6.11	intercept	<0.001	8.
+				* standar	dized

[†]Using 2nd Fall retention as the dependent variable.

* standardized ** per \$1000 *** Default is in-state