Forecasting Techniques

» Managers require good forecasts of future events.

* Business Analysts may choose from a wide range of
forecasting techniques to support decision making.

* Three major categories of forecasting approaches:

1. Qualitative and judgmental techniques
2. Statistical time-series models (Quantitative)
3. Explanatory/causal models (Quantitative)
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Qualitative & Judgmental Forecasting

 Qualitative and Judgmental techniques rely on
experience and intuition - usually short-term, expert-
based: Market research (focus groups, interviews,
surveys, product testings) and Delphi method.

* They are necessary when historical data is not
available or when predictions are needed far into the
future.

* The historical analogy approach obtains a forecast
through comparative analysis with prior situations.

* The Delphi method questions an anonymous panel
of experts 2-3 times in order to reach a consensus.
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Example 9.1: Predicting the Price of
Oil

 Early 1988 - oil price was about $22 a barrel

« Mid-1988 - oil price dropped to $11 a barrel because of
oversupply, high production in non-OPEC regions, and lower
than normal demand

* |In the past, OPEC would raise the price of ail.
 Historical analogy would forecast a higher price.

* However, the price continued to drop even though OPPEC
agreed to cut production.

* Historical analogies cannot always account for current realities!
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Indicators and Indexes

* Indicators are measures that are believed to
influence the behavior of a variable we wish to
forecast.

* Indicators are often combined quantitatively into an
index, a single measure that weights multiple
indicators, thus providing a measure of overall
expectation.

— Example: Dow Jones Industrial Average (DJIA)
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Example 9.2: Economic Indicators

* GDP (Gross Domestic Product) measures the value of all goods and services
produced.

— GDP rises and falls in a cyclic fashion.

» Forecasting GDP is often done using leading indicators (series that change
before the GDP changes) and lagging indicators (series that follow changes in
the GDP) indicators.

« Examples
Leading — formation of business enterprises
— percent change in money supply (M1)
Lagging

— business investment expenditures
— prime rate

— inventories on hand
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Example 9.3: Leading Economic
Indicators

* An Index of Leading Indicators was developed by the
Department of Commerce.

 This index is related to the economic performance is
available from www.conference-board.org.

* It includes measures such as:
— average weekly manufacturing hours
— new orders for consumer goods
— building permits for private housing
— S&P 500 stock prices
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Statistical Forecasting Models

Time Series - a stream of historical data, such as weekly sales

— T =number of periods, ¢t=1,2, ...,T

Time series generally have components such as:
— random behavior
— trends (upward or downward)
— seasonal effects
— cyclical effects

Stationary time series have only random behavior.

A trend is a gradual upward or downward movement of a time series.
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Example 9.4: Identifying Trends in a
Time Series

« Total Energy Production & Consumption

— General upward trend with some short downward trends;
the time series is composed of several different short trends.

Total Energy Consumption
120

Quadrillion BTU

2012

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ
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Seasonal Effects

* A seasonal effect is one that repeats at fixed intervals of
time, typically a year, month, week, or day.

Gas Use

300

200

100

0

Jan Mar Mawr Jul Sep Nov Jan Mar May Jul Sep Nov
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Cyclical Effects

« Cyclical effects describe ups and downs over a much
longer time frame, such as several years.

Federal Funds Rate
25.00% —— - —_— - - - —— — — .

20.00% -
15.00%
10.00%

5.00% -

0.00%
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Forecasting Models for Stationary
Time Series

* Moving average model

* Exponential smoothing model

— These are useful over short time periods when trend,
seasonal, or cyclical effects are not significant.
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Moving Average Models

- The simple moving average method is a smoothing method
based on the idea of averaging random fluctuations in the time
series to identify the underlying direction in which the time
series is changing.

* The simple moving average forecast for the next period is
computed as the average of the most recent k observations.

A+A +...+4 .,
F;+1: t -1 i t—k+1

(9.1)

— Larger values of k result in smoother forecast models since
extreme values have less impact.
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Example 9.5: Moving Average
Forecasting

« The Tablet Computer Sales file contains the number of units
sold over the past 17 weeks.

Tablet Computer Sales

i 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Week

» Three-period moving average forecast for week 18:

(A7 +Ag+A45) 82+71+50
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Spreadsheet Implementation of
Moving Average Forecasting

Tablet Computer Sales

Units Sold

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Week

w=@e=Units Sold e=@==Forecast

A A B C D E

1 |Tablet Computer Sales | _

2 Moving Average . |

4 1 88

5 2 44

6 3 60 Forecast for week 4
7 4 56 =AVERAGE(B4:B6)
8 5 70

9 6 91

10 7 54

1 8 60

12 9 48

13 10 35

14 1 49

15 12 44

16 13 61
17 14 68
18 15 82
19 16 71
20 17 50 Forecast for week 18
g 18 =AVERAGE(B18:820)
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Example 9.6: Using Excel’s Moving
Average Tool

Moving Average o |
- Data Analysis options o |
I¥] Labels In First Row [El‘
| |- ] e ]
| output options
Qutput Range: sed @
e Workstwet P2 [—
] Ghart Output 1] standard Errors
] ~ 4.}
A B | c b E __F G H J K
1 |Tablet Computer Sales
; W:el Unit:BSold 51'1332? Moving Average We dO nOt recommend
s §§ - % using the chart or error
ol - options because the
9 6 91 L 62.00 _5 g
e - a—- 1 " - forecasts generated by
A = TN this tool are not properly
15 12 44 44.00 o — . .
:3 :3 g; : ;t‘”—g 12345678 91011121314151617 allgned Wlth the data
18 15 82 5767 Retuliies
» 1 0T e
21 18 67.67
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Error Metrics and Forecast Accuarcy

* Mean absolute deviation a‘Ar B E‘
(MAD) MAD == (9.2)
n
n 2
 Mean square error (MSE) MSE = El(At B E‘) (9.3)
n

« Root mean square error % (At — E; )2
RMSE =

(RMSE) (=1 9.4
. (9.4)
§ At _F;
- Mean absolute percentage El
error (MAPE) MAPE = _ £ 14100 (9.5)
n
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Example 9.7: Using Error Metrics to

Compare Moving Average Forecasts

- Tablet Computer Sales data

« 2-, 3-, and 4-period moving average models

« 2-period model has lowest error metric values.

11.43
36.81
28.24
12.92
43.23
80.71

0.51

9.09
27.87
30.51
32.32
10.21
41.00
28.07

A B c | D E F G H 1 J K L M o] P
1 |Tablet Computer Sales
2 k=2 ] |I|: =3 | |k =4 [
3 | Week Units Sold|Forecast Error Absolute Squared Absolute [Forecast Error Absolute Squared Absolute Forecast Error Absolute Squared Absolute
4| 1 88 Deviation Error % Error Deviation Error % Error Deviation Error % Error
5 2 44
6 3 60 66.00 -6.00 6.00 3600 10.00
7 4 56 52.00 4.00 400 16.00 7.14| 64.00 -8.00 800 6400 14.29
8 5 70 58.00 12.00 12.00 14400 17.14] 53.33 16.67 16.67 277.78 23.81| 62.00 8.00 8.00 64.00
9| 6 91 63.00 28.00 28.00 78400 30.77| 62.00 29.00 29.00 84100 3187 57.50 33.50 33.50 1122.25
10 7 54 80.50 -26.50 26.50 70225 49.07| 72.33-18.33 18.33 336.11 3305 69.25 -15.25 15.25 232.56
1, 8 60 72.50 -12.50 1250 156.25 20.83| 71.67 -11.67 11.67 136.11 19.44| 67.75 -1.75 7.75 60.06
12 8 48 57.00 -9.00 9.00 81.00 18.75| 68.33 -20.33 20.33 413.44 42.36| 68.75 -20.75 20.75 430.56
12, 10 35 54.00 -19.00 19.00 361.00 54.29| 54.00 -19.00 19.00 361.00 54.29| 63.25 -28.25 28.25 798.06
14 1 49 4150 750 750 5625 15.31| 4767 1.33 1.33 1.78 272 4925 -0.25 0.25 0.06
15 12 44 4200 2.00 2.00 4.00 455 4400 0.00 0.00 0.00 0.00| 48.00 -4.00 400 16.00
16 13 61 46.50 14.50 1450 210.25 23.77 42,67 18.33 18.33 336.11 30.05 44.00 17.00 17.00 289.00
17, 14 68 52.50 15.50 15.50 24025 2279 51.33 16.67 16.67 277.78 2451 47.25 20.75 20.75 430.56
18| 15 82 64.50 17.50 17.50 30625 21.34] 57.67 24.33 2433 592.11 29.67| 55.50 26.50 26.50 702.25
19 16 " 75.00 -4.00 400 16.00 563 7033 0.67 0.67 0.44 0.94' 63.75 7.25 725 5256
20 17 50 76.50 -26.50 26.50 70225  53.00| 73.67 -23.67 23.67__560.11 47.33] 70.50 -20.50 20.50 420.25
21 18 60.50 13.63 25438 2363 67.67 14.86 209.84 2537| 67.75 16.13 355.25

MAD MSE  MAPE MAD MSE  MAPE MAD MSE  MAPE

22
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Exponential Smoothing Models

- Simple exponential smoothing model:
Ft+1 = (l_a)Ft -I—OlAt
= F,+a(4,-F) (9.6)

where £, is the forecast for time period ¢ +1,F, is the

forecast for period t, 4, is the observed value in period t,

and a is a constant between 0 and 1 called the smoothing
constant.

* To begin, set F and F, equal to the actual observation in
period 1, 4.
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Example 9.8: Using Exponential Smoothing
to Forecast Tablet Computer Sales

A B c D E F G H I J K

1 |Tablet Computer Sales

2 Smoothing Constant

3 | Week Units Sold 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.9¢
4 1 88 8800 8800 8800 88.00 88.00, 88.00 88.00 88.00 88.0C
5 2 44 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.0C
6 3 60 8360 7920 7480 7040 66.00 61.60 57.20 52.80 48.4(
7 4 56 81.24 75.36 70.36 66.24 63.00 6064 59.16 58.56 58.84
8 5 70 7872 7149 66.05 62.14 50.50, 57.86 56.95 56.51 56.2¢
9 6 91 7784 7119 6724 6529 6475 6514 6608 67.30 686
10 7 54 79.16 75.15 74.37 75.57 77.88 80.66 83.53 86.26 88.7¢
11 8 60 76.64 7092 6826 66.94 65.94 6466 6286 60.45 57.4¢
12 9 48 74.98 68.74 65.78 64.17 62.97 61.87 60.86 60.09 59.7¢
13 10 35 72.28 64.59 6045 57.70 5548 5355 51.86 50.42 49.17
14 1 49 68.55 5867 52.81 4862 4524 4242 4006  38.08 36.4:2
15 12 44 66.60 56.74 51.67 48.77 4712 46.37 46.32 46.82 47.74
16 13 61 64.34 54.19 49.37 46.86  45.56 4495 4470 44.56 44 37
17 14 68 64.00 55.55  52.86 52.52 53.28 54.58 56.11 57.71  59.3¢
18 15 82 6440 58.04 5740 58.71 6064 6263 6443 65.94 67.1%
19 16 i3 66.16  62.83 64.78  68.03 7132 7425 76.73 78.79 80.51
20 17 50 66.65  64.47 66.65  69.22 7116 7230 7272 72.56 71.9¢
21, 18 6498 61.57 61.65 61.53 60.58  58.92  56.82 54.51 52.2(
22 MAD 19.33 17.16 16.15 15.36 14.93 14.71 14.72 14.88 15.3¢€
23 MSE 496.07 390.84 359.18 346.56 340.77 338.41 339.03 343.32 352.3¢
24 MAPE 38.28% 32.71% 30.12% 28.36% 27.54% 27.09% 27.09% 27.38% 28.23%

Forecast for week 3 when «=0.7:(1-0.7)(88)+(0.7)(44)=57.2
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Example 9.9: Finding the Best Exponential
Smoothing Model for Tablet Computer Sales

A_ | B ¢ oo |  E F | G H V J | K

1 |Tablet Computer Sales

2 Smoothing Constant

3 | Week Units Sold 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.9(
4 1 88 8800 8800 8800 8800 8800 8800 88.00 88.00 88.0
5 2 44 8800 8800 8800 8800 8800 8800 8800 88.00 88.(
6 3 60 8360 7920 7480 7040 6600 6160 5720 5280 48.4(
7 4 56 8124 7536 7036 6624 6300 6064 59.16 5856 58.84
8 5 70 7872 7149 6605 6214 5950 5786 5695 5651  56.2¢
9 6 91 7784 7119 6724 6529 6475 6514 6608 67.30 68.6C
10 7 54 79.16 75.15 74.37 75.57 77.88  80.66 83.53 86.26 88.7¢€
1 8 60 76.64 70.92 68.26 66.94 65.94 64.66 62.86 60.45 57.4¢
12 9 48 7498 6874 6578 6417 6297 6187 6086 60.09 59.7¢
13, 10 35 7228 6459 6045 5770 5548 5355 5186 5042 49.17
14 1 49 6855 5867 5281 4862 4524 4242 40.06 38.08 36.4:
15 12 44 6660 5674 5167 4877 4712 4637 4632 4682 47.74
16 13 61 6434 5419 4937 4686 4556 4495 4470 4456 4437
17, 14 68 . 6400 5555 5286 5252 5328 5458 56.11 57.71  59.3¢
18, 15 82 6440 5804 5740 5871 6064 6263 6443 6594 67.1%
19, 16 71 66.16 6283 6478 6803 7132 7425 7673 7879 80.51
20 17 50 66.65 64.47 66.65 69.22 7116 7230 72.72 72.56 71.9¢
21 18 6498 6157 6165 6153 6058 5892 5682 5451 522
2 MAD 1933 1716 16.15 1536 1493 1471 1472 1488 15.3¢
23 MSE 496.07 390.84 359.18 346.56 340.77 33841 339.03 343.32 352.3¢
24 MAPE 38.28% 32.71% 30.12% 28.36% 27.54% 27.09% 27.09% 27.38% 28.23%

The forecast using a =0.6 provides the lowest error metrics.
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Example 9.10: Using Excel’s
Exponential Smoothing Tool (1.2

« Select Data Analysis from the Analysis group and then choose
Exponential Smoothing.

« Note that Damping factor = 1-a

« The first cell of the Output Range should be adjacent to the first data
point.

— —

| $8$3:58520

] e
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Example 9.10: Using Excel’s
Exponential Smoothing Tool o2

« Exponential Smoothing tool results

A B ¢ D E F G H I J K
1 [Tablet Computer Sales |
2 Exponential Smoothing
3 Week  Units Sold  Forecast
4 1 88 #NVA ) )
5| 2 44 88.00 Exponential Smoothing
6 3 60 61.60
7 4 56 60.64 100
8| 5 70 57.88
9 6 91 65.14 80 -
10 7 54 80.66
1, 8 60 64.66 g 601
12, 9 48 61.87 ;.
13 10 35 53.55 > 40 - S
1“4 1 49 42.42 =8 Forecast
15 12 44 46.37 0
16 13 61 44.95 0
:; }g gg g;:gg 12345678 91011121314151617
19 16 71 74.25 Data Point
20 17 50 72.30
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Forecasting Models for Time Series
with a Linear Trend

- Double moving average and double exponential
smoothing

- Based on the linear trend equation
F. =a +bk (9.7)

* The forecast for k periods into the future is a function of
the level @, and the trend b

. The models differ in their computations of &, and b,.
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Double Exponential Smoothing

- Estimates of the parameters are obtained from the
following equations:
a, =ok, + (1 _a)(at—l +bt—1)

bt :ﬂ(at_at—1)+(1_18)bt—1 (9.8)

- Initial values are chosen for @ as 4, and b, as 4, — 4;.
Equation (9.8) must then be used to compute ¢, and b,

for the entire time series to be able to generate forecasts
into the future. The forecast for k periods beyond the last
period (period T) is

Froi = ay +by (k) (9.9)
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Example 9.11: Double Exponential
Smoothing

* First ten years of data in the Excel file Coal Production

 Choose a=0.6and 8=0.4

— See text for computational details.

4 A B | c D E F H J K L M N o |
1 |Coal Production
2 Double Exponential Smoothing '
3 = - |
3 | Apha 06 Double Exponential Smoothing
5 Beta 04 700,000,000 - .
6 Absolute |
7 | Year Total Tons Level(a) Trend(b) Forecast Error 600,000,000 - |
8| 1 434,329,000 434,329,000 -13,906,000 |
9| 2 420,423,000 420,423,000 -13,906,000 N/A 500,000,000 - |
10| 3 439,043,000 426,032,600 -6,099,760 406,517,000 32,526,000
11| 4 477,195,000 454,290,136 7,643,158 419,932,840 57,262,160 400,000,000 |
12| 5 504,182,000 487,282,518 17,782,848 461,933,294 42,248,706 |
13| 6 526,954,000 518,198,546 23,036,120 505,065,366 21,888,634 300,000,000 - |
14| 7 546,822,000 544,587,066 24,377,080 541,234,666 5,587,334 ——Total Tons |
15| 8 564,882,000 566,514,859 23,397,365 568,964,147 4,082,147 200,000,000 - - i
18| 9 556,706,000 569,988,489 15,427,871 589,912,224 33,206,224 9= Porecast |
17| 10 570,978,000 576,753,344 11,962,665 585,416,361 14,438,361 100,000,000 9 !
18 1 588,716,009 B , , , ‘ . ,

19 0 2 4 6 8 10 12
20 MAD 26,404,946
21 Year
2
23
24 I —
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Regression-Based Forecasting for
Time Series with a Linear Trend

« Simple linear regression can be applied to forecasting
using time as the independent variable.
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Example 9.12: Forecasting Using
Trendlines

* Coal Production data with a linear trendline

Coal PrOdUCtiOn y= 15,413,536.??:( +438,819,885.29
Km0 Note that the
1,400,000,000 .
1,200,000,000 linear model
1,000,000,000 does not
900,000,000 adequately
PRAEDE predict the
HImEP recent drop in
200,000,000 )
. production after
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Autocorrelation in Time Series

* When autocorrelation is present, successive observations are
correlated with one another; for example, large observations
tend to follow other large observations, and small observations
also tend to follow one another.

— In such cases, other approaches, called autoregressive
models, are more appropriate.

Year Residual Plot
150,000,000.00 -

100,000,000.00
50,000,000.00

0.00 - e

0 30 40 0 60
-50,000,000.00

Residuals

-100,000,000.00

-150,000,000.00

-200,000,000.00 -
Year
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Forecasting Time Series with
Seasonality

* When time series exhibit seasonality, different techniques
provide better forecasts than the ones we have described:

— Multiple regression models with categorical variables
for the seasonal components

— Holt-Winters models, similar to exponential smoothing
models in that smoothing constants are used to
smooth out variations in the level and seasonal
patterns over time.
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Example 9.13: Regression-Based
Forecasting for Natural Gas Usage (13

* Gas & Electric Excel file Gas Use

300

« Use a seasonal categorical 200 {3 o\
; 0 N A N 4
\-0-0-4-0*/

variable with k = 12 levels.

0 llllllllllllllllllllllll
Jan Mar May Jul Sep Nov Jan Mar May Jul Sep Nov

« Construct the regression

model using kK — 1 dummy
variables, with January being
the reference month.

gas usage =4, + f, time + 3, February + £, March
+ 5, April+ g, May + S, June + 5, July
+ S, August + g3, September + g, October
+ S, November + S, December
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Example 9.13: Regression-Based

Forecasting for Natural Gas Usage (23

 Data matrix

OO~-~NoOOAsE WN =

10
1"
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

A C D E F G H N

Gas and Electric Usage

Month Gas Use Time Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Jan 244 1 0 0 0 0 00 O O O o0 o
Feb 28 2 1 0 0 0 00 O O O o0 o
Mar 13 3 0 1 0 0 0 0 O O O o0 0o
Apr 140 4 0 0 1 0 0 0 O O O o0 o0
May 56 5 0 0 0 1 0 0 O O 0 o0 O
Jun 34 6 0 0 0 0 1 0 0 O O o0 O
Jul 3 7 0 0 0 0 01 0O O O O O
Aug 28 8 0 0 0O O OO 1 O 0 0 O
Sep 29 9 0 0 0 0 0O O 1 0 O O
Oct 4 10 0 0 0 O O 0O O O 1 0 o©
Nov 8 1 0 0 0 0 0 0 O 0 0 1 0O
Dec 199 12 0 0 0 0 0 0 0 0 O 0 1
Jan 230 13 0 0 0 O O 0O O O O O O
Feb 245 14 1 0 0 0 0 0 O O 0 0 o
Mar 247 15 0 1 0 0 0 0O O O O O0 oO
Apr 13 16 0 0 1. 0 0 0 0O O O o0 o
May 34 17 0 0 0 1 0 0 0O 0 0 o0 o©
Jun 33 8 0 0 0 O 1 0 0 O O 0 O
Jul 22 19 0 0 0 O O 1 O O 0 0 O
Aug 26 20 0 0 0 0 OO0 1 O O O0 0O
Sep 28 29 0 0 0 0 OO O 1 O O O
Oct 39 2 0 0 0 O OO0 O 0 1 0 O
Nov 86 23 0 0 0 O OO O O O 1 O
Dec 18 24 0 0 0 O O O O O O O 1

@ Pearson
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Example 9.13: Regression-Based
Forecasting for Natural Gas Usage of3)

» Final regression
results (time and
February were
insignificant)

@ Pearson

SLONOME WM =

-
pury

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

A B c D E F G H [
SUMMARY QUTPUT
Regression Stalistics

Muiltiple R 0.985480895
R Square 0.971172595
Adjusted R Square  0.948997667
Standard Error 19.54432831
Observations 24
ANOVA
| df Ss MS F Significance F
Regression 10, 1672922083 16728.22083 43.79597661 2.33344E-08
Residual 13 4965.75 381.9807692
Total 23 172257.9583

Coefficients | Standard Error t Stat P-value Lower 95% | Upper 95%  Lower 95.0%  Upper 95.0%
Intercept 238.75 8.772164157 24.22697738 3.33921E-12 215.6385228 257.8614772 215.6385228 257.8614772
Mar -36.75  16.92588482 -2.171230656 0.049016211 -73.31615105 -0.183848953 -73.31615105 -0.183848953
Apr -99.25  16.92588482 -5.863799799 5.55744E-05 -135.816151 -62.68384895 -135.816151 -62.68384895
May -192.25  16.92588482 -11.35834268 4.02824E-08 -228.816151 -155.683849 -228.816151 -155.683849
Jun -203.25  16.92588482 -12.00823485 2.07264E-08 -239.816151 -166.683849 -239.816151 -166.683849
Jul -208.25  16.92588482 -12.30364038 1.54T67E-08 -244.816151 -171.683849 -244.816151 -171.683849
Aug -209.75  16.92588482 -12.39226204 1.41949E-08 -246.316151 -173.183849 -246.316151 -173.183849
Sep -208.25 16.92588482 -12.30364038 1.54767E-08 -244.816151 -171.683849 -244.816151 -171.683849
Oct -196.75  16.92588482 -11.62420766 3.05791E-08 -233.316151 -160.183849 -233.316151 -160.183849
Nov -149.75  16.92588482 -B.847395666 7.30451E-07 -186.316151 -113.183849 -186.316151 -113.183849
Dec -43.25 16.92588482 -2.555257847 0.023953114 -78.81615105 -6.683848953 -79.81615105 -6.683848953

gas usage =236.75-36.75 March—99.25 April

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

—43.25 December

—192.25 May —203.25 June —208.25 July
—209.75 August —208.25 September
—196.75 October —149.75 November
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Holt-Winters Models for Forecasting Time
Series with Seasonality and No Trend

* The Holt-Winters additive seasonality model with no trend applies
to time series with relatively stable seasonality and is based on the
equation

F

t+k

—a +S,_ ., (9.10)
- The Holt-Winters multiplicative seasonality model with no trend
applies to time series whose amplitude increases or decreases over

time and is
F

t

+k:dS (911)

t~Nt—s+k

A chart of the time series should be viewed first to identify the
appropriate type of model to use.
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Holt-Winters Additive Seasonality
Model with No Trend (1.2
* The level and seasonal factors are estimated as

Level component:a, =a(4, -85, )+ (1-a)a,,
Seasonal component: S, =y(4, —a,)+(1-y)S,_, (9.12)

* The forecast for the next period is

F

t+1 :at+S

(—s+1°
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Holt-Winters Additive Seasonality
Model with No Trend 2of2)

* Estimate the level and seasonal factors for the first s
periods (that is, the length of a season)

6 =% A fori=12,..s (9.13)
S i=1
S, =4 —a,fort=12,...,s (9.14)

* Then we use the smoothing equations to update
a, and S, and calculate forecasts.

@Pearson Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved
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Example 9.14: Using the Holt-Winters
Additive Seasonality Model with No Trend

- Data for gas usage in the Excel file Gas & Electric

- Arbitrarily select a = 0.4 and y= 0.9.

— See the text for computational details.

4 A B | ¢ D E E e w | g R T
|Holt Winters Additive Seasonality Model with No Trend

3
2

3 a ¥ Gas Usage
4 0.4 09
5 | Month Period (t) Gas Use {A) Level(a) Seasonality (S) Forecast (F) MAD
(] 244
7
8
9

Jan 1 105.75 138.25 250
Feb 2 228 105.75 12225 200
| Mar 3 153 105.75 47.25 P /‘

Apr 4 140 105.75 34.25
10| May 5 55 105.75 -31.85 100 \
11 Jun 8 34 105.75 -52.35 50
12 Jul 7 30 105.75 -63.45

s g

13 Aug 28 105.75 -66.55 ' B =
14 Sep 9 29 105.75 7226 012345678 91MN2AANNSNTISIRRRZDLDRT8
15| Oct 10 41 105.75 -63.51 Period

16 Nev 11 88 105.75 2232 ——Gas Use (A)

17 Dec 12 199 105.75 77.27 — =
18 Jan 13 230 100.15 130.69 244.00 14.00

19 Feb 14 245 109.19 134.45 222.40 22 60

20 Mar 15 247 145.41 96.15 156.44 90.56

21 Apr 16 135 127.55 10.13 179.66 44.66

22 May 17 34 102.87 -65.17 85.70 61.70

23 Jun 18 33 95.86 -61.81 50.52 17.52

24 Jul 19 27 93.70 -66.37 3241 541

25 Aug 20 26 93.24 -B7.17 2715 1.15

26 Sep 21 28 96.05 -68.47 2098 7.02

27 Oct 22 39 98.63 -60.02 3254 6.46

28 Nov 23 86 102.51 -17.08 76.31 9.69

29 Dec 24 188 105.80 81.71 179.78 8.22

30 Jan 25 236.49

31 Feb 26 240.25

32

33 MAD 24.08
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Holt-Winters Multiplicative
Seasonality Model with No Trend (1.2

* The multiplicative seasonal model has the same basic
smoothing structure as the additive seasonal model with
some key differences:

Level component:a, =a(4, /S, ,))+(1-a)a,,
Seasonal component: S, =y(4,/a,)+(1-y)S,_, (9.15)

* The forecast for the next period is

F . .=al

t+1 t~t—s+1°
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Holt-Winters Multiplicative
Seasonality Model with No Trend (of2)

* |nitialize the values for the level and seasonal factors:

a =13 g for =12,
AN |

S, = 4, /a, for t=1,2,...,s (9.16)

* This model can be implemented on a spreadsheet in a
similar fashion as the additive model.
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Holt-Winters Models for Forecasting
Time Series with Seasonality and Trend

- The Holt-Winters additive model applies to time series with relatively
stable seasonality and is based on the equation

Fo1 = +b + 854 (9-17)

* The Holt-Winters multiplicative model applies to time series whose
amplitude increases or decreases over time and is

Frop=(a; +b)S; 511 (9.18)

A chart of the time series should be viewed first to identify the
appropriate type of model to use.
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Holt-Winters Additive Seasonality
Model with Trend (1.2

* This model is similar to the additive model that incorporates only
seasonality, but with the addition of a trend component:
Level component: ¢, =a (4, - S,_)+(1-a)(a,_; +b,_;)
Trend component: b, = B(a, —a,_;)+(1- B)b,4 (9.19)
Seasonal component: S, =y (4, —a;)+(1—7)S,_g

* The forecast for period t + 1 is
E+1 = at T bz T St—s+1 ( 920)
* The forecast for k periods beyond the last period of observed
data (period T7) is
F.=a.+bk+S, . ( 9.21)
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Holt-Winters Additive Seasonality
Model with Trend o2

 The initial values for level and seasonal factors
are the same as in the additive seasonality model
without trend, that is, formulas (9.13) and (9.14).

* The Initial values for the trend component are

bt :l % (AS—I—i _Ai)
S =1 S

forr=12,....s (9.22)
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Example 9.15: Using the Holt-Winters Additive
Model for Seasonality and Trend (1 0f2)

* Excel file New Car Sales

- Stable seasonality and an increasing trend

A B c D E F G = I J K
1 New Car Retail Sales
2 |
3 Year Month Units
4 1 Jan 39,810
5 1 Feb 40,081 New Car Sales
6 1 Mar 47,440
7 1 Apr 47,297 | 65000
8 1 May 49211 60,000
9 1 Jun 51,479
10, 1 Ju 46466 | 55000 vﬂ‘
11, 1 Aug 45208 | 50,000 \v‘
12| 1 Sep 44,800 &
13| 1 Oct 46,989 | 45000 1
14| 1 Nov 42,181 | 40000 -
15| 1 Dec 44,186
16| 2 Jan 42,227 | 35000
g: g :fb g-‘gg 1
ar :
19| 2 Apr 50926 FTES* VRS S TR P Y
200 2 May 53572

@ Pearson
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Example 9.15: Using the Holt-Winters Additive

Model for Seasonality and Trend 2 of2)

« Arbitrarily select @= 0.3,56= 0.2, and y = 0.9.

— See text for computational details.

@ Pearson

4 A | B | C DENE £ G | K L M N [s] P
1 |Holt Winters Additive Model with Seasonality and Trend
2
3 | = B y Car Sales
4 03 02 09
5 |Month _ Period (r) Units Level(a) Trend (b) Seasonality (S) Forecast(F) 65,000
6 | Jan 139,810745427.33 46248 -5617.33
7| Feb’ 2 40,081 45427.33 46248 -5346.33 60,000
8 | Mar 3 47,440 4542733 46248 201267 5 b
a Apr 4 47297 4542733 46248 1869.67 :
10 May 5 49211 45427.33 46248 284357 50,000
1 | Jun 6 51479 4542733 46248 4911.87
12| Jul 7 46,466 4542733 46248 1136.07 45,000
13 | Aug 8 45208 4542733 46248 -10.43 40,000
14 | Sep 9 44800 45427.33 46248 -2680.24 g
15 Oct 10 46989 4542733 46248 1896 69 35,000
16 Nov 11 42,161 4542733 46248 -2826.09
17 Dec 12 44186 45427.33 46248 -1118.24 30,000 +
18 Jan. 13 42227 4647617 579.75 438500 4027248 1) 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
19 | Feb 14 45422 4816964  802.50 -3007.51 41709.59
20 | Mar 15/54,075 49899.20  987.91 395949 50984.81 Period
21 Apr 16 50,926 50337.87  878.06 716.28 52756.77
22 May 17/ 53,572 5106968  848.81 2536.44 54059.50 == Units —e—Forecast (F)
23 Jun’ 18 54920 5134539 73419 370834 56830.36
24 | Jul 19 54,449 5244958  808.19 1913.08 5321564
25 | Aug 20 56,079 54107.27  978.09 177351 53247.34
26 | Sep 21 52,177 5429693  820.40 -1935.96 54805.12
27 Oct 22 50,087 53039.22  404.78 -2467.33 57014.02
28 Nov 23 48,513 5281253 27849 -4152.19 50617.91
29 Dec 24 49278 5228259 116.80 -2815.95 5197278
30 | Jan 25 48,134 5243557  124.04 -4310.01 48013.40
31 | Feb 26 54,887 54160.08  444.13 353.48 49552.09
32 | Mar 27 61,064 55354.30  594.15 5534.68 58563.70
33 Apr 28 53,350 54954.03 39527 -1372.00 56664.73
34 May 29 59467 5582367 49014 353264 57885.74
35 Jun 30 59,370 5611817  451.01 3297.48 6002215
36 Jul 31 55,088 55550.90 247.36 -225.30 5848226
37 | Aug 32 59,349 5633143 35399 269317 57571.77
38 | Sep 33 54,472 5660218  337.34 -2110.76 54749.46
39 Oct 34 53,164 56547.07 25885 -3291.49 5447219
40 Nov 35 48,793 55647.70 2721 -6584.45 5265373
41 Dec 36 46,956 53904.02 -326.97 -6534.81 52858.95
42 Jan 37 49267.04

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved
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Holt-Winters Multiplicative
Seasonality Model with Trend (1t2)

* The Holt-Winters multiplicative model is similar to
the additive model for seasonality, but with a trend
component:

Level component: a;, =a (4, /S;_)+(1- a)(at 1+b,1)
Trend component: b, = S(a; —a,_1)+(1—-S)b,_ (9.23)
Seasonal component: S, = y (4, /a,)+(1- 7/)St—s
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Holt-Winters Multiplicative
Seasonality Model with Trend ot

* The forecast for period t + 1 is
F;+1 — (at +bt )St—s+1 ( 924)

* The forecast for k periods beyond the last period of
observed data (period T) is
F. =(a,+bk)S, ., ( 9.25)

* Initialization is performed in the same way as for the
multiplicative model without trend. The model can be
Implemented in a similar fashion on a spreadsheet as

the additive model.
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Selecting Appropriate Time-Series-
Based Forecasting Method

No Seasonality

Seasonality

No trend

Simple moving
average or simple

Holt-Winters additive or
multiplicative seasonality

exponential models without trend or

smoothing multiple regression
Trend Double exponential | Holt-Winters additive or

smoothing multiplicative seasonality

models trend

@ Pearson
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Regression Forecasting with Causal
Variables

* In many forecasting applications, other independent
variables besides time, such as economic indexes or
demographic factors, may influence the time series.

» Explanatory/causal models, often called econometric
models, seek to identify factors that explain
statistically the patterns observed in the variable being
forecast, usually with regression analysis.
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Example 9.16: Forecasting Gasoline
Sales Using Simple Linear Regression

* Excel file Gasoline Sales

* Simple trendline using week as the independent variable

A B C D E F G H I J K |
1 |Gasoline Sales :
2| Gallons Sold ~ v=812.99x+47%01
3 Gallons Sold Week Price/Gallon R? = 0,6845
4 7815 1 $3.95| | 16000
5 5541 2 $4.20 | 14000
6 5650 3 $4.12] | 2000
7 8949 4 $3.98 |
8 7600 5 $4.01 | 10000 -
9 11430 6 $3.92 | 8000 -
10 9190 7 $4.03 | <000 -
11 8889 8 $3.98
12 12721 9 $3.92 @ 4000
13 14830 10 $3.90 | 2000 -
14 1 $3.80 8
15 1 2 3 4 5 6 7 8 9 10
ig Week
18

Predicted sales for week 11 = 812.99(11)+4790.1=13,733 gallons
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Example 9.17: Incorporating Causal Variables in
a Regression-Based Forecasting Model (1of2)

» The average price per gallon changes each week, and this
may influence consumer sales. Average price per gallon is
a causal variable.

* Develop a multiple linear regression model to predict
gasoline sales using both time and price per gallon.

| A | s c | o | & | = |l & | ®w | 1 | 3 |
1 Gasoline Sales
= Gallons Sold y=812.99x + 4790.1
3 |Gallons Sold Week Price/Gallon e
4 7815 1 $305 16000
S | 5541 2 $4.20 | 14000
g 5650 3 $4.12] | 12000
4 8949 4 $3.08
s 7600 5 $4.01/ | 10000
9 | 11430 6 $3.92 | 8000
10 91%0 7 $4.03
o S8 & sa.ga[ | °® T
12 12721 9 $3.02 | 4000
13| 14830 10 $3.90 | 2000
aa 11 $3.80 ;
16| N s 6 7 8 9 10
:?f Week
18
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Example 9.17: Incorporating Causal Variables in
a Regression-Based Forecasting Model (2of2)

- Multiple regression model sales=£,+8, week+(, price/gallon

A B C D E F G
1 [SUMMARY OUTPUT
2
3 Regression Statistics
4 |Multiple R 0.930528528
5 |R Square 0.865883342
6 |Adjusted R Square 0.827564297
7 |Standard Error 1235.400329
8 |Observations 10
9
10 /ANOVA
11 df S5 MS F Significance F
12 |Regression 2 68974748.7 34487374.35 22.59668368 0.000883465
13 |Residual 7 10683497.8 1526213.972
14 (Total 9 79658246.5
15
16 Coefficients  Standard Error t Stat P-value Lower 95%  Upper 95%
17 |Intercept | 72333.08447  21969.92267 3.292368642 0.013259225 20382.47252 124283.6964
18 ‘Week 508.6681395 168.1770861 3.024598364 0.019260863 110.9925232 906.3437559
19 |Price/Gallon -16463.19901  5351.082403 -3.076611005 0.017900405 -29116.49823 -3809.899786

Predicted sales for week 11
= 72,333 +508.7(11)—16,463(3.80) = 15,368 gallons

@Pearson Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved Slide - 51



The Practice of Forecasting

- Judgmental and qualitative methods are used for
forecasting sales of product lines and broad company
and industry forecasts.

» Simple time-series models are used for short- and
medium-range forecasts.

» Regression methods are typically used for long-term
forecasts.
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