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Preface (Second Edition)

Agricultural Production Economics (Second Edition) is a revised edition of the Textbook
Agricultural Production Economics published by Macmillan in 1986 (ISBN 0-02-328060-3).
Although the format and coverage remains similar to the first edition, many small revisions
and updates have been made. All graphs have been redrawn using the latest in computer
imaging technology.

The book contains a comprehensive treatment of the traditional agricultural production
economics topics employing both detailed graphics and differential calculus. The text focuses
on the neoclassical factor-product, factor-factor and product-product models, and is suitable
for an advanced undergraduate or a beginning graduate-level course in static production
economics. Chapters also deal with linear programming, risk and uncertainty and
intertemporal resource allocation. Two new chapters have been added dealing with
contemporary production theory in the factor and product markets. A basic knowledge of
differential calculus is assumed. Individual chapters are largely self-contained, and the book
is suitable for instruction at a variety of levels depending on the specific needs of the instructor
and the mathematics background of the students.
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Introduction

This chapter introduces some basic concepts fundamental to the study of production economics
and provides a brief review of fundamental terms used in economics. These terms are usually
presented as part of an introductory economics or agricultural economics course, and provide
a starting point for the further study of agricultural production economics. The fundamental
assumptions of the purely competitive model and the relationship of these assumptions to
agricultural production economics are outlined.

Key terms and definitions:

Economics

Wants

Resources

Theory

Model

Consumption Economics
Production Economics
Utility

Profit

Microeconomics
Macroeconomics
Statics

Dynamics

Agricultural Economics
Pure Competition



2 Agricultural Production Economics

1.1 Economics Defined

Economics is defined as the study of how limited resources can best be used to fulfill
unlimited human wants. Whereas the wants or desires of human beings are unlimited, the
means or resources available for meeting these wants or desires are not unlimited. Economics
thus deals with making the best use of available resources in order to fulfill these unlimited
wants.

An entire society, an entire country, or for that matter, the world, faces constraints and
limitations in the availability of resources. When the word resource is used, people usually
think of basic natural resources, such as oil and gas, and iron ore. However, the term has a
much broader economic meaning, and economists include not only basic natural resources,
but a broad array of other items that would not occur to those who have not studied
economics.

An important resource is the amount of labor that is available within a society. The
money that is invested in industrial plants used to produce items consumers want is another
basic resource within a society. A resource can be defined still more broadly. Human beings
vary in their skill at doing jobs. A society consisting primarily of highly educated and
well-trained individuals will be a much more productive society than one in which most people
have few skills. Thus the education and skills of jobholders within an economy must be
viewed as a limiting resource.

Students may attend college because they hope to obtain skills that will allow them to
earn higher incomes. They view the lack ofa college degree to be a constraint or limitation on
their ability to earn income. Underlying this is the basic driving force of unlimited human
wants. Because human wants and desires are unlimited, whereas the resources useful in
fulfilling these wants are limited, the basic problem that must be faced, both by individuals
and by societies, is how best to go about utilizing scarce resources in attempting to fulfill
these unlimited wants.

1.2 The Logic of Economic Theory

Economists and others have made numerous attempts to define the word theory. A
definition widely accepted by economists is that a theory is a representation of a set of
relationships. Economic theory can represent either the set of relationships governing the
behavior of individual producers and consumers, or the set of relationships governing the
overall economy of the society or nation.

However, some scientists, including economists, also use the term theory as a synonym
for a hypothesis, a proposition about how something operates. Some theories may be based
on little ifany observation. An example is a theory of how the universe was formed. Theories
in physics often precede actual observation. Physicists have highly developed theories about
how electrons, protons, and neutrons in atoms behave, despite the lack of actual observation.
Although theories may be used as a basis for explaining phenomena in the real world, they
need not be based on actual observation.

An economic theory can be defined as a representation of a set of relationships that
govern human behavior within some portion of an economy. An economic theory can also be
defined as a hypothesis or set of hypotheses about how a particular aspect of an economy
operates. These hypotheses might be tested by observing if they are consistent with the
observed behavior within the economy. Theory as such is not tested; rather, what is tested is
the applicability of a theory for explaining the behavior of a particular individual or group of
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individuals. The conclusion by a social scientist that a theory does not adequately explain the
behavior of a particular group of people does not render the theory itself invalid. The same
theory might be quite applicable to other people under a slightly different set of circumstances.

1.3 Economic Theory as Abstraction

The real world is highly complex. Economists spend very little time in the real world, but
rather, spend a lot of time attempting to uncover fundamental theories that govern human
behavior as it relates to production and consumption. Ifthe real world is highly complex, so
also is the economy of any industrialized society, or for that matter, the economy of nearly any
society or nation. There is so much complexity that it is often difficult to see clearly the
fundamental relationships.

In an effort to see more clearly the relationships that are important, economists abstract
fromreality in developing theories. They leave out relationships identified as un-important to
the problem, in an effort to focus more closely on the relationships which they feel are
important. Economic theory often becomes a simplification of reality that may seem
unrealistic or even silly to someone with no training in economics.

Moreover, economists appear to argue continually. To a person without a background
in economics, economists never seem to agree on anything. The development of an economic
theory as a formal set of relationships governing some aspect of an economy will invariably
involve simplification. Some relationships will be included: others will be left out. The
relationships included are those that the economist developing the theory felt were important
and which represented the key features of the particular economic problem the economist
wanted to study.

However, economists can and do engage in heated debate with regard to whether or not
a particular theory (one that includes some relationships but omits others) is the correct
representation. Debate is a very normal and ordinary part of the behavior of economists and
is the driving force that results in a continual improvement in economic theories over time.
Without it, economics as a discipline within the social sciences would not progress.

1.4 Economic Theory Versus Economic Model

Economists sometimes use the terms theory and model interchangeably. A child might
think of a model as a miniature or toy version of, say, an automobile or farm tractor. This
is not a bad way to think about an economic model. To be realistic, a model must have a
degree of detail. The model must contain a representation of the principal parts of the real
thing, or it would not be recognizable.

At the same time, the model would not be expected to perform the same functions as
the real thing. Just as one would not expect to make a journey in a toy automobile, an
economist would not expect to control the workings of the U.S. economy with a model of the
economy. However, just as an automobile designer might construct a model of a new
automobile before the real thing is built in an effort to obtain a better understanding of how
the real thing might look, so might an economist construct a model of the U.S. economy to
better understand how a particular government policy, if implemented, might affect
individuals and firms within the economy.

Economists use models as a way to measure or simulate the effects of a policy without
actually having to implement the policy. The key question is "What would happen if . .. ?"
The model can be used to answer the question and to assess the impact of numerous
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alternative policies without actually implementing them. Hence a model can also be thought
of as a set of relationships (or theory) that lends itself to answering "what would happen if"
types of questions.

1.5 Representing Economic Relationships

Economic theories and models can be represented in a variety of ways. Beginning in the
18th century with Adam Smith's famous work The Wealth of Nations, economists have relied
heavily on words to express economic relationships. Increasingly, words did not lend
themselves very well to answering specific "whatif" types of questions. Economists in the late
nineteenth and early twentieth centuries relied increasingly on graphical tools as the major
means of expressing economic relationships. Graphics could often be used to make complex
verbal arguments precise, but graphical tools had disadvantages as well. For example, a graph
representing a production function on a farm was limited to no more than two inputs and a
single output, since it is not possible to draw in more than three dimensions.

The use of mathematics as the means of describing economic theories and models got an
important boost with the publication of Paul Samuelson's Foundations of Economic Analysis
in 1947. Since that time, mathematics has become increasingly important as a tool for the
development of theory and models. Fuzzy relationships cannot be part of a theory posed in
mathematical terms. Moreover, mathematics opened new doors for expressing complicated
relationships. On the production side, there were no longer any limits as to the number of
inputs that a production function might use or the number of outputs that could be obtained.

Concomitant with the increased use of mathematics for describing economic relationships
was increased use of statistics for estimating economic relationships fromreal world data. An
entirely new subdiscipline, econometrics—economic measurement—appeared. The
relationships contained within the mathematically based theoretical model could now be
measured.

The final event having an impact on economics over the second half of the twentieth
century was the rapid growth in the use of the computer as a device for estimating or
measuring relationships within an economy. Economists now routinely use techniques for
estimating models in which the computational requirements would have been considered
impossible to achieve only five or ten years ago.

1.6 Consumption Versus Production Economics

Economics involves choices. A person who faces a limited income (and no one does not)
must choose to purchase those items that make him or her feel most satisfied, subject to an
income limitation or constraint. Choice is the heart of consumption economics. Economists
say that a person derives utility from an item from which he or she receives satisfaction. The
basic consumer economics problem involves the maximization of utility (satisfaction) subject
to the constraint imposed by the availability of income.

This book deals with another set of choices, however, the set of choices faced by the
producer of goods and services desired by the consumer. The producer also attempts to
maximize utility. To maximize utility, the producer is motivated by a desire to make money,
again in order better to fulfill unlimited wants. Although the producer may have other goals,
the producer frequently attempts to maximize profit as a means of achieving utility or
satisfaction. Profit is the difference between the revenues obtained from what is sold and
the costs incurred in producing the goods. However, producers face constraints, too. If
producers did not face constraints, the solution to the profit-maximization problem for the
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producer would be to produce as much as possible of anything that could be sold for more
than the cost of production.

Producers may attempt to maximize something other than profit as a means for achieving
the greatest utility or satisfaction. Some farmers might indeed have the objective of
maximizing profits on their farms given resources such as land, labor, and farm machinery.
The underlying motivation for maximizing profits on the farm is that some of these profits
will be used as income to purchase goods and services for which the farmer (and his or her
family) obtain satisfaction or utility. Such a farmer behaves no differently from any other
consumer. Other farmers might attempt to maximize something else, such as the amount of
land owned, as a means to achieve satisfaction.

The producer faces an allocation problem analogous to that faced by the consumer. The
consumer frequently is interested in allocating income such that utility or satisfaction is
maximized. The producer frequently is interested in allocating resources such that profits
are maximized. Economics is concerned with the basic choices that must be made to achieve
these objectives. Consumption economics deals primarily with the utility maximization
problem, whereas production economics is concerned primarily with the profit maximization
problem. However, profits are used by the owner of the firm to purchase goods and services
that provide utility or satisfaction.

1.7 Microeconomics versus Macroeconomics

Economics can be broadly divided into two categories: microeconomics and
macroeconomics. Microeconomics is concerned with the behavior of individual decision-
making units. The prefix micro- is often used in conjunction with things that are small.
Microeconomics deals with the behavior of the individual consumer as income is allocated and
the individual firm manager (such as a farmer) who attempts to allocate his or her resources
consistent with his or her goals.

The prefix macro- is often used in conjunction with things that are large.
Macroeconomics deals with the big picture. For example, a person studying macroeconomics
might deal with issues confronting an entire economy. Inflation and unemployment are
classical areas of concern for macroeconomists. They are concerned with how producers and
consumers interact in total in a society, nation, or for that matter, the world.

Macroeconomists are also concerned with the role that government policy might play in
determining answers to the fundamental questions that must be answered by any society.
These questions include (1) What should be produced? (2) How much should be produced?
(3) How should available goods and services be allocated?

Although microeconomics and macroeconomics are often considered to be separate
branches of economics, they are really very closely intertwined. The macroeconomy is made
up of individual producers and consumers. Moreover, the decisions made by individual
producers and consumers are not at all independent of what is happening at the macro level.
Tax cuts and tax increases by the federal government influence income available to the
individual consumer to spend. Prices received by individual farmers for the commodities they
produce are in large measure determined by the aggregate production of all farmers in
producing a particular commodity, yet to a great extent affect decisions made by the farmer
as an individual firm manager.

This text deals with production economics and the central focus is on the farm firm as
an individual decision-making unit. At the same time, the individual farm firm does not
operate in a vacuum, but is affected in large measure by what happens in the aggregate.
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Moreover, decisions made by individual firms such as farms, when taken together, can have
a substantial impact in a macroeconomic setting.

1.8 Statics Versus Dynamics

Economics can also be classified as static economics or dynamic economics. Static
economics can be thought of as one or more still snapshots of events taking place in an
economy. Dynamic economics can be thought of as a moving picture of the economy.
Economists rely heavily on what is sometimes called comparative statics.

The economic relationships are often represented by a graph: for example, a graph
showing a supply curve and a demand curve. An event or shock affecting demand or supply
is assumed to take place. For example, suppose that consumer incomes increase. A second
demand curve might be drawn on the same graph to represent what happens as a result. The
snapshot comparison of prices and quantities that would prevail under the old and new levels
of consumer incomes is referred to as comparative statics (Figure 1.1).

Price
Supply

Demand
/(New Income)

~ Demand
(Old Income)

q q Quantity
Figure 1.1 Supply and Demand

With an analysis using comparative statics, no attempt is made to uncover the processes
that caused incomes to rise, nor is time important. This is sometimes referred to as a static,
timeless environment. It is a useful means of analysis when the focus is on the impact of an
economic shock, not the processes by which the shock takes place. Notice also that
comparative statics can be used to shed light on either microeconomic or macroeconomic
issues.

In contrast with statics, time is the important element of dynamics. Dynamic economics
attempts to show the processes by which an individual consumer, firm, or economy moves
from one equilibrium to another. Suppose, for example, that the price of a good or commodity
decreases. Dynamic economics might attempt to uncover changes in the quantity that would
be taken from the market one hour, one day, one week, and one month from the point in time
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in which the initial price decrease took place. Another problem in dynamics might be the path
of machinery investments made by a farmer over a 20-year period.

1.9 Economics Versus Agricultural Economics

Until now, little has been said about agricultural economics and its relationship to
economics. There has been areason for this. An agricultural economist is, first, an economist,
in that an agricultural economist knows economic theory intimately. However, an agricultural
economist is also an economist with a specialization in agriculture. The primary interest is in
applying economic logic to problems that occur in agriculture. An agricultural economist
needs to know economics, but a knowledge of agriculture is also important. Ifan agricultural
economist is to portray relationships accurately using a model of some component of an
agricultural sector, the agricultural economist must know these relationships. Otherwise, the
salient or important elements of the theory would be missed.

1.10 Agricultural Production Economics

Agricultural production economics is concerned primarily with economic theory as it
relates to the producer of agricultural commodities. Some major concerns in agricultural
production economics include the following.

Goals and objectives of the farm manager. Agricultural economists often assume that
the objective of any farm manager is that of maximizing profits, a measurement of which is
the difference between returns from the sale of crops and livestock less the costs of producing
these commodities. However, individual farmers have unique goals. One farmer might be
more interested in obtaining ownership of the largest farm in the county. Another might have
as his or her goal that of owning the best set of farm machinery. Still another might be
interested in minimizing his or her debt load.

The goals and objectives of a farm manager are closely intertwined with a person's
psychological makeup, and the goals selected by a particular person may have very little to
do with profit maximization. Nonetheless, most economic models used for representing the
behavior of farm managers assume that the manager is interested in maximizing profits, or at
minimum is interested in maximizing revenue subject to constraints imposed by the
availability of resources.

Choice of outputs to be produced. A farm manager faces an array of options with
regard to what to produce given available land, labor, machinery, and equipment. The
manager must not only decide how much of each particular commodity to be produced, but
also how available resources are to be allocated among alternative commodities. The farmer
might be interested in maximizing profits but may have other goals as well. Often other
constraints enter. For example, the government may permit the farmer to grow only a certain
number of acres of a particular commodity. The farmer may have a particular knowledge of,
or preference for, a certain commodity. The farmland may be better suited for certain types
of crops or livestock than for other types.

Allocation of resources among outputs. Once decisions have been made with regard to
what commodity or commodities are to be produced, the farmer must decide how his or her
available resources are to be allocated among outputs. A simple question to be answered is
which field is to be used for the production of each crop, but the questions quickly become far
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more complex. The amount of farm labor and machinery on each farm is limited. Labor and
machinery time must be allocated to each crop and livestock activity, consistent with the
farmer's overall objective. The greatest share of this text is devoted to dealing with issues
underlying the problems faced by farm managers in the allocation of resources or inputs
across alternative outputs or enterprises.

Assumption of risk and uncertainty. Models in production economics frequently assume
that the manager knows with certainty the applicable production function (for example, the
yield that would result for a crop if a particular amount of fertilizer were applied) and the
prices both for inputs to be purchased and outputs to be sold. However, in agriculture, the
assumption of knowledge with respect to the production function is almost never met.
Weather is, of course, the key variable, but nature presents other challenges. Cattle develop
diseases and die, and crops are affected by insects and disease. Most farmers would scoff at
economic theory that assumes that a production function is known with certainty.

Although farmers may be fully aware of the prices they must pay for inputs such as fuel,
fertilizer, and seed at the time each input is purchased, they are almost never aware at the
beginning of the production season of prices that will prevail when outputs are sold. Price
uncertainty is a result of the biological lag facing the producer of nearly any agricultural
commodity, and production in agriculture takes time.

Economists have often made a simplifying assumption that production takes place
instantaneously —that inputs are, upon acquisition, immediately and magically transformed
into outputs. The transformation does not instantaneously take place in agricultural
production. Production of most crops takes several months. The time may be measured in
years from when a calf'is conceived to when the fattened steer is placed on the market. Hence
farmers must make production decisions with less than perfect knowledge with regard to the
price at which the product will sell when it is actually placed on the market.

The competitive economic environment in which the farm firm operates. Economists
often cite farming as the closest real-world example of the traditional model of pure
competition. Butthe competitive environment under which a farmer operates depends heavily
on the particular commodity being produced.

1.11 The Assumptions of Pure Competition

Economists often use the theory of pure competition as a basic model for explaining the
behavior of firms in an industry. At this point, it is useful to review the assumptions of the
classical economic model of pure competition and assess the degree to which these
assumptions might apply to farming in the United States. The model of pure competition
assumes the following.

A large number of buyers and sellers in the industry exist. Few would feel that there
are not a large number of sellers in farming. The United States Department of Agriculture
(USDA) reported over 2.4 million farms in the United States in 1980, but farm numbers are
far fewer for selected agricultural commodities. Only a few farms supply the entire nation's
parsley needs, for example.

The assumption of a large number of buyers may be met to a degree at a local livestock
auction market or at a central grain exchange in Minneapolis or Chicago, but many
agricultural products move in markets in which only a comparatively few buyers exist. The
tobacco producer may face only buyers from the three or four major cigarette manufacturers,
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and prices are determined in an environment that is not very competitive. In the livestock
sector, broiler production has been dominated in recent years by only a few major producers.
Production of hogs and cattle in the United States is often closer to a purely competitive
environment in which a large number of farm firms take prices generated by overall supply
and demand for hogs and cattle. However, there are a relatively small number of buyers for
hogs and cattle, which again means that the model of pure competition does not strictly apply.

The firm can sell as much as it wants at the going market price, and no single firm is
large enough to influence the price for the commodity being produced. For many agri-
cultural commodities, the farmer can sell as much as he or she wants at the market price.
Farmers are price takers, not price setters, in the production of commodities such as wheat,
corn, beef, and pork. However, for certain commaodities, the sparcity of farms means that the
producers might exert a degree of control over the price obtained.

The product is homogeneous. The homogeneity assumption implies that the product
produced by all firms in the industry is identical. As aresult, there is no need for advertising,
for there is nothing to distinguish the output of one firm from another. For the most part, this
assumption is true in farming. There is little to distinguish one producer's number 2 corn from
another's number 2 corn. For a few commodities, there have been some attempts at product
differentiation—for example, Sunkist oranges by the growers' cooperative, and branded
chicken by the individual broiler producer.

There is free entry and exit, and thus free mobility of resources (inputs or factors of
production) exists both in and out of farming. The free-mobility assumption is currently
seldom met in agriculture. At one time it may have been possible for a farmer to begin with
very little money and a lot of ambition. Nowadays, a normal farm may very well be a business
with a million dollar investment. It is difficult to see how free entry end exit can exist in an
industry that may require an individual firm to have a million dollars in startup capital.
Inflation over the past decade has drastically increased the startup capital requirements for
farming, with resultant impacts on the mobility of resources.

Free mobility of resources in linked to an absence of artificial restraints, such as
government involvement. There exist anumber of artificial restraints in farming. The federal
government has been and continues to be involved in influencing production decisions with
respect to nearly every major agricultural commodity and numerous minor commodities as
well. Agricultural cooperatives have had a significant impact on production levels for
commodities such as milk and oranges.

Grain production in the United States is often heavily influenced by the presence of
government programs. The wheat and feed grain programs are major examples. In milk
production, the government has largely determined the prices to be received by dairy farmers.

The government is involved not only in major agricultural commodities, but is also
heavily involved in the economic environment for many commodities with limited production.
For example, the hops producer in Washington state, or the burley tobacco producer in central
Kentucky, produces in an environment in which the federal government largely determines
both who will produce as well as how much each grower will produce. This is anything but
competitive.

All variables of concern to the producer and the consumer are known with certainty.
Some economists distinguish between pure competition and perfect competition. These
economists argue that pure competition can exist even if all variables are not known with
certainty to the producer and consumer. However, perfect competition will exist only if the
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producer knows not only the prices for which outputs will be sold, but also the prices for
inputs. Moreover, with perfect competition, the consumer has complete knowledge with
respect to prices.

Most importantly, with perfect competition the producer is assumed to have complete
knowledge of the production process or function that transforms inputs or resources into
outputs or commodities. Nature is assumed not to vary from year to year. Of course, this
assumption is violated in agriculture. The vagaries of nature enter into nearly everything a
farmer does, and influence not only output levels, but the quantity of inputs used as well.

1.12 Why Retain the Purely Competitive Model?

As has been indicated, the assumptions of the purely competitive model are not very
closely met by farming in the United States The next logical question is: Why retain it? The
answer to this question is simple. Despite its weaknesses, the purely competitive model comes
closer to representing farming than any other comprehensive model of economic behavior. An
individual farm is clearly not a monopoly if a monopoly is thought of as being a model in
which a single firm is the industry. Nor, for most commodities, do farmers constitute an
oligopoly, if an oligopoly is defined as a model in which only a few firms exist in a
competitive environment where price and output decisions by one firm a strongly affected by
the price and output decisions of other firms. Nor does farming usually meet the basic
assumption of monopolistic competition, where slight differences in product prices can be
maintained over the long term because individual producers are somewhat successful in
slightly differentiating their product from products made by a rival firm.

In summary, the purely competitive model has been retained as the basic model for
application within agricultural production economics to farming because it comes closer than
any of the remaining models of competitive behavior. This does not mean that other models
of competitive behavior are unimportant in the remainder of the text. Rather, reliance will be
placed on the purely competitive model as the starting point for much of our analysis, with
modifications made as needed to meet the particular features of the problem.

1.13 Concluding Comments

The purely competitive model provides the basic starting point for much of the remainder
of the text. The assumptions of the purely competitive model are fundamental to the
microeconomic or firm oriented models of agricultural production processes.

The factor-product model is used in instances where one input is varied in the production
of a single output. Key features of the factor-product model are outlined in detail in chapters
2 to 4.

The factor-factor model deals with a situation in which two inputs are varied in the
production of a single output. The fundamental technical relationships underlying the
factor-factor model are presented primarily with graphics in Chapter 5. The mathematics of
maximization and minimization are developed in Chapter 6. Chapters 7 and 8 introduce prices
and present the complete factor-factor model using the graphical presentation developed in
Chapter 5 as well as the mathematics outlined in Chapter 6 as a basis. Linkages between
graphical and mathematical presentations are stressed. Chapter 9 provides some extensions
of the basic factor-factor model using two inputs and a single output.
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Chapter 10 is devoted to the Cobb Douglas production function, which is perhaps the
best known algebraic form used to represent agricultural production processes. Chapter 11
is devoted to some other closely related functional forms which are perhaps more closely
linked to traditional production theory and provide better representations of true agricultural
production processes, but are more difficult to work with algebraically.

Chapter 12 introduces the concept of the elasticity of substitution between input pairs.
The chapter makes use of the constant elasticity of substitution, (CES) production function
as the means for illustrating this concept.

Chapter 13 shows how the demand functions for inputs or factors of production can be
derived from the profit maximizing conditions for the firm. These input demand functions are
derived under varying assumptions with respect to the characteristics of the production
function underlying the profit-maximizing conditions.

Chapter 14 relaxes some of the assumptions of the purely competitive model and
illustrates how the relaxation of these assumptions can affect profit-maximizing conditions
for the firm. Models in which product prices and input prices are allowed to vary are
considered.

Chapters 15 and 16 are devoted to the product-product model, in which a single input
orresource is used to produce two different products. Linkages to the production possibilities
curve are outlined. Profit maximization conditions for the firm are derived.

Chapters 17 and 18 extend the factor-factor and product-product models to situations
in which many different inputs are used in order to produce many different outputs. The
conditions required to maximize or minimize the manager's objective function subject to
limitations in the availability of resources are formally derived using mathematics for many
different inputs and outputs in Chapter 18.

Some linkages between marginal analysis and enterprise budgeting are discussed in
Chapter 19. Chapters 20 and 21 are devoted to topics that involve dynamic as well as static
theory. Chapter 20 presents models that take into account risk and uncertainty. Models in
Chapter 21 include time as an explicit element.

Chapter 22 shows how linear programming might be used as a tool for operationalizing
concepts related to the factor-factor and product-product models presented in the earlier
chapters. Specific applications to agriculture are presented.

Chapter 23 poses some questions and unsolved problems in agricultural production
economics which provide the basis for research in agricultural economics. These are used as
a vehicle useful as a basis for further study in agricultural production economics.
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Questions for Thought and Class Discussion

1. Discuss the role of microeconomics versus macroeconomics in agricultural economics.
Does microeconomics have a greater impact than macroeconomics on the farm manager?
Explain.

2. If pure competition is not an adequate representation of the economic model that underlies
farming in the United States, why do the assumptions of pure competition continue to be
important to agricultural economists?

3. Nowadays, is mathematics essential for understanding economic principles?

4. Thereal world is dynamic. If so, why do agricultural economists continue to rely so heavily
on comparative statics?

5. Agricultural economists are frequently accused of spending too little time in the real world.
A preoccupation with abstract theoretical issues means that agricultural economists are
sometimes unable or unwilling to look at the fundamental issues linked to the production and
marketing of agricultural commodities. Do you agree or disagree?

6. To become an agricultural economist, is it more important to know agriculture or to know
economic theory?
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Production With
One Variable Input

This chapter introduces the concept of a production function and uses the concept as a basis
for the development of the factor-product model. An agricultural production function in
presented using graphical and tabular approaches. Algebraic examples of simple production
functions with one input and one output are developed. Key features of the neoclassical
production function are outlined. The concept of marginal and average physical product is
introduced. The use of the first, second, and third derivatives in determining the shape of the
underlying total, marginal, and average product is illustrated, and the concept of the elasticity
of production is presented.

Key terms and definitions:

Production Function

Domain

Range

Continuous Production Function
Discrete Production Function
Fixed Input

Variable Input

Short Run

Long Run

Intermediate Run

Sunk Costs

Law of Diminishing (Marginal) Returns
Total Physical Product (TPP)
Marginal Physical Product (MPP)
Average Physical Product (APP)
Ay/Ax

Sign

Slope

Curvature

First Derivative

Second Derivative

Third Derivative

Elasticity of Production
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2.1 What Is a Production Function?

A production function describes the technical relationship that transforms inputs
(resources) into outputs (commodities). A mathematician defines a function as a rule for
assigning to each value in one set of variables (the domain of the function) a single value in
another set of variables (the range of the function).

A general way of writing a production function is
(2.1) y =f(x)

where Y is an output and X is an input. All values of X greater than or equal to zero constitute
the domain of this function. The range of the function consists of each output level (y) that
results from each level of input (X) being used. Equation (2.1) is a very general form for a
production function. All that is known about the function f(x) so far is that it meets the
mathematician's definition of a function. Given this general form, it is not possible to
determine exactly how much output (y) would result from a given level of input (X). The
specific form of the function f(X) would be needed, and f(x) could take on many specific forms.

Suppose the simple function
(2.2) y= 2X.

For each value of X, a unique and single value of'y is assigned. For example if X =2, then y
=4;1fX=6theny =12 and so on. The domain of the function is all possible values for X, and
the range is the set of y values corresponding to each X. In equation (2.2), each unit of input
(x) produces 2 units of output (y).

Now consider the function

(23) y=yx

It is not possible to take the square root of a negative number and get a real number. Hence
the domain (X) and range () of equation (2.3) includes only those numbers greater than or
equal to zero. Here again the function meets the basic definition that a single value in the
range be assigned to each value in the domain of the function. This restriction would be all
right for a production function, since it is unlikely that a farmer would ever use a negative
quantity of input. It is not clear what a negative quantity of an input might be.

Functions might be expressed in other ways. The following is an example:

If x =10, theny = 25.
If x =20, then y = 50.
If x =30, then y = 60.
If x =40, then y = 65.
If x =50, then y = 60.

Notice again that a single value for y is assigned to each X. Notice also that there are two
values for X (30 and 50) that get assigned the same value for y (60). The mathematician's
definition of a function allows for this. But one value for y must be assigned to each X. It does
not matter if two different X values are assigned the same y value.

The converse, however, is not true. Suppose that the example were modified only
slightly:
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Ifx =25, theny = 10.
If x =50, then y = 20.
If x =60, then y = 30.
Ifx =65, then y = 40.
If x =60, then y = 50.

This is an example that violates the definition of a function. Notice that for the value x = 60,
two values of y are assigned, 30 and 50. This cannot be. The definition of a function stated
that a single value for y must be assigned to each x. The relationship described here represents
what is known as a correspondence, but not a function. A correspondence describes the
relationship between two variables. All functions are correspondences, but not all
correspondences are functions.

Some of these ideas can be applied to hypothetical data describing the production of
corn in response to the use of nitrogen fertilizer. Table 2.1 represents the relationship and
provides specific values for the general production function y = f(X). For each nitrogen
application level, asingle yield is defined. The yield level is sometimes referred to as the total
physical product (TPP) resulting from the nitrogen that is applied.

Table 2.1 Corn Yield Response to Nitrogen Fertilizer

Quantity of Yield in
Nitrogen (Pounds/Acre)  Bushels/Acre
0 50
40 75
80 105
120 115
160 123
200 128
240 124

From Table 2.1, 160 pounds of nitrogen per acre will result in a corn yield or TPP of
123 bushels per acre. The concept of a function has a good deal of impact on the basic
assumptions underlying the economics of agricultural production.

Another possible problem exists with the interpretation of the data contained in Table
2.1. The exact amount of corn (TPP) that will be produced if a farmer decides to apply 120
pounds of nitrogen per acre can be determined from Table 2.1, but what happens if the farmer
decides to apply 140 pounds of nitrogen per acre? A yield has not been assigned to this
nitrogen application level. A mathematician might say that our production function y = f(x)
is discontinuous at any nitrogen application level other than those specifically listed in Table
2.1.

A simple solution might be to interpolate between the known values. If 120 pounds per
acre produces 115 bushels of corn, and 160 pounds of nitrogen produces 123 bushels of corn,
the yield at 140 pounds might be (115 + 123)/2 or 119 bushels per acre. However,
incremental increases in nitrogen application do not provide equal incremental increases in
corn production throughout the domain of the function. There is no doubt that some nitrogen
is available in the soil from decaying organic material and nitrogen applied in previous
seasons, and nitrogen need not be applied in order to get back the first 50 bushels of corn.

The first 40 pounds of nitrogen applied produces 25 additional bushels, for a total of 75
bushels, the next 40 pounds produces 30 bushels of corn, for a total of 105 bushels, but the
productivity of the remaining 40 pound increments in terms of corn production declines. The
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next 40 pounds increases yield by only 10 bushels per acre, the 40 pounds after that by only
8 bushels per acre, and the final 40 pounds by only 5 bushels per acre.

Following this rationale, it seems unlikely that 140 pounds of nitrogen would produce
ayield of 119 bushels, and a more likely guess might be 120 or 121 bushels. These are only
guesses. In reality no information about the behavior of the function is available at nitrogen
application levels other than those listed in Table 2.1. A yield of 160 bushels per acre at a
nitrogen application level of 140 pounds per acre could result- or, for that matter, any other
yield.

Suppose instead that the relationship between the amount of nitrogen that is applied and
corn yield is described as

(2.4) y = 0.75x + 0.0042x* = 0.000023x’
where y =corn yield (total physical product) in bushels per acre
X = nitrogen applied in pounds per acre

Equation (2.4) has some advantages over the tabular function presented in Table 2.1.
The major advantage is that it is possible to calculate the resultant corn yield at any fertilizer
application level. For example, the corn yield when 200 pounds of fertilizer is applied is
0.75(200) + 0.0042(200%) - 0.000023(200°) = 134 bushels per acre.

Moreover, a function such as this is continuous. There are no nitrogen levels where a
cornyield cannot be calculated. The yield at a nitrogen application level of 186.5 pounds per
acre can be calculated exactly. Such a function has other advantages, particularly if the
additional output resulting from an extra pound of nitrogen is to be calculated. The yields of
corn at the nitrogen application rates shown in Table 2.1 can be calculated and are presented
in Table 2.2.

Table 2.2 Corn Yields at Alternative Nitrogen Application Rates
for the Production Function y = 0.75x + 0.0042x* — 0.000023x’

Quantity of Nitrogen, X Corn Yield, y or TPP
(Ib/acre) (bu/Acre)
0 0.0
20 16.496
40 35.248
60 55.152
80 75.104
100 94.000
120 110.736
140 124.208
160 133.312
180 136.944
200 134.000
220 123.376

240 103.968
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The corn yields (TPP) generated by the production function in Table 2.2 are not the same
as those presented in Table 2.1. There is no reason for both functions to generate the same
yields. A continuous function that would generate exactly the same yields as those presented
in Table 2.1 would be very complicated algebraically. Economists like to work with
continuous functions, rather than discrete production functions from tabular data, in that the
yield for any level of input use can be readily obtained without any need for interpolation.
However, a tabular presentation would probably make more sense to farmers.

The yields generated in Table 2.2 also differ from those in Table 2.1 in another important
way. Table 2.1 states that if a farmer applied no nitrogen to corn, a yield of 50 bushels per
acre is obtained. Of course, nitrogen is absolutely essential for corn to grow. As indicated
earlier, the data contained in Table 2.1 assume that there is some residual nitrogen in the soil
on which the corn is grown. The nitrogen is in the soil because of decaying organic material
and leftover nitrogen from fertilizers applied in years past. As a result, the data in Table 2.1
reveal higher yields at low nitrogen application levels than do the data contained in Table 2.2.

The mathematical function used as the basis for Table 2.2 could be modified to take this
residual nitrogen into account by adding a constant such as 50. The remaining coefficients of
the function (the 0.75, the 0.0042, and the —0.000023) would also need to be altered as well.
Otherwise, the production function would produce a possible but perhaps unrealistic corn
yield of 50+ 136.944 = 186.944 bushels per acre when 180 pounds of fertilizer were applied.
Formany production processes in agriculture, no input produces no output. Consider the case
of the production of beefusing feed as an input. No feed would indeed produce no beef. In the
case of crop production, some yield will normally result without chemical fertilizers.

A production function thus represents the relationship that exists between inputs and
outputs. For each level of input use, the function assigns a unique output level. When a zero
level of input is used, output might be zero, or, in some instances, output might be produced
without the input.

2.2 Fixed Versus Variable Inputs and the Length of Run

So far, examples have included only one input or factor of production. The general form
of the production function was

(2.5) y = f(x)
where y = an output
X = an input

Equation (2.5)isan ultrasimplistic production function for agricultural commodities. Such a
function assumes that the production process can be accurately described by a function in
which only one input or factor of production is used to produce an output. Few, if any,
agricultural commodities are produced in this manner. Most agricultural commodities require
several, ifnot a dozen or more, inputs. As an alternative, suppose a production function where
there are several inputs and all but one are assumed to be held fixed at some constant level.
The production function would thus become

(2.6) y =f(x,,

X3 X35 X45 Xs, Xgs X7)-

For example, y might be the yield of corn in bushels per acre, and X, might represent the
amount of nitrogen fertilizer applied per acre. Variables X,, ..., X; might represent each of the
other inputs used in the production of corn, such as land, labor, and machinery.
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Thus, in this example, the input X, is treated as the "variable" input, while the remaining
inputs (X,, ..., X;) are assumed to be held constant at some fixed level. The " |" can be read as
the word "given". As the use of X, is "varied" or increased, units of the variable input X, are
added to units of the fixed inputs X,, ..., X,.

How can it be determined if an input should be treated as fixed or variable? A variable
input is often thought of as an input that the farm manager can control or for which he or she
can alter the level of use. This implies that the farmer has sufficient time to adjust the amount
of input being used. Nitrogen in corn production has often been cited as an example of a
variable input, in that the farmer can control the amount to be applied to the field.

A fixed input is usually defined as an input which for some reason the farmer has no
control over the amount available. The amount of land a farmer has might be treated as a
fixed input.

However, these distinctions become muddy and confused. Given sufficient time, a
farmer might be able to find additional land to rent or purchase, or the farmer might sell some
of the land owned. If the length of time were sufficient to do this, the land input might be
treated as a variable input.

The categorization of inputs as either fixed or variable is closely intertwined with the
concept of time. Economists sometimes define the long run as time of sufficient length such
that all inputs to the production function can be treated as variable. The very short run can
be defined as a period of time so short that none of the inputs are variable. Other lengths of
time can also be defined. For example, the short run is a period of time long enough such that
a few of the inputs can be treated as variable, but most are fixed. The intermediate runis long
enough so that many, but not all inputs are treated as variable.

These categories again are somewhat arbitrary. If an economist were asked "How long
is the short run?", the answer would probably be that the short run is a period of time
sufficiently long that some inputs can be treated as variable, but sufficiently short such that
some inputs can be treated as fixed. Does this imply a length of time of a day, a week, a
month, or a crop production season? The length of time involved could be any of these.

Once fertilizer has been applied, a farmer no longer has control over application levels.
The input that was previously classified as variable becomes fixed. Seed before planting is
classified as a variable input. Once it is planted in the ground, seed can no longer be treated
as a variable input.

Some production economists have argued that inputs should not be arbitrarily
categorized as either fixed or variable. These arbitrary categories can be highly misleading.
Production economists argue that in the case of crop production, prior to planting, nearly all
inputs are variable. Farmers might rent additional land, buy or sell machinery, or adjust
acreages of crops. Here is where real decision making can take place. Once planting begins,
more and more of the inputs previously treated as variable become fixed. Tractor time and
labor for tillage operations cannot be recovered once used. Acreages of crops once planted
largely cannot be altered. Insecticides and herbicides are variable inputs before application,
but must be treated as fixed or "sunk" once they have been applied. At the start of harvest,
the only variable input is the labor, fuel, and repairs to run the harvesting equipment and to
move the grain to market.

This view treats the input categories as a continuum rather than as a dichotomy. As
inputs are used, costs are treated as sunk. Inputs, once used, can no longer be sold, or used
on the farm for a different enterprise, such as another crop.
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2.3 The Law of Diminishing Returns

The law of diminishing returns is fundamental to all of production economics. The law
is misnamed. It should be called the law of diminishing MARGINAL returns, for the law deals
with what happens to the incremental or marginal product as units of input or resource are
added. The law of diminishing marginal returns states that as units of an variable input are
added to units of one or more fixed inputs, after a point, each incremental unit of the variable
input produces less and less additional output. As units of the variable input are added to units
of the fixed inputs, the proportions change between fixed and variable inputs. The law of
diminishing returns has sometimes been referred to as the law of variable proportions.

For example, if incremental units of nitrogen fertilizer were applied to corn, after a point,
each incremental unit of nitrogen fertilizer would produce less and less additional corn. Were
it not for the law of diminishing returns, a single farmer could produce all the corn required
in the world, merely by acquiring all of the available nitrogen fertilizer and applying it to his
or her farm.

The key word in the law of diminishing returns is additional. The law of diminishing
returns does not state that as units of a variable input are added, each incremental unit of input
produces less output in total. If it did, a production function would need to have a negative
slope in order for the law of diminishing returns to hold. Rather, the law of diminishing
returns refers to the rate of change in the slope of the production function. This is sometimes
referred to as the curvature of the production function.

Figure 2.1 illustrates three production functions. The production function labeled A has
no curvature atall. The law of diminishing returns does not hold here. Each incremental unit
of input use produces the exact same incremental output, regardless of where one is at on the
function. An example of a function such as this is

(2.7) y = 2X.

Each incremental unit of X produces 2 units of y, regardless of the initial value for X, whether
it be 0, 24, 100 or 5000.

A slightly more general form of this function is
(2.8) y = bx.

where b is some positive number. If b is a positive number, the function is said to exhibit
constant marginal returns to the variable input X, and the law of diminishing returns does not
hold. Each incremental unit of X produces bx units of y.

The production function labeled B represents another kind of relationship.
Here each incremental unit of X produces more and more additional y. Hence the law of
diminishing returns does not hold here either. Notice that as the use of input X is increased,
X becomes more productive, producing more and more additional y. An example of a function
that would represent this kind of a relationship is

(2.9) y=x.
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Figure 2.1 Three Production Functions

A slightly more general form of the function might be
(2.10) y =ax’,
where both a and b are positive numbers, and b is greater than 1. Notice that if b =1, the
function is the same as the one depicted in diagram A of figure 2.1. The value of a must be
positive if the input is to produce a positive quantity of output.

The production function labeled C represents the law of diminishing returns throughout
itsrange. Here each incremental unit of X produces less and less additional y. Thus each unit

of X becomes less and less productive. An example of a function that represents this kind of
relationship is

(2.11) y = .

Another way of writing equation 2.11)is
(2.12) y = x°3,

Both are exactly the same thing. For this production function, total product (TPP or y) will
never decline.

A slightly more general form of the function is
(2.13) y =ax’,
where a and b are positive numbers. However, here b must be less than 1 but greater than

zero, if diminishing (marginal) returns are to hold. This function will forever increase, but at
a decreasing rate.
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2.4 Marginal and Average Physical Product

The marginal physical product (MPP) refers to the change in output associated with an
incremental change in the use of an input. The incremental increase in input use is usually
taken to be 1 unit. Thus MPP is the change in output associated with a 1 unit increase in the
input. The MPP of input X; might be referred to as MPPx. Notice that MPP, representing the
incremental change in TPP, can be either positive or negative.

Average physical product (APP) is defined as the ratio of output to input. That is, APP
=Yy/X. For any level of input use (X), APP represents the average amount of output per unit of
X being used.

Suppose that the production function is
(2.14) y =f(x).

One way of expressing MPP is by the expression Ay/Ax, where the A denotes change. The
expression Ay/Ax can be read as "the change in y (Ay) with respect to a change in X (Ax)."
For the same function APP is expressed either as y/x or as f(X)/x.

For the production function
(2.15) y = 2X,

MPP is equal to 2. The change in y with respect to a 1 unit change in X is 2 units. That is, each
additional or incremental unit of X produces 2 additional or incremental units of y. For each
additional unit of x that is used, TPP increases by 2 units. In this example APP equals y/X,
or APP equals 2x/X, or APP equals 2. For this simple production function MPP = APP =2 for
all positive values for X.

For the production function
(2.16) y = bx,

MPP is equal to the constant coefficient b. The change in y with respect to a change in X is
b. Each incremental or additional unit of X produces b incremental or additional units of y.
That is, the change in TPP resulting from a 1 unit change in X is b. Moreover, APP = bx/x.
Thus, MPP = APP = b everywhere.

Marginal and average physical products for the tabular data presented in Table 2.1 may
be calculated based on the definition that MPP is the change in output (Ay) arising from an
incremental change in the use of the input (AX) and that APP is simply output (y) divided by
input (X). These data are presented in Table 2.3. MPP is calculated by first making up a
column representing the rate of change in corn yield. This rate of change might be referred to
as Ay or perhaps ATPP. Then the rate of change in nitrogen use is calculated. This might be
referred to as AX. Since 40 pound units were used in this example, the rate of change in each
case for X is 40. The corresponding MPP over the increment is Ay/Ax. MPP might also be
thought of as ATPP/AX. The corresponding calculations are shown under the column
labeled MPP in Table 2.3. For example, if nitrogen use increases from 120 to 160 pounds per
acre, or 40 pounds, the corresponding increase in corn yield will be from 123 to 128 bushels
per acre, or 5 bushels. The MPP over this range is approximately 5/40 or 0.125.

The MPP's are positioned at the midpoint between each fertilizer increment. The MPP's
calculated here are averages that apply only approximately at the midpoints between each
increment, that is at nitrogen application levels of approximately 20, 60, 100, 140 and 180
pounds per acre. Since no information is available with respect to what corn might have
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yielded at these midpoints, the calculated MPP's are at best approximations that might in
certain instances not be very accurate.

Table 2.3 also includes calculations for average physical product. Average physical
product (APP) is defined as the ratio of output to input. That is, APP =y/X. For any level of
input use (X), APP represents the average amount of output per unit of X being used. In Table
2.3, APP is calculated by dividing corn yield by the amount of nitrogen. These calculations
are presented in the column labeled APP. The values for APP are exact at the specified levels
of input use. For example, the exact APP when 120 pounds of nitrogen is applied is 115/120
or 0.958.

Table 2.3 MPP and APP for Corn Yield Response to Nitrogen Fertilizer

Quantity of Yield of
Nitrogen Corn
(Ib/acre) Ax (bu/acre) Ay MPP APP
0 50 50/0 = undefined
40 25 25/40 = 0.625
40 75 75/40 = 1.875
40 30 30/40= 0.75
80 105 105/80=1.313
40 10 10/40 = 0.25
120 115 115/120 = 0.958
40 8 8/40 = 0.20
160 123 123/160 = 0.769
40 5 5/40 = 0.125
200 128 128/200 = 0.640
40 -4 -4/40 = -0.100
240 124 124/240 = 0.517

2.5 MPP and the Marginal Product Function

The procedure described in section 2.4 for calculating MPP's is tedious and time
consuming. There exists a quicker and more accurate means for calculating MPP and APP
if the production function is given.

The MPP (Ay/AXx) represents the slope or rate of change in the production function. The
production function itselfis sometimes referred to as total physical product (or TPP) function.
The MPP function refers to the function representing the rate of change in the TPP function.
If the slope of the TPP function were to be graphed, the result would be the MPP function,
representing the rate of change in the TPP or the underlying production function as the use
of variable input X is varied.

Given the TPP function (or production function), the MPP function (or marginal product
function) might easily be obtained. Suppose again that the TPP or production function is
represented by

(2.17) y = 2X
Again, the incremental increase in y associated with a 1 unit increase in the use of X is 2 units.

Hence MPP = 2. Moreover, Ay/Ax = 2. In this case the marginal product function is equal
to the constant 2.
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For functions that do not have a constant slope, the expression Ay/Ax can only
approximate the slope of the function at a given point (Figure 2.2). The approximation can
be very crude and inaccurate if a large value for AX is chosen for the incremental change in
X. This approximation improves as the value for Ax is chosen to be smaller and smaller. If the
exact slope or MPP of a production function is to be found at a specific point, the magnitude
of Ax must become infinitely small. That is, Ax must approach zero.

cd .

A X
Figure 2.2 Approximate and Exact MPP

One way for finding the exact slope of a production function at a particular point is
shown in Figure 2.2. Suppose that the exact MPP at point D is desired. A line is drawn
tangent to the production function at D. which intersects the vertical axis at point B. The
exact MPP atpoint D is equal to the slope of this line. This slope can be expressed as BC/OA.
The graphical approach is time consuming, particularly if the MPP at several points along
the function are to be calculated. A better way might be to find the first derivative of the
production function. The first derivative of the production function is defined as the limit of
the expression Ay/Ax as Ax approaches zero. As Ax becomes smaller and smaller, Ay/Ax
becomes a better and better approximation of the true slope of the function. The first
derivative, dy/dx, represents the exact slope of the production function at a particular point.
In Figure 2.2, at point D, dy/dx = BC/OA.

For the production function
(2.18) y = f(x),

the first derivative dy/dx of equation (2.18) is a function that represents the slope, or rate of
change in the original production function and is sometimes written as

(2.19) dy/dx = f'(x) or f,,
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where f'(X) or f, represents the first derivative of, or the rate of change in the original function.
Another way of expressing these relationships is

(2.20) dy/dx = f'(x) = f, = dTPP/dx = MPP.

All expressions refer to the rate of change in the original production or TPP function. For the
production function

(2.21) y = 2X
(2.22) dy/dx = dTPP/dx = MPP =2

Throughout the domain of this production function, the rate of change is a constant 2. Each
additional unit of X produces 2 additional units of y. The first derivative of this production
function [f’(X) or f,] is 2 for all values of X. Note that in this case dy/dx is exactly the same
as Ay/Ax. This is because the slope of the function is a constant 2, not dependent on the
value of X.

Suppose the production function
(2.23) y = bx,

where b is any positive number. Again b is the MPP of x. The derivative of the production
function dy/dx is b. Each incremental unit of X will produce b units of y. If X is increased by
1 unit from any initial level, TPP will increase by b units. I[f b were negative, then TPP would
decrease, but this would be a silly production function because positive amounts of X would
result in negative amounts of y. It is not entirely clear what a negative bushel of corn would
look like. Again, b is constant, and dy/dx will always equal Ay/Ax.

Now suppose that the production function is represented by the equation
(2.24) y=50+5.93x°.

The MPP of x for this function is not the same for every value of X. To calculate the MPP at
a particular value for X, not only the derivative of the production function is needed, but also
how much X is applied. Two simple rules can be used to find the derivative of any production
function similar to the one above.

The first rule states that the derivative of any constant value in a function is 0. In this
case, the derivative of 50 is 0. The constant is an intercept term that places the function at x
=0 on the y axis at 50. A constant does not affect the slope of the function. The second rule
is that the derivative of any function of the general form

(2.25) y =bx" can be found by the rule
(2.26) dy/dx = nbx""!

where n and b are any numbers. For example, the derivative of the function y = X* is dy/dx
= 2x; the derivative of the function y = 3x* is dy/dx = 3-4-x’ or 12x°. If these functions were
production functions, their corresponding derivatives would be the corresponding marginal
product functions, representing the slopes or rates of change in the original production
functions. The derivative for the production function representing corn yield response to
nitrogen fertilizer [equation (2.26)] is dy/dx = 0 + 0.5-5.93-x"**, or dy/dx equals 2.965x 7.
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A number raised to a negative power is 1 over the number raised to the corresponding
positive power: for example,

(2.27) X 2=1/x

In this case

(2.28) dy/dx = 2.965/x°
or
(2.29) dy/dx = 2.965/ +/x

If the amount of X to be applied is known, the corresponding TPP is 50 + 5.93x*°, and
the corresponding MPP is 2.965/x"°. In this case, MPP is specifically linked to the amount of
X that is used, as X appears in the first derivative. If this is the case, dy/dx will provide the
exact MPP but will not be the same as the approximation calculated by Ay/Ax.

Table 2.4 presents MPP's calculated by two methods from yield data obtained from this
production function [equation (2.24)]. The first method computes the rate of change in the
yields for 40— pound fertilizer increments as was done in the earlier example (Table 2.3). The
second method inserts values for nitrogen application levels into the MPP function obtained
by taking the derivative of the original production function. The values chosen are at the
midpoints (20, 60, 100, 140 and 180 pounds of nitrogen per acre).

As is evident from Table 2.4, the results using the two methods are not the same.
Method 1 provides the approximate MPP at the midpoint. However, for certain fertilizer
application levels (for example at 20 pounds per acre) the MPP using this first method is very
different from the MPP obtained by inserting the actual midpoint value into the MPP function.
This is because the production function is curvilinear, and the slope calculated using method
1 is only a crude approximation of the exact slope of the production function over each
40-pound increment of fertilizer use.

Table 2.4 MPP of Nitrogen in the Production of Corn
Under Two Alternative Approaches

Quantity of Corn Yield Average MPP  Exact MPP
Nitrogen (y or TPP) Method Method
(Ib/acre) (bu/acre) 1 2
0 50.0
0.9375  0.6630 (N =20 Ib/Acre)
40 87.5
0.3875  0.3827 (N =60 Ib/Acre)
80 103.0
0.3000  0.2965 (N = 100 1b/Acre)
120 115.0
0.2500  0.2506 (N = 140 Ib/Acre)
160 125.0

0.2225  0.2212 (N = 180 Ib/Acre)
200 133.9
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As is evident from Table 2.4, the results using the two methods are not the same.
Method 1 provides the approximate MPP at the midpoint. However, for certain fertilizer
application levels (for example at 20 pounds per acre) the MPP using this first method is very
different from the MPP obtained by inserting the actual midpoint value into the MPP function.
This is because the production function is curvilinear, and the slope calculated using method
1 is only a crude approximation of the exact slope of the production function over each
40-pound increment of fertilizer use.

The derivative of the function will provide the exact slope of the function at any
selected nitrogen application level. Therefore, the calculated MPP values from method 2 are
highly accurate for the assumed levels of nitrogen use. Using method 2, the MPP can be
calculated at any selected level of fertilizer use (including the application levels 0f 40, 80, 140,
160, and 200 pounds per acre). Basic differential calculus is a powerful tool in agricultural
production economics.

Finally, assume that the production function describing corn yield response to nitrogen
fertilizer is the one used as the basis for the data contained in Table 2.5. That function was

(2.30) y = 0.75x + 0.0042x* - 0.000023x>

Following the rules for differentiation, the marginal product function corresponding to
equation (2.30) is

(2.31) dy/dx =0.75 + 0.0084x — 0.000069x*
Since APP is y/X, the corresponding APP function is

(2.32) y/x = (0.75x + 0.0042x* — 0.000023x%)/x
=0.75 + 0.0042x — 0.000023x>

Table 2.5 illustrates the exact APP and MPP values for equation (2.30) obtained by inserting
the amount of X (nitrogen) appearing in the first column of the Table into the MPP [equation
(2.31)] and APP (equation (2.32)].

Table 2.5 Corn Yields, APP and MPP for y = 0.75x + 0.0042x* - 0.000023x*

X y (Corn) APP of x, MPP of X,
(Nitrogen) or TPP y/X dy/dx
0 0.0 undefined 0.7500
20 16.496 0.8248 0.8904
40 35.248 0.8812 0.9756
60 55.152 0.9192 1.0056
80 75.104 0.9388 0.9804
100 94.000 0.9400 0.9000
120 110.736 0.9228 0.7644
140 124.208 0.8872 0.5736
160 133.312 0.8332 0.3276
180 136.944 0.7608 0.0264
200 134.000 0.6700 -0.3300
220 123.376 0.5608 -0.7416
240 103.968 0.4332 -1.2084

2.6 A Neoclassical Production Function

Figure 2.3 illustrates a neoclassical production function that has long been popular for
describing a production relationships in agriculture. With this production function, as the
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use of input X; increases, the productivity of the input at first also increases. The function
turns upward, or increases, at first at an increasing rate. Then a point called the inflection
point occurs. This is where the function changes from increasing at an increasing rate to
increasing at a decreasing rate. Another way of saying this is that the function is convex to
the horizontal axis prior to the inflection point, but concave to the horizontal axis after the
inflection point. The inflection point marks the end of increasing marginal returns and the start
of diminishing marginal returns. Finally, the function reaches a maximum and begins to turn
downward. Beyond the maximum, increases in the use of the variable input X, result in a
decrease in total output (TPP). This would occur in an instance where a farmer applied so
much fertilizer that it was actually detrimental to crop yields.

2.7 MPP and APP for the Neoclassical Function

The MPP function changes as the use of input X, increases. At first, as the productivity
ofinputX, increases, so does its marginal product, and the corresponding MPP function must
be increasing (Figure 2.3). The inflection point marks the maximum marginal product. It is
here that the productivity of the incremental unit of the input X, is at its greatest. After the
inflection point, the marginal product of X, declines and the MPP function must also be
decreasing. The marginal product of X, is zero at the point of output maximization, and
negative at higher levels. Therefore, the MPP function is zero at the point of output
maximization, and negative thereafter.

Average physical product (APP) also changes as the use of X, increases, although APP
is never negative. As indicated earlier, APP is the ratio of output to input, in this case y/X; or
TPP/X,. Since this is the case, APP for a selected point on the production function can be
illustrated by drawing a line (ray) out of the origin of the graph to the selected point. The
slope of this line is y/X, and corresponds to the values of'y and X, for the production function.
If the point selected on the function is for some value for X, called x¥, then the APP at X¥ is
y/X¥E.

APP reaches a maximum at a point after the inflection point but before the point in which
output is maximized. Figure 2.3 illustrates several lines drawn out of the origin. The line with
the greatest slope is tangent to the production function at that point. Therefore it also
represents the slope of the production function at that point. The slope of each line drawn from
the origin to a point on the production function represents the APP for the function at that
point, but only one line is tangent to and thus also represents the slope of the production
function at that point. It is here where marginal product must equal average product, APP
must equal MPP, and y/x = dy/dx.

Call the point X,° where y/x = dy/dX. At any point less than Xx,°, the slope of the
production function is greater than the slope of the line drawn from the origin to the point.
Hence APP must be less than MPP prior to X,°. As the use of X, increases toward X,°, APP
increases, as does the slope of the line drawn from the origin. After x,°, the slope of the
production function is less than the slope of the line drawn from the origin to the point. Hence
MPP must be less than APP after x,°. As the use of X, increases beyond X;°, the slope of the
line drawn from the origin to the point declines, and APP must decline beyond X,°. The slope
of that line never becomes negative, and APP never becomes negative.

However, a line drawn tangent to the production function represents MPP and will have
anegative slope beyond the point of output maximization. APP is always non-negative, but
MPP is negative beyond the point of output maximization.
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Figure 2.3 also illustrates the relationships that exist between the APP and the MPP
function for the neoclassical production function. The MPP function first increases as the use
of the input is increased, until the inflection point of the underlying production function is
reached (point A). Here the MPP function reaches its maximum. After this point, MPP
declines, reaches zero when output is maximum (point C), and then turns negative. The APP
function increases past the inflection point of the underlying production function until it
reaches the MPP function (point B). After point B, APP declines, but never becomes negative.

The relationships that hold between APP and MPP can be proven using the composite
function rule for differentiation. Notice that

(2.33) y = (y/X)'x, or TPP=APP-X in the original production or TPP function.
(2.34) dy/dx = y/x + [d(y/x)/dx] X
or, equivalently, MPP = APP + (slope of APP)X.

If APP is increasing and therefore has a positive slope, then MPP must be greater than APP.

If APP is decreasing and therefore has a negative slope, MPP must be less than APP. If APP
has a zero slope, such as would be the case where it is maximum, MPP and APP must be
equal.

Figure 2.4 illustrates the TPP, MPP, and APP curves that are generated from the data
contained in Table 2.5. The maximum of the production function corresponds to an output
level of 136.96 bushels of corn per acre, using a nitrogen application rate (x) of 181.60
pounds per acre. The inflection point of this production function corresponding with the
maximum MPP occurs at an output level of 56.03 bushels of corn (y), with a corresponding
nitrogen application rate of 60.86 pounds per acre, The APP maximum, where MPP
intersects APP, occurs at an output level of 85.98 bushels of corn per acre, with a
corresponding nitrogen (X) application rate of 91.30 bushels per acre. The actual production
function illustrated from the data contained in Table 2.5 appears quite similar to the
neoclassical function illustrated in Figure 2.3.

2.8 Sign, Slope and Curvature

By repeatedly differentiating a production function, it is possible to determine accurately
the shape of the corresponding MPP function. For the production function

(2.35) y = f(X)
the first derivative represents the corresponding MPP function
(2.36) dy/dx = f'(x) = f, = MPP

Insert a value for X into the function f'(X) [equation (2.36)]. If f(X) (or dy/dx or MPP) is
positive, then incremental units of input produce additional output. Since MPP is negative
after the production function reaches its maximum, a positive sign on f'(x) indicates that the
underlymg production function has a positive slope and has not yet achieved a maximum. If
f’ (X) is negative, the production function is downsloping, having already achieved its
maximum. The sign on the first derivative of the production function indicates if the slope of
the production function is posmve or negative and if MPP lies above or below the horizontal
axis. If MPP is zero, then f'(X) is also zero, and the production function is likely either
constant or at its maximum. Figure 2.5 illustrates seven instances where the first derivative
of the TPP function is positive [(a) to (g)] and seven instances where the first derivative is
negative [(h) to (n)].
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Figure 2.5 MPP’s for the Production Function y = f(x)

f, = MPP; f, = slope of MPP; f, = curvature of MPP

The first derivative of the TPP function could also be zero at the point where the TPP
function is minimum. The sign on the second derivative of the TPP function is used to
determine if the TPP function is at a maximum or a minimum. If the first derivative of the
TPP function is zero and the second derivative is negative, the production function is at its
maximum. If the first derivative of the TPP function is zero, and the second derivative is
positive, the production function is at its minimum point. If both the first and second
derivatives are zero, the function is at an inflection point, or changing from convex to the
horizontal axis to concave to the horizontal axis. However, all inflection points do not
necessarily have first derivatives of zero. Finally, if the first derivative is zero and the second
derivative does not exist, the production function is constant.

The second derivative of the production function is the first derivative of the MPP
function, or slope of the MPP function. The second derivative (d’y/dx* or f”(x) or f,) is
obtained by again differentiating the production function.

(2.37) d?y/dx? =" (x) = f, = dMPP/dx
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If equation (2.37) is positive for a particular value of X, then MPP is increasing at that
particular point. A negative sign indicates that MPP is decreasing at that particular point. If
f”(x) is zero, MPP is likely at a maximum at that point. In figure 2.4, the first derivative of
the MPP function (second derivative of the TPP function) is positive in (a), (b), and (c), (1),
(m),and (n); negative in (e), (f), (g), (h), (i), and (j), and zero in (d) and (k).

The second derivative of the MPP function represents the curvature of MPP and is the
third derivative of the original production (or TPP) function. It is obtained by again
differentiating the original production function

(2.38) dPy/dx® =" (x) = f, = *MPP/dx?

The sign on f"/(x) for a particular value of X indicates the rate of change in MPP at that
particular point. If MPP is in the postive quadrant and f"(X) is positive, MPP is increasing
atan increasing rate [(a) in Figure 2.5] or decreasing at a decreasing rate (). If MPP is in the
negative quadrant, a positive f"’(X) indicates that MPP is either decreasing at a decreasing rate
(j) or increasing at a decreasing rate (1).

When MPP is in the positive quadrant, a negative sign on " (X) indicates that MPP is
either increasing at a decreasing rate (c), or decreasing at an increasing rate (g). When MPP
is in the negative quadrant, a negative sign on f"’(x) indicates that MPP is decreasing at an
increasing rate (h) or increasing at an increasing rate (n).

Iff"(x) is zero, MPP has a constant slope with no curvature as is the case in (f), (1), and
(m). If MPP is constant, f”'(X) does not exist.

A similar approach might be used for APP. APP equals y/x, and if y and X are positive,
then APP must also be positive. As indicated earlier, the slope of APP is

(2.39) d(y/x)/dx = ' (y/x) = dAPP/dx

For a particular value of X, a positive sign indicates a positive slope and a negative sign a
negative slope.

The curvature of APP can be represented by
(2.40) d*(y/x)/dx? = £ (y/x) = d>APP/dx?

For a particular value of X, a positive sign indicates that APP is increasing at an increasing
rate, or decreasing at a decreasing rate. A negative sign on equation (2.40) indicates that APP
isincreasing at a decreasing rate, or decreasing at an increasing rate. A zero indicates an APP
of constant slope. The third derivative of APP would represent the rate of change in the
curvature of APP.

Here are some examples of how these rules can be applied to a specific production
function representing corn yield response to nitrogen fertilizer. Suppose the production
function

(2.41) y =50+ 5.93 x5

where
y = corn yield in bushels per acre
X = pounds of nitrogen applied per acre

(2.42) MPP = f/(x) = 2.965 x °° > 0
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For equation (2.41), MPP is always positive for any positive level of input use, as indicated
by the sign on equation (2.42). If additional nitrogen is applied, some additional response in
terms of increased yield will always result. If X is positive, MPP is positive and the
production function has not reached a maximum.

(2.43) dMPP/dx = f"(x)=-1.48 x5 <0

If equation (2.43)is negative, MPP is slopes downward. Each additional pound of nitrogen
that is applied will produce less and less additional corn yield. Thus the law of diminishing
(MARGINAL) returns holds for this production function throughout its range.

(2.44) d®MPP/dx? = f"(x) =2.22 X >3>0

If equation (2.44) holds, the MPP function is decreasing at a decreasing rate, coming closer
and closer to the horizontal axis but never reaching or intersecting it. This is not surprising,
given that incremental pounds of nitrogen always produce a positive response in terms of
additional corn.

(2.45) APP = y/x = 50/x + 5.93x %
=50x"+593x%>0

If x is positive, APP is positive. Corn produced per pound of nitrogen fertilizer is always
positive [equation (2. 4553

(2.46) dAPP/dx = d(y/x)/dx = =50 X 2 = 2.97 x5 <0

Ifxis positive, APP is sloped downward. As the use of nitrogen increases, the average product
per unit of nitrogen declines [Equation (2.46)].

(2.47) PAPP/dX? = dX(y/x)/dx® = 100x > +4.45 X 5 >0

Ifx is positive, APP is also decreasing at a decreasing rate. As the use of nitrogen increases,
the average product per unit of nitrogen decreases but at a decreasing rate [equation (2.47)).

2.9 A Single-Input Production Elasticity

The term elasticity is used by economists when discussing relationships between two
variables. An elasticity is a number that represents the ratio of two percentages. Any
elasticity is a pure number in that it has no units.

The elasticity of production is defined as the percentage change in output d1V1ded by the
percentage change in input, as the level of 1nput use is changed. Suppose that X" represents
some original level of input use that produces y’ units of output. Theuse of X is then increased
to some new amount called x”, which in turn produces y” units of output. The elasticity of
production (E,) is defined by the formula

(2.48) E,= [y - y" WX = x")x].

wherey,y"”,X,and x"” are as defined previously, and X and y represent mid values between the
old and new levels of inputs and outputs. Thus

(2.49) x=(X'+x")2
and y=(y' +y")r2
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Since the elasticity of production is the ratio of two percentages, it does not depend on
the specific units in which the input and output are measured. For example, suppose thaty
represents corn yield in bushels per acre, and X represents nitrogen in pounds per acre. Then
suppose that corn yield is instead measured in terms of liters per hectare, and nitrogen was
measured in terms of kilograms per hectare. If the same amount of nitrogen is applied in both
instances, the calculated value for the elasticity of production will be the same, regardless of
the units in which y and X are measured.

Another way of expressing the elasticity of production is

(2.50) E, = (Ay/y)/(Ax/x)
where Ay=y' -vy”
and Ax=x"-x"

The elasticity of production is one way of measuring how responsive the production
function is to changes in the use of the input. A large elasticity (for example, an elasticity of
production greater than 1) implies that the output responds strongly to increases in the use of
the input. An elasticity of production of between zero and 1 suggests that output will increase
as a result of the use of X, but the smaller the elasticity, the less the response in terms of
increased output. A negative elasticity of production implies that as the level of input use
increases, output will actually decline, not increase.

The elasticity of production can also be defined in terms of the relationship between
MPP and APP. The following relationships hold. First

(2.51) E, = (Ay/)/(Ax/x)
Equation (2.51) might also be written as
(2.52) E, = (Ay/Ax)-(x/y)
Notice that

(2.53) Ay/Ax = MPP

and that

(2.54) x/y = 1/APP

Thus

(2.55) E, = MPP/APP

Notice that a large elasticity of production indicates that MPP is very large relative to
APP. In other words, output occurring from the last incremental unit of fertilizer is very great
relative to the average output obtained from all units of fertilizer. If the elasticity of
production is very small, output from the last incremental unit of fertilizer is small relative to
the average productivity of all units of fertilizer.
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2.10 Elasticities of Production for a Neoclassical Production Function

A unique series of elasticities of production exist for the neoclassical production
function, as a result of the relationships that exist between MPP and APP. These are
illustrated in Figure 2.6 and can be summarized as follows

Y,

MPP
or

APP

APP

Figure 2.6 MPP, APP and the Elasticity of Production

1. The elasticity of production is greater than 1 until the point is reached where MPP = APP
(point A).

2. The elasticity of production is greatest when the ratio of MPP to APP is greatest. For the
neoclassical production function, this normally occurs when MPP reaches its maximum at the
inflection point of the production function (point B).

3. The elasticity of production is less than 1 beyond the point where MPP = APP (point A).

4. The elasticity of production is zero when MPP is zero. Note that APP must always be
positive (point C).

5. The elasticity of production is negative when MPP is negative and, of course, output is
declining (beyond point C). If the production function is decreasing, MPP and the elasticity
of production are negative. Again, APP must always be positive.

6. A unique characteristic of the neoclassical production function is that as the level of input
use is increased, the relationship between MPP and APP is continually changing, and therefore
the ratio of MPP to APP must also vary. Since E, = MPP/APP, the elasticity of production
too must vary continually as the use of the input increases. This is a characteristic of the
neoclassical production function, which in general is not true for some other production
functions.



36 Agricultural Production Economics

2.11 Further Topics on the Elasticity of Production.

The expression Ay/AX is only an approximation of the true MPP of the production
function for a specific amount of the input X. The actual MPP at a specific point is better
represented by inserting the value of X into the marginal product function dy/dx.

The elasticity of production for a specific level of X might be obtained by determining
the value for dy/dx for that level of X and then obtaining the elasticity of production from the
expression

(2.56) E, = (dy/dx)-x/y

Now suppose that instead of the neoclassical production function, a simple linear relationship
exists between y and X. Thus

(2.57) TPP =y = bx

where b is some positive number. Then dy/dx =b, but note also that since y = bx, then y/x
= bx/x = b. Thus MPP (dy/dx) = APP (y/x) = b. Hence, MPP/APP =b/b = 1.

The elasticity of production for any such function is 1. This means that a given
percentage increase in the use of the input X will result in exactly the same percentage increase
in the output y. Moreover, any production function in which the returns to the variable input
are equal to some constant number will have an elasticity of production equal to 1.

Now suppose a slightly different production function
(2.58) y = ax

Another way of writing equtation (2.58)is
(2.59) y = ax®’

In this case

(2.60) dy/dx = 0.5 ax **
And
(2.61) y/x =ax

Thus, (dy/dx)/(y/x) = 0.5

Hence the elasticity of productionis 0.5. This means that for any level of input use MPP will
be precisely one half of APP. In general, the elasticity of production will be b for any
production function of the form

(2.62) y = ax’

where a and b are any numbers. Notice that
(2.63) dy/dx = bax""!

and that

(2.64) y/x = ax’/x = ax ' = ax"".
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(Another way of writing the expression 1/xis X '. Therefore, y/x=yx . Buty = ax’, and, as
aresult, X°x ' =x""1)

Thus the ratio of MPP to APP—the elasticity of production— for such a function is
always equal to the constant b. This is not the same as the relationship that exists between
MPP and APP for the neoclassical production function in which the ratio is not constant but
continually changing as the use of X increases.

2.12 Concluding Comments

This chapter has outlined in considerable detail the physical or technical relationships
underlying the factor-product model. A production function was developed using tabular,
graphical, and mathematical tools, with illustrations from agriculture. The law of diminishing
MARGINAL returns was introduced. Marginal and average physical product concepts were
developed. The rules of calculus for determining if a function is at a maximum or minimum
were outlined, using a total physical product and marginal physical product concepts to
illustrate the application. Finally, the concept of an elasticity of production was introduced,
and the elasticity of production was linked to the marginal and average product functions.

Problems and Exercises

1. Suppose the following production function data. Fill in the blanks.

X (Input) y (Output) MPP  APP
0 0 —
10 50 I
25 75 I
40 80 I
50 85 I

2. For the following production functions, does the law of diminishing returns hold?

<
o

a. y=Xx
b. y=3Xx
c.y=x
d. y=6x-0.10x

3. Find the corresponding MPP and APP functions for the production functions given in
problem number 2.
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4. Assume a general multiplicative production function of the form
y=2x°

Derive the corresponding MPP and APP functions, and draw on a sheet of graph paper TPP,
APP and MPP when the value of b is

a.5 f. 0.7
b.3 2.03
c.2 h.0
d. 1.5 i.-0.5
e. 1.0 j--1.0

Be sure to show the sign, slope and curvature of MPP and APP. What is the value for the
elasticity of production in each case? Notice that the curves remain at fixed proportion from
each other.

5. Graph the production function
y=0.4x +0.09x* - 0.003x’

for values of X between 0 and 20. Derive and graph the corresponding MPP and APP. What
is the algebraic expression for the elasticity of production in this case? Is the elasticity of
production constant or variable for this function? Explain.

6. Suppose that the coefficients or parameters of a production function of the polynomial form
are to be found. The production function is

y =ax + bx* + cx’
where y = corn yield in bushels per acre
X = nitrogen application in pounds per acre
a, b and c are coefficients or unknown parameters

The production function should produce a corn yield of 150 bushels per acre when 200
pounds of nitrogen is applied to an acre. This should be the maximum corn yield (MPP = 0).
The maximum APP should occur at a nitrogen application rate of 125 pounds per acre. Find
the parameters @, b and ¢ for a production function meeting these restrictions. Hint: First find
the equation for APP and MPP, and the equations representing maximum APP and zero MPP.
Then insert the correct nitrogen application levels in the three equations representing TPP,
maximum APP and zero MPP. There are three equations in three unknowns (a, b, and c).
Solve this system for @, b, and c.
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Profit Maximization
with One Input
and One Output

This chapter introduces the fundamental conditions for profit maximization in the single input
single output or factor- product case. The concept of the total value of the product and the
value of the marginal product is introduced. The value of the marginal product and the
marginal factor cost are equal at the point of profit maximization. Profits are normally
maximum when the implicit value of the last dollar spent on an input is one dollar. Stages of
production are described, and an explanation of why a farmer would choose to operate in
stage II is given.

Key terms and definitions:

Total Value of the Product (TVP)
Profit

Revenue

Cost Function

Value of the Marginal Product (VMP)
Total Factor Cost (TFC)

Marginal Factor Cost (MFC)
Average Value of the Product (AVP)
First Order Condition

Second Order Condition

Necessary Condition

Sufficient Condition

Maximum Profits

Minimum Profits

Stages of Production (I, II, and 1)
Rational Stage

Irrational Stage

Implicit Worth

Imputed Value

Shadow Price
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3.1 Total Physical Product Versus Total Value of the Product

As indicated in Chapter 2, the output (Y) from a production function can be also called
total physical product (TPP). If a firm such as a farm is operating under the purely
competitive conditions, the individual farm firm can sell as little or as much output as desired
at the going market price. The market price, p, does not vary. A constant price might be called
p°. Since

(3.1) TPP =y,
both sides of equation (3.1) can be multiplied by the constant price p°. The result is
(3.2) p°TPP = p°y.

The expression p°y is the total revenue obtained from the sale of the outputy and is the
same as p°TPP. The expression p°TPP is sometimes referred to as the total value of the
product (TVP). It is ameasure of output (TPP) transformed into dollar terms by multiplying
by p°. For a farmer, it represents the revenue obtained from the sale of a single commodity,
such as corn or beef cattle. If the output price is constant, the TVP function has the same
shape as the TPP function, and only the units on the vertical axis have changed (Figure 3.1).
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Figure 3.1 The Relationship Between TVP, VMP, AVP, and MFC
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3.2 Total Factor or Resource Cost

Suppose that production requires only one input. Suppose also that a farmer can
purchase as much of this input as is needed at the going market price v. The purely
competitive environment is again assumed to exist. The market price for the input, factor, or
resource does not vary with the amount that an individual farmer purchases. Thus the market
price might be designated as v°. The term v°X can be referred to as total factor cost or total
resource cost. These terms are sometimes abbreviated as TFC or TRC. Hence

(3.3) TRC = TFC = \°x.

The TFC function has a constant slope, in this case equal to v°. Another way of looking
at v° is that it is the increase in cost associated with the purchase of an additional unit of the
input. The increase in cost is equal to the price of the input v°.

3.3 Maximizing the Difference between Returns and Costs

A farmer might be interested in maximizing net returns or profit. Profit (II) is the total
value of the product (TVP) less the total factor cost (TFC). The profit function for the farmer
can be written as

(3.4) IT=TvP - TFC.
Or, equation (3.4) might be written as
(3.5) IT = pey - vox

Figure 3.2 illustrates the TVP function, the TFC function, and the profit function,
assuming that the underlying production function is of the neoclassical form as described in
detail in chapter 2. The profit function is easily drawn, since it is a graph representing the
vertical difference between TVP and TFC. If TFC is greater than TVP, profits are negative
and the profit function lies below the horizontal axis. These conditions hold at both the very
early stages as well as the late stages of input use. Profits are zero when TVP = TFC. This
condition occurs at two points on the graph, where the profit function cuts the horizontal axis.
The profit function has a zero slope at two points. Both of these points correspond to points
where the slope of the TVP curve equals the slope of the TFC curve. The first of these points
corresponds to a point of profit minimization, and the second is the point of profit
maximization, which is the desired level of input use.

The slope of the profit function can be expressed (using A notation) as AII/Ax. Hence

(3.7) AIl/Ax = ATVP/Ax - ATFC/Ax

The slope of the function is equal to zero at the point of profit maximization (and at the point
of profit minimization—more about this later). Therefore, the slope of the TVP function
(ATVP/AX) must equal the slope of the TFC function (ATFC/AX) at the point of profit

maximization.

3.3 Value of the Marginal Product and Marginal Factor Cost

The value of the marginal product (VMP) is defined as the value of the incremental unit
of output resulting from an additional unit of X, when y sells for a constant market price p°.



42

TVP
TFC

VMP
AVP
MFC

Ve

Profit
$

Agricultural Production Economics

TFC Zecro

/8\00@

/ero
Profit
S~

Maximum
Profit TVvP
Parallel
Maximum
AV P ~—
/ero
Proﬂt\
Maximum
VMP
Parallel «Inflection
Point
Maximum
Profit
@ —@ L o 4 L 4
X X
Maximum
VMP
Minimum VMP =
Profit MFC
VMP =
MFC MFC = v°
AVP =
OCAPP
@ L . 4
‘Q Zerot X
Maximum VMP VMP
Profit
L
xZero X
Profit
wMinimum Profit

Profit

Figure 3.2 TVP, TFC, VMP, MFC, and Profit



Profit Maximization with One Input and One Output 43

The VMP is another term for the slope of the TVP function under a constant product price
assumption. In other words, VMP is another name for ATVP/Ax. Since TVP = p°TPP, the
VMP must equal p° ATPP/Ax. But ATPP/Ax = MPP. Therefore, VMP must be equal to
p°MPP.

The marginal factor cost (MFC), sometimes called marginal resource cost (MRC), is
defined as the increase in the cost of inputs associated with the purchase of an additional unit
of the input. The MFC is another name for the slope of the TFC function. Note that if the
input price is assumed to be constant at v°, then MFC = v°These relationships might also be
expressed by

(3.6) II=TVP - TFC
3.4 Equating VMP and MFC

The points where the slope of TVP equals the slope of TFC corresponds either to a point
of profit minimization or a point of profit maximization. These points are also defined by

(3.8) p° MPP = VMP = MFC = v°

Figure 3.2 also illustrates these relationships. MFC, being equal to a constant v°, is a straight
line. Notice that APP can be multiplied by the price of the product p°, and is sometimes
referred to as average value of the product (AVP). It is equal to p°APP or p°y/X, or in this case
$4.00-(APP).

There are many ways of rearranging the equation p® MPP = v°. One possibility is to
divide both sides of the equation by the output price p°. Then at the point of maximum profit,
MPP must be equal to v°/p°, the factor/product price ratio. Another possibility is to divide
both sides of the equation by average physical product (APP) or y/X. The profit maximizing
condition would then be given by

(3.9) MPP/APP = (v°X)/(p°y)

However, MPP/APP is the elasticity of production for X. The term v°x represents total
factor cost. The term p°y represents total revenue to the farm, since it is the price of the output
times output. At the point of profit maximization, the elasticity of production will be exactly
equal to the ratio of total factor cost to total revenue for the farm.

The data contained in Table 2.5 can be used to determine how much nitrogen fertilizer
should be applied to the corn. To do this, prices must be assigned both to corn and to the
nitrogen fertilizer. Assume that the price of corn is $4.00 per bushel and that nitrogen costs
$0.15 per pound. These data are presented in Table 3.1.

Several comments can be made with regard to the data contained in Table 3.1. First,
at a nitrogen application level of 180 pounds per acre, the MPP of nitrogen is calculated to
be 0.0264. The number is very close to zero and suggests that maximum yield is at very close
to an application rate of 180 pounds per acre. The MPP is calculated by first differentiating
the TPP or production function to find the corresponding MPP function

(3.10) y = 0.75X + 0.0042x% - 0.000023%’
(3.11) dy/dx = 0.75 + 0.0084x — 0.000069x>
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Table 3.1 Profit Maximization in the Application of Nitrogen to Corn

Quantity Corn Yield MPP of p° VMP  MFC (v°) Profit (T)

of Nitrogen (bu/acre) Nitrogen (%) (P°MPP) &) (%)
0 0.0 0.7500 4.00  3.0000 0.15 0.0

20 16.496 0.8904 4.00 3.5616 0.15 62.98
40 35.248 0.9756 4.00 3.9024 0.15 134.99
60 55.152 1.0056 4.00 4.0224 0.15 211.61
80 75.104 0.9804 4.00 3.9216 0.15 288.42
100 94.000 0.9000 4.00 3.6000 0.15 361.00
120 110.736 0.7644 4.00 3.0576 0.15 42494
140 124.208 0.5736 4.00 2.2944 0.15 47583
160 133.312 0.3276 4.00 1.3104 0.15  509.25
180 136.944 0.0264 4.00 0.1056 0.15 520.78
200 134.000 -0.3300 4.00 -1.3200 0.15 506.00
220 123.376 -0.7416 4.00 -2.9664 0.15 460.50
240 103.968 -1.2084 4.00 -4.8336 0.15 379.87

Then the MPP at x =180 is

MPP = 0.75 + 0.0084(180) — 0.000069(180)* = 0.0264
However, since at the point where X =180, MPP is still positive, the true yield maximum must
be at a nitrogen application level of slightly greater than 180 pounds per acre, where dy/dx =
MPP = 0.

Profits appear to be greatest at a nitrogen application rate of 180 pounds per acre.
However, at 180 pounds per acre, the return from the incremental unit of nitrogen (the VMP
of X) is $0.1056, whereas its cost is $0.15. The results suggest that the last unit of nitrogen
that was used returned less than it cost. The profit-maximizing level of nitrogen use must be
at slightly less than 180 pounds per acre. If the input is not free, the profit-maximizing level
of input use will always be somewhat less than the level of input use that maximizes the
production function. In many instances, however, the difference between the
profit-maximizing level of input use and the yield-maximization level of input use may not be
very large. In this case the incremental pound of nitrogen must return corn worth only $0.15
in order to cover its cost. If corn sells for $4.00 per bushel, this is but $0.15/$4.00 = 0.0375
bushel of corn from the incremental pound of nitrogen.

The difference between the level of nitrogen needed to maximize profits versus the
amount needed to maximize output and total revenue does not appear to be very great. If
nitrogen were free, there would be no difference atall. As the price of nitrogen increases, the
level of nitrogen required to maximize profits is reduced. For example, if nitrogen sold for
$1.00 per pound, the last pound of nitrogen applied would need to produce 0.25 bushel of corn
at $4.00 per bushel. In general, the distinction between the point representing maximum profit
and the point representing maximum revenue becomes more and more important as input
prices increase.

If the price of fertilizer is very cheap, the farmer will lose little by fertilizing at a level
consistent with maximum yield rather than maximum profit. However, if fertilizer is
expensive, the farmer needs to pay close attention to the level of input use that maximizes
profits. The same analysis holds true for other inputs used in agricultural production processes
for both livestock and crops.
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Profits per acre of corn in this example appear to be extraordinarily high, but remember
that the production function describing corn yield response to the application of nitrogen
assumes that all other inputs are fixed and given. The cost per acre for these inputs could be
calculated. Suppose that this turns out to be $450 per acre. This value could be subtracted
from each value in the profit column. Conclusions with regard to the profit maximizing level
of nitrogen use would in no way be altered by doing this.

3.5 Calculating the Exact Level of Input Use to Maximize Output or
Profits

The exact level of input use required to maximize output (y) or yield can sometimes be
calculated. Several examples will be used to illustrate problems in doing this with various
production functions. From the earlier discussion it is apparent that if output is to be at its
maximum, the MPP of the function must be equal to zero. The last unit of input use resulted
in no change in the output level and requires that MPP = dy/dx = 0 at the point of output
maximization.

Suppose the production function
(3.12) y = 2X
In this case
(3.13) MPP = dy/dx =2 (and not zero!)

The MPP is always 2, and 2 cannot be equal to zero, and the production function has no
maximum. A more general case might be the production function

(3.14) y = bx
(3.15) MPP =dy/dx=b=0?

If b were zero, regardless of the amount of X that was produced, no y would result. For any
positive value for b, the function has no maximum. Now suppose the production function

(3.16) y = X%
(3.17) MPP =dy/dx=0.5x%°=0?

The only value for x is zero for which the MPP would also be equal to 0. Again, this function
has no maximum. In general, any function of the form

(3.18) y=ax’
where a and b are positive numbers, has no maximum.

Now suppose a production function

(3.19) y=10+8x - 2
(3.20) dy/dx =8 - 4x =0
(3.21) 4x =8
(3.22) x=2
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Equation (3.19) has a maximum at x = 2. In general, a production function of the form
(3.23) y =a+bx+cx

where

OoOTo

>
>
<

[ Nere)

will have a maximum at some positive level of X.

Finally, the output-maximizing level of input use can be found for the production
function used in Chapter 2

(3.24) y = 0.75x + 0.0042x* = 0.000023x’

First, differentiate to find MPP, and then set MPP equal to 0

(3.25) MPP = dy/dx = 0.75 + 0.0084x — 0.000069x*> = 0
Now recall from basic algebra that a polynomial of the general form
(3.26) y=ax+bx+c

has two solutions for X. These solutions are

_ 2_
(327) x - — bE/bT-dac

2a

For this production function (Equation (3.24)),a=-0.000069, b=0.0084 and ¢ =0.75.
One solution generates a negative value for x, which can be ruled out as economically
impossible. The second solution is 181.595 units of X, which is the output-maximizing level
of nitrogen use (or a slightly greater value than 180, where MPP was 0.0264).

The exact amount of nitrogen required to maximize profits in corn production can be
calculated by using a similar approach. A few production functions that do not have an output
maximum do have a profit maximizing solution. First, if profits are maximum or minimum,
the slope of the profit function must be equal to zero.

The total value of the product (TVP) is equal to
(3.28) TVP = p°y
where p° = $4.00 per bushel

y = yield of corn in bushels per acre

The relationship between corn yield and nitrogen use is again given by the production
function written in the general form as

(3.29) y = f(x)

where X is the amount of nitrogen fertilizer applied in pounds per acre. Thus
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(3.30) TVP = p°f(x)

The total factor cost is

(3.31) TFC = v°x

where v° = $0.15 per pound of nitrogen. The profit function is

(3.32) II=TVvP - TFC
or
(3.33) II=4.00 f(x) - 0.15x

To find the maximum or minimum of the profit function, it is necessary to locate the
points on the profit function in which the slope is zero. If the slope of a function is equal to
zero, its first derivative must also be equal to zero, because the first derivative of any function
is an equation that represents the slope of the function. The first derivative of the profit
function can be set equal to zero

(3.34) dIl/dx = 4.00(df/dx) - 0.15=0
or
(3.35) 4.00(df/dx) = 0.15

The term on the left-hand side of equation (3.35)is p°MPP. The price of the product is
multiplied times the amount produced by the incremental unit in order to obtain the value of
the marginal product (VMP). The term on the right hand side of the expression is MFC. The
conclusionreached here is the same conclusion that was reached from the tabular data. Profits
can be maximized at the point where the slope of TVP = the slope of TFC, or VMP = MFC.

Several examples are again used to illustrate these ideas for specific production
functions. Suppose that f(X) = bx, where b is any positive number. Then the production
function is

(3.36) y = bx

and

(3.37) TVP = p°bx
(3.38) TFC = v°x

profit=II=TVP - TFC = p°bx - v°x

If profit is to be maximized, then the slope of the profit function must be equal to zero.
That is.

(3.39) dIl/dx = p°b - v° =0
or

(3.40) p°h = v°
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but p°, v°, and b are all constants. the value for p°b either equals v° or it does not equal v°.
Ifp°b does not equal v°, the profit maximizing position has not been found. The value for p°b
can be looked upon as the return from the incremental unit of X, and of course, v° is the cost
or price of X. If p°b is greater than v°, profit could be increased by increasing the use of X by
ever larger amounts. If p°b is less than v°, any incremental increase in the use of X will not
cover the incremental cost, and the farmer would be better off to shut down the operation. If
p°b equals v°, this is true for any level of input use, since VMP is a constant and not a
function of X. VMP is equal to MFC everywhere and the farmer is indifferent as to the level
of production.

Now consider a case where the production function is given by
(3.41) y=ax’
The corresponding profit function is
Profit = II = p°ax® - v°x
The profit maximizing condition is
(3.42) dIl/dx = bp°ax’' - v° =0
Suppose first that b is greater than 1. Each incremental unit of X produces more and more
additional y. Thus MPP is increasing, and as aresult, VMP must also be becoming larger and
larger. As a result, the more input that is used by the farmer, the greater the incremental
return. As a result the farmer will make the most profit by increasing the use of the input
without limit.

Now suppose that b is less than 1 but greater than zero. In this case, MPP will decline

as the amount of X used is increased. The exact amount of input that will be used to maximize
profits can be determined by solving the equation for x

(3.43) bpoax®~! = v°
(3.44) x0~1 = v°/(bp°a)
(3.45) x = [v°/(bp°a)]"®V

For example, if b = 0.5, then 1/(b — 1) = -2 and x = [(0.5bp°a)/v°]*. If a is positive and b
is positive but less than 1, and with constant input and output prices, there will be a finite
profit-maximizing level of input use. This is true despite the fact that the underlying
production function has no maximum.

Now consider the case for the neoclassical production function used earlier to represent
corn yield response to nitrogen as a polynomial (equation (3.10). From equation (3.10), it is
also possible to determine specifically how much nitrogen would be required to exactly
maximize profits.

(3.46) y = 0.75x + 0.0042x* = 0.000023x’
(3.47) Profit = II = p°(0.75x + 0.0042x* = 0.000023x*) — v°X

(3.48) dIT/dx = p°(0.75 + 0.0084x — 0.000069x2) — v° =0
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Now suppose that p° = $4.00, and v° = $0.15. The first derivative of the profit equation
(equation (3.47)) can be rewritten as

(3.49) 4.00(0.75 + 0.0084x — 0.000069x%) = 0.15
or

3 +0.0336x - 0.000276x* = 0.15
or

2.85+0.0336x — 0.000276x* =0

Using again the formula for finding solutions to polynomials

(3.50) L = - 00336 + /0.0336> - 4(-0.000276)(2.85)
2(- 0.000276)

= 179.32 pounds of nitrogen per acre to maximize profits.
(The only root solution with economic meaning is one that generates a positive value for the
input X.)

To ensure that profits are maximized rather than minimized, the second-derivative test,
or second-order conditions are sometimes used. The first derivative of the profit function is
again differentiated. In this case

(3.51) dIl/dx = 2.85+ 0.0336x — 0.000276x*

(3.52) d*I1/dx* = 0.0336 — 0.000552x

If x =179.322, the value for the second derivative is

(3.53) 0.0336 — 0.000552 (179.322) = -0.0653857

The negative number indicates that profits are at a maximum. A positive number implies a
point of profit minimization.

Figure 3.3 illustrates the TVP, VMP, AVP, MFC, and profit curves illustrated from the
data contained in Table 3.1. In this example, profit actually represents returns to all inputs
other than the nitrogen fertilizer. The profit maximizing point can be found at the point where
the slope of TVP equals the slope of TFC, or, equivalently, where VMP equals MFC. The first
panel illustrates the results for an input (MFC) price of $0.15 per pound. As indicated by the
data, the level of input use that maximizes profits (179.322 pounds of nitrogen, for a TVP of
$547.69 and a profit level of $520.79) is not very different from the level of input use that
maximizes TVP (and TPP, 181.595 pounds of nitrogen for a TVP of $547.86 and a profit of
$520.62).

In the second panel of Figure 3.3, the price of the input, nitrogen, is increased to $0.45
per pound. There are two outcomes from the price increase. First, profit is reduced. Second,
the maximum of the profit function shifts to the left, to a lower level of input use. In this
example, assuming the MFC is $0.45, the profit maximizing level of input use is reduced to
174.642 pounds, and profit is reduced to $467.69.
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In the third panel, the price of the input is further increased to $0.90 per pound. As a
result, the profit-maximizing level of input use is decreased to 167.236 pounds, and the
maximum profit is also reduced to $390.75.
The fourth panel illustrates the equivalent marginal conditions, and illustrates the profit-
maximizing points for the three different prices at the intersection of the VMP curve and the

three marginal factor costs ($0.15, $0.45, and $0.90) The input level where VMP is
maximum (60.870) and where AVP is maximum (91.304) is also illustrated.

3.6 General Conditions for Profit Maximization

The following are a set of rules for profit maximization. The total value of the product
function is given as

(3.54) r = h(x)
or r=TVP
The cost function is given as

(3.55) c=g(x)

or c=TFC

Profits are defined by

(3.56) M=r-c

or IT=h(x) - g(x)
or I[I=TvP - TFC

The first order conditions for profit maximization require that

(3.57) dIl/dx =h'(x) - g’(x) = 0

(3.58) =dr/dx - dc/dx =0

(3.59) =dTVP/dx - dTFC/dx = 0
(3.60) =VMP - MFC =0
(3.61) VMP = MFC

(3.62) VMP/MFC = |

The second derivative test is often used to ensure that profits are maximum, not
minimum at this point. The second- derivative test requires that

(3.63) d’Il/dx2 =h"(x) - g"(x) <0
(3.64) h"()<g"(x)

(3.65) d’TVP/dx? < d>TFC/dx?
(3.66) dVMP/dx < dMFC/dx
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The slope of the VMP function must be less than the slope of MFC. This condition is met if
VMP slopes downward and MFC is constant.

3.7 Necessary and Sufficient Conditions

The terms necessary and sufficient are used to describe conditions relating to the
maximization or minimization of a function. These terms have a very special meaning. The
term necessary means that the condition must hold for the event to occur. In this case, the
slope of the profit function must be equal to zero if the function is to be maximized. In
equations (3.57) to (3.66), the condition is the slope of the function, and the event is the
maximization of the function.

The necessary condition for the maximization of the function is that the slope be equal
to zero. However, if the slope of the profit function is equal to zero, the profit function might
also be at a minimum value. A necessary condition does not ensure that the event will occur
but only describes a circumstance under which the event could take place. A necessary
condition is required for profit maximization, but taken alone, a necessary condition does not
ensure that profits will be maximum, only that profits could be maximum.

If the sufficient condition is present, the event will always occur. Thus a sufficient
condition for profit maximization means that if the condition holds, profits will always be
maximum. The term sufficient does not rule out the possibility that there may be other
conditions under which the event will take place, but only states that if a particular condition
is present, the event will always take place.

The terms necessary and sufficient are regularly used together. The necessary condition
for the maximization of a profit function for corn is that the slope of the function be equal to
zero. The sufficient condition for the maximization of a profit function for corn is that the
slope of the function be equal to zero, and that the rate of change in the slope, or the second
derivative of the profit function, be negative.

Requirements with respect to signs on first derivatives are sometimes called the
first-order conditions, or first derivative tests for a maximum or minimum. Requirements with
respect to signs on second derivatives are sometimes called the second order conditions, or
second derivative tests. A necessary condition is sometimes, but not always, the same as a first
derivative test. A second derivative test is normally only part of the requirements for a
sufficient condition.

Itis not a sufficient condition for a maximum if only the second derivative is negative.
There are many points on the profit function that have negative second derivatives which
are neither a minimum nor a maximum. Only when the necessary and sufficient conditions
are taken together is a maximum achieved. Finally, necessary and sufficient conditions taken
together will ensure that the event will always occur and that no other set of conditions will
result in the occurrence of the event.

3.8 The Three Stages of the Neoclassical Production Function

The neoclassical production function described in Chapter 2 can be divided into three
stages or regions of production (Figure 3.4). These are designated by Roman numerals I, II,
and III. Stages I and I1I have traditionally been described as irrational stages of production.
The terminology suggests that a farm manager would never choose levels of input use within
these regions unless the behavior were irrational. Irrational behavior describes a farmer who
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Figure 3.4 Stages of Production for a Neoclassical Production Function

chooses a goal inconsistent with the maximization of net returns, or profit. Stage II is
sometimes called the rational stage, or economic region of production. This terminology
suggests that rational farmers who have as their goal profit maximization will be found
operating within this region. However, in certain instances, such as when dollars available for
the purchase of inputs are limited, a rational farmer may not always operate in stage Il of the
production function.

Stage | ofthe neoclassical production function includes input levels from zero units up
to the level of use where MPP = APP. Stage Il includes the region from the point where MPP
= APP to the point where the production function reaches its maximum and MPP is zero.
Stage Il includes the region where the production function is declining and MPP is negative.

The stages of production can also be described in terms of the elasticity of production.
For the neoclassical production function, as the level of input use increases, the elasticity of
production (E,) also changes because the elasticity of production is equal to the ratio of MPP
to APP. The value for the elasticity of production identifies the stage of production. If E, is
greater than 1, then MPP is greater than APP and we are in stage [. Stage I ends and stage
IT begins at the point where E; = 1 and MPP = APP. Stage II ends and stage I1I begins at the
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point where E, equals zero and MPP is also zero. Stage 11 exists anywhere that E, is negative
and hence MI§P is also negative. Notice that the first stage of the neoclassical production
function ends and the second stage begins at the point where the marginal product of the
incremental or last unit of input X just equals the average product for all units of the input x.

It is easy to understand why a rational farmer interested in maximizing profits would
never choose to operate in stage I11I (beyond point C, Figure 3.4). It would never make sense
to apply inputs if, on so doing, output was reduced. Even if fertilizer were free, a farmer
would never apply fertilizer beyond the point of output maximum.

Output could be increased and costs reduced by reducing the level of input use. The
farmer would always make greater net returns by reducing the use of inputs such that he or
she were operating instead in stage I1.

It is also easy to see why a farmer would not choose to produce in the region where
MPP is increasing (point A, Figure 3.4) in the first part of stage I, if output prices were
constant and sufficient funds were available for the purchase of X. In this region, the marginal
product of the input is increasing as more and more of the input is used. Diminishing marginal
returns have not yet set in, and each additional unit of input used will produce a greater and
greater additional net return. The additional return occurs despite the fact that for the first few
units, the MPP for the incremental unit might still be below the cost of the incremental unit,
as represented by the constant MFC function.

Itis difficult to see why a farmer would not choose to operate in the second part of stage
I, where MPP is declining but APP is increasing (line AB, Figure 3.4), if output prices were
constant and sufficient funds were available to purchase additional units of x. However, using
the definition

(3.67) AVP = p°APP = p°y/x.
the total value of the product (TVP) might then be defined as
(3.68) TVP = xAVP = xp°y/x = p°TPP

Look at Figure 3.5. Pick any level of input use and call that level x* corresponding with
point A on Figure 3.5. Now draw a vertical line from the horizontal axis to the corresponding
point on the AVP curve (point B). The value of the AVP curve at x* represents the average
revenue obtained from the sale of output per unit of X used, assuming that the total amount
ofused was x*. With constant output prices, AVP might be thought of as the average revenue
expressed per unit of X used. Now draw a horizontal line from the point on the AVP curve to
the vertical axis. The length of the horizontal line represents the total amount of X used, or x*.
A rectangle has now been formed, with the lower sides being the axes of the graph. Thus, the
rectangle OABE in Figure 3.5 represents the TVP for x = x*. This is because the length of the
rectangle is x* and its height is AVP.

Now draw a line from x* to MFC. Another rectangle is formed by OACD. Input prices
are assumed to be constant v° = MFC. Since v° is constant, V° is equal to the average cost of

aunit of X; or TFC = v°x and AFC = (v°x)/x = v° = dTFC/dx = MFC. Then TFC at x = x*
is equal to the area contained in the second rectangle as measured by OACD.

Profit equals returns less costs.

(3.69) II=TVvP - TFC.
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Figure 3.5 If VMP is Greater than AVP, the Farmer Will Not Operate

In Figure 3.5, the first rectangle is TVP and the second rectangle is TFC. Since TVP is
less than TFC, the loss is represented by the rectangle EBCD. Suppose now that the input
price is lower than the maximum value for VMP but higher than the maximum value for AVP.
These conditions describe the second part of stage I. The farmer equates VMP and MFC and
finds the resulting profit maximizing level of input use X*. However, since AVP is less than
VMP, the first rectangle representing TVP (OABE) would necessarily be less than the second
rectangle representing TFC (OACD). This would imply that

(3.70) I[I=TVP - TFC <0

Moreover, TVP < TFC occurs everywhere in stage I of the production function. The
farmer would lose money if operation were continued in stage 1. If the price of the input is
higher than the maximum AVP, there is no way that the incremental unit of input can produce
returns sufficient to cover its incremental cost. Under such circumstances a rational solution
would be to use zero units of the input. This situation will be remedied if either of two events
occurs: (1) the price of the input declines to a level below the maximum AVP, or (2) the price
of the output increases such that AVP rises. New technology might also cause APP to
increase, and the result would be an increase in AVP.

If MFC were below AVP in stage I, the farmer could always increase profit by
increasing the use of the input. However, a farmer might not be able to always get the funds
needed for the purchase of the input. In the special case, the farmer could operate in stage
I if funds for the purchase of input X were restricted or limited. In this instance, the
profit-maximizing level of input use would occur in stage II. Revenues exceed costs at many
points within stage I, and the farmer may be better off to use available revenue for the
purchase of X and to produce in stage I, even if the profit-maximizing point in stage Il cannot
be achieved. However, the farmer would never want to operate in stage I1I of the production
function, or, for that matter, to the right of the point in stage II representing the
profit-maximizing level of input use, assuming positive input and output prices. The
profit-maximizing point is most desired, but other points to the left of the profit maximizing
point may also generate a positive profit for the farmer.
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3.9 Further Topics on Stages of Production

One of the reasons for the popularity of the neoclassical production function is that it
includes all three stages of production. It is worthwhile to examine some features of other
production functions in an effort to determine whether or not the various stages of production
are accurately represented. As a starting point, a simple function might be

(3.71) y = bx

As indicated earlier, The MPP(dy/dx) for this function is b and the APP(y/x) equal to
b. The elasticity of production (MPP/APP) is b/b, which is 1 everywhere. This implies that
this function does not have any identifiable stages. The curious conclusion is that the function
is at the dividing point between stages I and II throughout its range. No wonder this function
has not proven popular with economists. If py [output (Y) times its price (p)] were greater than
bx [input (x) times its marginal product], profit maximization would entail obtaining as much
X as one could possibly obtain, and producing as much y as possible. At some point, input
prices would not hold constant, and hence the purely competitive assumptions would break
down.

A production function with a constant slope produces VMP and MFC curves that are
both horizontal lines, with VMP above MFC. For a given level of input use, the area under
VMP represents returns, and the area under the MFC represents costs. The portion of the
rectangles that do not overlap represents profits. If py were less than bx, returns would not
cover costs and the farm would maximize profits by shutting down and producing no output.
If py exactly equaled bx, the farmer would be indifferent toward producing or shutting down,
since zero profit would result in either case.

Now consider the case where the production function is

(3.72) y = yx

Asindicated earlier, the elasticity of production in this case is 0.5 throughout the range of the
function, since the ratio MPP/APP is 0.5. This suggests that the farm is in stage II of the
production function everywhere. Notice that this stage II is not a simple representation of
stage II from the neoclassical production function. The elasticity of production for the
neoclassical function decreases from 1 (at the start of stage II) to 0 (at the end of stage II) as
the use of the input is increased.

For this production function, the elasticity of production remains constant. For any
production function of the form y = bx?, the elasticity of production is equal to the constant
o If o is greater than 1, the production function is in stage [ everywhere. If & is less than zero

the function is in stage III everywhere. The function y = bx is a special case of this function
with ¢ equal to 1.

3.10 The Imputed Value of an Additional Unit of an Input

For profits to be maximum, a necessary condition is that the slope of the TVP function
be equal to the slope of the total factor cost function. This might also be expressed as

(3.73) VMP = MFC = v°
(3.74) p°MPP = MFC = v°
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(3.75) pedTPP/dx = dTFC/dx
or
(3.76) pedy/dx = v°

Equations (3.73) to (3.76) all describe the necessary condition for profit maximization. (The
sufficient condition requires that VMP equal MFC and that the VMP curve intersect the MFC
curve from above).

Another way of expressing the relationship VMP = MFC is
(3.77) VMP/MFC = 1

VMP is the return obtained from the incremental unit of X, or the value to the manager of the
incremental unit of X. MFC is the cost of the incremental unit of X. The equation VMP =MFC
is a decision rule that tells the farmer how much input should be used in order to maximize
profits. This decision rule states that the use of the input should be increased until the point is
reached whereby the last dollar spent on the input returns exactly its incremental cost. This is
one of the fundamental marginal rules of economics. Many if not most of the previous
incremental dollars spent on the input paid back more than the cost of the input. These units,
taken together, generate the profit for the farm (Figure 3.6).

$
VMP
lo. MFC
MFC
0 A

\ X
VMP

Figure 3.6 The Relationship Between VMP and MFC Illustrating
the Imputed Value of an Input

Now suppose that
(3.78) VMP/MFC =3

Equation (3.78) states that the value of the last dollar spent on the input in terms of its
contribution to revenue to for the farm is three times its cost. Moreover, the last dollar spent
on the input returns $3 to the farm. This number is sometimes referred to as the imputed value
or implicit worth of the incremental dollar spent on the input. Both terms refer to the same
concept.
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There is no particular reason to believe that the imputed value, or implicit worth of the
last dollar spent on an input should necessarily be a dollar. The implicit worth of the last dollar
spent on an input may be greater than, equal to, or less than a dollar. However, a necessary
condition for profit maximization is for VMP to equal MFC. Profit maximization requires that
the value of'the last dollar spent on the input be a dollar. If profits are max-imized, the imputed
value of an input will be 1 since its contribution to revenue exactly covers its cost. If the
imputed value is 3, as in this instance, profits could be further increased by increasing the use
of the input until the imputed value is reduced to 1.

Now suppose that
(3.79) VMP/MFC =0.5

Equation (3.79) states that the value of the last dollar spent on the input in terms of its
contribution to revenue for the farm is only one-half’its cost. This is a point to the right of the
profit-maximizing point, although it is still in stage II. Revenue from the sale of the output
produced by the last unit of input only covers 50 percent of the cost or price of the input. The
last dollar spent returns only 50 cents. The other 50 cents is loss. In this case, profits to the
farm could probably be increased by reducing the use of the input. Since the MPP of the input
usually increases as its use decreases, this has the effect of raising MPP and thus increasing
VMP for the input.

Now suppose that
(3.80) VMP/MFC =0

Assuming constant positive prices for both the input and output the only way this could happen
is if MPP were zero. In this instance, the last dollar contributes nothing to revenue. The only
point where this could happen is at the maximum of the production (TPP or TVP) function, the
dividing point between stages II and II1.

Finally, suppose that
(3.81) VMP/MFC = -5

Assuming constant positive prices for both the input and the output the only way this could
happen is for MPP to be negative. This implies stage III of the production function. In this
case, the last dollar spent on the input results in a loss in revenue of $5. This is a point in stage
III where the farmer would never produce.

The implicit worth or imputed value of an input or factor of production has also
sometimes been called the shadow price for the input. It is called a shadow price because it is
not the price that the farmer might pay for the input, but rather the value of a dollar spent on
the input to the farmer in his or her operation. A farmer might be willing to purchase an input
at prices up to but not exceeding the imputed value or shadow price of the input on the farm.

Diagrammatically, the shadow price or imputed value of an input can easily be seen
(Figure 3.6). The VMP represents the value of the input: the MFC, its price or cost per unit.
The shadow price is the ratio of value to price. If MFC and product prices are constant, the
shadow price usually increases until MPP reaches its maximum and then decreases. The
shadow price is 1 where MPP (and VMP) intersects MFC, and zero where MPP intersects the
horizontal axis of the graph.
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3.11 Concluding Comments

Profit-maximization conditions for the factor-product model have been introduced.
Profits are maximum when the necessary and sufficient conditions for a maximum have been
met. The necessary conditions for profit maximization require that the profit function have a
slope of zero. The necessary condition for profit maximization can be determined by finding
the point on the profit function where the first derivative is zero. The sufficient condition,
ensuring profit maximization, holds if the first derivative of the profit function is zero and the
second derivative of the profit function is negative.

Alternatively, the level of input use that maximizes profits can be found by equating the
VMP of'the input with the MFC, which in pure competition is the price of the input. The slope
of the total value of the product curve will be equal to the slope of the total factor cost curve.
The slope of the total value of the product curve is its derivative, which if output prices are
constant is the VMP curve. If the price of X is constant, the slope of the total factor cost curve
is the MFC.

Under the assumptions of pure competition, with constant, positive input and output
prices, a farmer interested in maximizing profits would never operate in stage III of the
production function, where MPP and VMP are declining. A farmer would operate in stage I of
the production function only if sufficient funds were not available for the purchase of inputs
needed to reach stage II. A farmer would not produce at all if the price of X exceeded the
maximum average value of the product.

Problems and Exercises

1. Suppose that the output sells for $5 and the input sells for $4. Fill in the blanks in the
following table.

X (input) y (output) VMP AVP
0 0 —
10 50 o —
25 75 o —
40 80 o —
50 85 o —

2. In Problem 1, what appears to be the profit-maximizing level of input use? Verify this by
calculating TVP and TFC for each level of input use as shown in the table.

3. Suppose that the production function is given by
y — 2X0.5

The price of x is $3 and the price ofy is $4. Derive the corresponding VMP and AVP functions.
What is MFC? Solve for the profit-maximizing level for input use X.

4. When the input price is constant, the slope of the total factor cost function will also be
constant. Is this statement true or false? Explain.
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5. Whenever the total factor cost function and the total value of the product function are
parallel to each other, profits will be maximized. Is this statement true or false? Explain.

6. Suppose that the production function is the one found in Problem 5, Chapter 2. Corn sells
for $4.00 per bushel and nitrogen sells for $ 0.20 per pound. At what nitrogen application rate
are profits maximized?

7. Explain the terms necessary and sufficient, in terms of a farmer seeking to maximize profits
in the feeding of dairy cattle for milk production.

8. Is the shadow price of a dairy feed ration different from the price the farmer pays per pound
ofthe ration? Explain. Of what importance is a shadow price to a farmer seeking to maximize
profits from a dairy herd?

9. Explain the consequences to the farmer if the production function for milk were a linear
function of the amount of feed fed to each cow.

10. Verify each of the numbers presented in Figure 3.3.
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Costs, Returns and Profits
on the Output Side

In this chapter the concept of a cost function defined in terms of units of output is introduced.
Total, variable and marginal cost curves are illustrated using graphics and derived using
mathematics. The necessary conditions for determining the level of output that maximizes
profits are derived. The cost functions are shown to be closely linked to the parameters of the
underlying production function. The supply function for the firm is derived.

Key terms and definitions:

Total Cost (TC)

Total Variable Cost (VC)
Marginal Cost (MC)

Total Fixed Cost (FC)

Average Cost (AC)

Average Fixed Cost (AFC)
Average Variable Cost (AVC)
Inverse Production Function
Duality of Cost and Production
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4.1 Some Basic Definitions

In Chapter 3, a very simple cost equation was defined. This cost equation was
(4.1) TFC = v°x

Equation (4.1) states that the total cost for an input or factor of production is the constant
price of the input (v°) multiplied by the quantity that is used.

However, the costs of production might also be defined not in terms of the use of the
input, but in terms of the output. To do this, some basic terms need to be explained.

Variable costs (VC) are the costs of production that vary with the level of output
produced by the farmer. For example, in the production of corn, with the time period being
asingle production season, variable costs might be thought of as the costs associated with the
purchase of the variable inputs used to produce the corn. Examples of variable costs include
the costs associated with the purchase of inputs such as seed, fertilizer, herbicides,
insecticides, and so on. In the case of livestock production within a single production season,
a major variable cost item is feed.

Fixed costs (FC) are the costs that must be incurred by the farmer whether or not
production takes place. Examples of fixed-cost items include payments for land purchases,
and depreciation on farm machinery, buildings, and equipment.

The categorization of a cost item as fixed or variable is often not entirely clear. The
fertilizer and seed a farmer uses can only be treated as a variable cost item prior to the time
in which itis placed in the ground. Once the item has been used, it is sometimes called a sunk,
or unrecoverable, cost, in that a farmer cannot decide to sell seed and fertilizer already used
and recover the purchase price.

Although depreciation on farm machinery is normally treated as a fixed cost, given
sufficient time, the farmer does have the option of selling the machinery so that the
depreciation would no longer be incurred. Payments for the purchase of land would not be
made if the farmer elected to sell the land. The categorization of farm labor is very difficult.
A farm laborer on an annual salary might be treated as a fixed cost which the farmer incurs
whether or not production takes place. But if the laborer is laid off, the cost is no longer fixed.
Temporary workers hired on an hourly basis might be more easily categorized as a variable
cost.

The categorization of a particular input as a fixed cost or variable cost item is thus
closely intertwined with the particular period involved. Over very long periods, a farmer is
able to buy and sell land, machinery, and other inputs into the production process that would
normally be considered fixed. Thus, over very long periods, all costs are normally treated as
variable.

Over a very short period of time, perhaps during a few weeks within a single production
season, a farmer might not be able to make any adjustment in the amounts of any of the inputs
being used. For this length of time, all costs could be treated as fixed. Thus the categorization
of each input as a fixed- or variable-cost item cannot be made without explicit reference to
the particular period involved. A distinction between fixed and variable costs has thus been
made on the basis of the period involved, with the proportion of fixed to variable costs
increasing as the length of time is shortened, and declining as the length of time increases.

Some economists define the long run as a period of time of sufficient length such that the
size of plant (in the case of farming, the farm) can be altered. Production takes place on a
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short-run average cost curve (SRAC) that is U shaped, with the manager equating marginal
revenue (the price of the output in the purely competitive model) with short-run marginal cost
(SRMC). There exists a series of short-run marginal and average cost curves corresponding
to the size of the particular plant (farm). Given sufficient time, the size of the plant can be
altered. Farmers can buy and sell land, machinery, and equipment. Long—-run average cost
(LRAC) can be derived by drawing an envelope curve which comes tangent to each short run
average cost curve (Figure 4.1).

$

Figure 4.1 Short- and Long-Run Average and Marginal Cost
with Envelope Long-Run Average Cost

A classic argument in economics was that between the economist Jacob Viner and his
draftsman. Viner insisted that such a long-run average cost curve must necessarily come
tangent to the minimum points on each short run average cost curve. The draftsman argued
that this was impossible—that plants operating with less capacity than that represented by the
minimum point on the LRAC curve must necessarily be tangent to a point on the LRAC at
higher than minimum SRAC. Plants operating at greater than the capacity suggested by the
minimum LRAC would have a SRAC tangent to LRAC at a point at greater than minimum
SRAC. Only for the plant operating with its SRAC curve at the point of minimum LRAC
would the LRAC be tangent to the minimum point on the SRAC. The draftsman was, of
course, correct (Figure 4.1).

In long-run equilibrium, producers discover and select a plant size at the minimum point
on LRAC. Hence MR equals LRMC and there is no profit. In the short run, however, MR can
exceed MC. Each producer would equate MR to his own SRMC. For the producers operating
in the short run, this would entail using the plant beyond its point of minimum SRAC. No
producer would ever be observed operating at the minimum SRAC and LRAC, save the firms
in long run equilibrium.
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Variable costs are normally expressed per unit of output (y) rather than per unit of input
(X). This is because there is usually more than one variable cost item involved in the
production of agricultural commodities. A general expression for a variable cost function is

(4.2) VC =g(y)

Since fixed costs do not vary with output, fixed costs are equal to some constant dollar
value k; that is

(4.3) FC =k
Total costs (TC) are the sum of fixed plus variable costs.
(4.4) TC=VC +FC, or
(4.5) TC=g(y) +k
Average variable cost (AVC) is the variable cost per unit of output
(4.6) AVC = VC/y = g(y)ly
Average fixed cost is equal to fixed cost per unit of output
(4.7) AFC = FCly = kiy
The output level y is divided into the constant k, where K represents total fixed costs (FC).

There are two ways to obtain average cost (AC), sometimes also called average total cost
(ATC). One way is to divide total cost (TC) by output (y)

(4.8) AC =ATC =TCly

Another way is to sum average variable cost (AVC) and average fixed cost (AFC)
(4.9) AC = AVC + AFC, or

(4.10) TCly =VCly + FCly

Marginal cost is defined as the change in total cost, or total variable cost, resulting from
an incremental change in output.

(4.11) MC = ATC/Ay = AVC/Ay

Since the value for fixed costs (FC) is a constant k, MC will be the same irrespective of
whether it is based on total costs or total variable cost.

Marginal cost (MC) at a particular point is the slope of the total cost function. Marginal
cost can be defined in terms of derivatives. In this instance

(4.12) MC = dTC/dy = dVC/dy

The marginal cost function is a function representing the slope of the total cost function. For
example, a value for MC of $5.00 indicates that the last or incremental unit of output cost an
additional $5.00 to produce.
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Figure 4.2 illustrates the cost functions that have been defined. The illustration of VC
looks like a production function that has been inverted. Output, rather than input, is on the
horizontal axis. The vertical axis is dollars, not units of input. Moreover, the slope of the VC
function appears to be exactly the inverse of the slope on a production function. The
production function increased initially at an increasing rate until the inflection point was
reached, then itincreased at a decreasing rate. The cost function first increases at a decreasing
rate until the inflection point is reached. Then the cost function increases at an increasing rate.
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Figure 4.2 Cost Functions on the Output Side
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The cost curves look rather strange when output reaches its technical maximum. Suppose
that the maximum yield a farmer can achieve in the production of corn is 140 bushels per
acre. Suppose that despite the farmer's best efforts to increase yields further by applying more
seed, fertilizer, and pesticides, the additional yield is just not there. The additional seed results
in more plants that become overly crowded in the field, and the additional plants become so
crowded that yield is reduced. The additional fertilizer starts to do damageto the crop. The
additional herbicides kill the corn plants. As more and more variable inputs are used, yield
starts to drop off to 130, 120 or even 110 bushels per acre. Costs for the additional variable
inputs are incurred even at yield levels that could have been achieved with a much lower level
of input use and a corresponding reduction in the cost for seed, fertilizer, and pesticide. The
variable-cost function must turn back on itself once the maximum yield is achieved. This is
actually stage III of variable cost.

Once variable cost turns back on itself, it is no longer technically a function. This is
because for some yield levels, two rather than one value for variable cost is assigned. Thus
VC might be thought of in this case as a cost correspondence rather than a cost function.

Fixed cost (FC), being constant, is a horizontal line positioned at the corresponding
dollar value on the vertical axis. Total cost (TC ) appears nearly the same as variable cost
(VC). Total cost has been shifted vertically by the fixed-cost amount. The difference between
TC and VC at any point is FC. TC and VC are not parallel to each other, because FC is
represented by the vertical distance between TC and VC. Ateach level of output, however, the
slope of TC equals the slope of VC.

Any point on the average cost curves (AC, AVC, and AFC) can be represented by the
slope of a line drawn from the origin of the graph to the corresponding point on TC, VC or
FC. Suppose that the value for AC, AVC and AFC at some output level called y* is to be
determined. Draw a vertical line from y* to the corresponding point on TC VC and FC. Call
these points TC*, VC*, and FC*. Now draw a line from each of these points to the origin of
the graph. Three triangles will result. The slope of each of these triangles represents the
corresponding AC*, AVC* and AFC* for the output level y* (Figure 4.2).

Marginal cost (MC) at any point is represented by the slope of a line drawn tangent to
either TC or VC. The minimum slope for both TC and VC occurs at the respective inflection
points of TC and VC. The inflection points for both TC and VC correspond to the same level
of output. Thus MC is minimum at the inflection point of either the TC or the VC curve, and
there is but one MC curve that can be derived from either the TC or the VC curve.

Minimum AVC occurs where a line drawn from the origin comes tangent to VC.
Minimum AC occurs where a line drawn from the origin comes tangent to TC. The point of
tangency on TC occurs to the right of the point of tangency on VC. Thus the minimum AC
will occur to the right of the minimum AVC. Since these lines are tangent to TC and VC, they
also represent the slopes of the curves at the two points. Hence they also represent MC at the
two points. Therefore, MC must be equal to and cut AVC and AC at each respective minimum
(points A and B, Figure 4.2).

The relationship that must exist between AC and MC can be proven
(4.13) TC=(AC)y
(4.14) dTC/dy = AC-1 + y(dAC/dy)
(4.15) MC = AC + y(the slope of AC)
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Ifthe slope of AC is positive, MC must be greater than AC. If the slope of AC is negative, MC
must be less than AC. If the slope of AC is zero, AC is at its minimum and MC must equal
AC. The reader can verify that the same relationship must hold between MC and AVC.

AFC is arectangular hyperbola. Draw a straight line from any point on the AFC curve
to the corresponding vertical ($) and horizontal (y) axis. The area of the enclosed rectangle
is equal to FC which is the constant k (Figure 4.2). To the point of maximum output, as y
becomes larger and larger, AFC comes closer and closer to the horizontal axis but does not
reach it. Similarly, as y becomes smaller and smaller, AFC becomes larger and larger and gets
closer and closer to the vertical axis. Again AFC never reaches the vertical axis.

Since AC is the sum of AVC + AFC, and AFC becomes smaller and smaller to the point
of maximum output, as output increases, AC should be drawn closer and closer to AVC. The
minimum slope of a line drawn from the origin of the graph to the TC curve occurs at an
output level larger than the output level associated with the minimum slope of a line drawn
from the origin to the VC curve. Therefore, minimum AVC occurs at an output level smaller
than the level at which minimum AC occurs.

The behavior of average and marginal cost curves beyond the point of output
maximization is somewhat complicated. Beyond the point of output maximization, Y is
reduced. Since FC remains constant, AFC returns along the exact same curve. AVC and AC
are increasing even as Y is reduced, when inputs are used beyond the point of output
maximization. Moreover, if there are any fixed costs, AC must remain above AVC. Both AVC
and AC must turn back on themselves to represent the new higher average costs associated
with the reduction in output when inputs are used beyond the point of output maximization.
If this is to occur, AC must cross over AVC. At the point of output maximum, both AC and
AVC have a perfectly vertical or infinite slope (Figure 4.3). In stage I1I, MC goes into the
negative quadrant when MPP is negative and forms a mirror image of its appearance in the
positive quadrant.
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Figure 4.3 Behavior of Cost Curves as Output
Approaches a Technical Maximum y*
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4.2 Simple Profit Maximization from the Output Side

Perhaps no criterion is more famous in economics than the expression "marginal cost
equals marginal revenue." This simple rule is the basic requirement for selecting the level of
output that maximizes profit.

If a farmer can sell all the output that he or she produces at the going market price, the
resulting total revenue (TR) function is a line with a constant positive slope of p°
(4.16) TR = p°y

where p° is some constant market price and Y is the output.
The farmer's profit is equal to total revenue (TR) minus total cost (TC)
(4.17) IM=TR-TC

The greatest profit will be achieved when the difference between TR and TC is greatest (Figure
4.4). Superimpose the TR function on the previously defined TC. The greatest vertical distance
between TR and TC occurs at points where the slope of TR and TC are the same. There are
two points where this occurs. At the first point, TC is above TR, so this point represents the
minimum profit. The second point represents maximum profit, which is the desired point.

Maximum (or minimum) profit is achieved at the points where the slope of the profit
function is equal to zero. Thus

(4.18) drm/dy = dTR/dy - dTC/dy =0

Notice that dTR/dy represents the slope of TR, and dTC/dy is the slope of TC. The slope of
TR is referred to as marginal revenue (MR). The slope of TC has already been defined as
marginal cost (MC) Hence equation (4.18) can be rewritten as

(4.19) MR - MC =0

or, the famous

(4.20) MR = MC

Under the assumptions of pure competition, the output price is constant. Incremental
units of the output can be sold at the going market price p°. Hence MR must be p°.

(4.21) dTR/dy = p° = MR

Figure 4.4 illustrates the average and marginal cost curves with marginal revenue
included. Marginal cost equals marginal revenue at two points. The first point corresponds
to the point of profit minimization, the second to the point of profit maximization. The second
derivative test can be used to confirm this.

Differentiate the equation
(4.22) MR - MC =0

which results in

(4.23) dMR/dy — dMC/dy = + or - ?
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The sign on equation (4.23) tells if the point is a maximum or a minimum on the profit
function. A negative sign indicates a maximum, and a positive sign is a minimum. Another
way of looking at equation (4.23)is that the slope of MC must be greater than the slope of MR
for profits to be maximized.

The term dMR/dy represents the slope of the the marginal revenue curve. In this case,
marginal revenue is a constant with a zero slope. The sign on equation (4.23) is thus
determined by the slope of MC, which is dMC/dy. If the slope of MC is negative, equation
(4.23) will be positive. This condition corresponds to the first point of intersection between
MC and MR in Figure 4.4. If the slope of MC is positive, then equation (4.23) is negative, and
a point of profit maximization is found corresponding to the second point of intersection
between MC and MR in Figure 4.4. The minimum point on the profit function represents the
maximum loss for the farmer.

The farmer has an option not recognized by the mathematics. Suppose that MC has a
positive slope, but MR =MC at a price level so low that it is below AVC. In this instance, the
farmer would be better off not to produce, because he or she would lose only his fixed costs
(FC). This would be less than the loss incurred at the point where MR = MC. If, however,
MC = MR at a level between AVC and AC, the farmer would be better off to produce. In this
instance, the farmer, by producing, would cover all the variable costs plus a portion of the
fixed costs. The total loss would be less than if production ceased and all the fixed costs had
to be paid. This explains why farmers might continue to produce corn even though the market
price is less than the total costs of production. With a high ratio of fixed to variable costs (as
would often be the case in grain production), the farmer is better off to produce and incur only
the partial loss, at least in the short run.

Of course, in the long run, the farmer can make major adjustments, and all costs should
be treated as variable. Farmers can buy and sell land and machinery in the long run, making
these costs variable. If the length of run is sufficiently long, a farmer will continue to produce
only insofar as all costs are covered. A farmer cannot continue to lose money indefinitely
without going bankrupt.

Table 4.1 illustrates some hypothetical total cost data for corn production and shows the
corresponding average and marginal costs. Corn is assumed to sell for $4.00 per bushel. The
relationships represented in the data contained in Table 4.1 are the same as those illustrated
in Figure 4.4. Marginal cost (MC) is the change in cost over the 10-bushel increment obtained
by calculating the change in TC (or VC) and dividing by the change in output. Marginal cost
equals marginal revenue at between 110 and 120 bushels of corn per acre. Profits are
maximum at that output level. It is not possible to determine the exact output level without
first knowing the exact mathematical function underlying the data contained in Table 4.1.

Figure 4.5 illustrates the data contained in Table 4.1, and confirms the profit-maximizing
output level at approximately 115 bushels of corn per acre. Thic corresponds withthe point
where the slope of TR equals the slope of TC, or MR = MC. Notice also that the TR curve
intersects TC at exactly the output level at which AC equals MR equals Average Revenue
(AR) per unit of output equals the price (p) of the output, which in this example is $4.00 per
bushel. An increase in the price of the output would increase the profit-maximizing output
level beyond 115 bushels per acre; a decrease would reduce the profit-maximizing output level
below the 115 bushel level. An increase in the variable input price(s) would reduce the profit-
maximizing output level, whereas adecrease inthe input price(s) would increase the profit-
maximizing output level.
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Table 4.1 Hypothetical Cost Data for Corn Production

Yield,
(y) TVC FC TC AVC AFC AC MC MR

40 89 75 164 2.23 1.88 4.11

2.10  4.00
50 110 75 185 2.20 1.50 3.70

2.00 4.00
60 130 75 205 2.17 1.25  3.42

1.00  4.00
70 140 75 215 2.00 1.07  3.07

1.50  4.00
80 155 75 230 194 094 2388

2.00 4.00
% 175 75 250 1.94 083 278

2.50  4.00
100 200 75 275 200 075 275

3.00 4.00
110 230 75 305 209 068 277

4.00 4.00
120 270 75 345 2.25 0.63 2.88

5.00 4.00
130 320 75 395 246 058 3.04

6.00 4.00

140 380 75 455 2.71 0.54 3.25

4.3 The Duality of Cost and Production

The shape of the total variable cost function is closely linked to the shape of the
production function that underlies it. If input prices are constant, all the information about the
shape of the VC function is contained in the equation for the underlying production function.
Moreover, if the VC function and the prices for the inputs are known, so is the shape of the
underlying production function. If input prices are constant, then all of the needed information
for determining the shape of the VC is given by the production function, and all the
information for determining the shape of the production function is given by the VC function.

In Chapter 2, the law of diminishing returns was stated "As units of a variable input are
added to units of a fixed input, after a point, each additional unit of variable input produces
less and less additional output." Another way of stating this law is that after a point,
incremental or additional units of input each produce less and less additional output.

The law of diminishing returns might also be interpreted from the output side. From the
output side, the law states that as output is increased by 1 unit at a time, after a point, each
incremental or additional unit of output requires more and more additional units of one or
more variable inputs. Another way of saying this is that if output is increased incrementally,
after a point, each incremental or additional unit of output becomes more and more costly with
respect to the use of inputs. Another unit of output is produced but only at the expense of
using more and more additional input.
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The reason the variable cost function appears to be a mirror- image production function
with its axes reversed now becomes clear. The production function reflects the fact that each
incremental unit of input produces less and less additional output. The corresponding variable
cost function reflects the fact that incremental units of output become more and more costly
in terms of input requirements.

The fertilizer response data contained in table 2.5 in chapter 2 is presented in a manner
in which this dual relationship can be readily observed (Table 4.2).

Table 4.2 Corn Response to Nitrogen Fertilizer

Nitrogen Corn  Exact v°/MPP Exact v°/APP

X y MPP  1/MPP Ve (MC) APP 1I/APP  (AVC)

0 0.0 0.7500 1.33 0.15  0.200 a a a

20 16.496 0.8904 1.12 0.15  0.168 0.8248 1.21 0.182
40  35.248 0.9756 1.03 0.15 0.154 0.8812 1.13 0.170
60 55.152 1.0056 0.99 0.15  0.149 0.9192 1.09 0.163
80  75.104 0.9804 1.02 0.15 0.153 0.9388 1.07 0.160
100 94.000 0.9000 1.11 0.15  0.167 0.9400 1.06 0.160
120 110.736 0.7644 1.31 0.15  0.196 0.9228 1.08 0.163
140 124.208 0.5736 1.74 0.15  0.262 0.8872 1.13 0.169
160 133.312 0.3276  3.05 0.15  0.458 0.8332 1.20 0.180
180 136.944 0.0264 37.88 0.15  5.682 0.7608 1.31 0.197
200 134.000 -0.3300 -3.03 0.15 -0.454 0.6700 1.49 0.224
220 123376  -0.7416 -1.35 0.15 -0.202 0.5608 1.78 0.267
240 103.968  -1.2084 -0.83 0.15 -0.124 0.4332 2.31 0.346

“Undefined. Errors due to rounding.

Compared with Table 2.5, the data appear inverted. In Chapter 2, average physical
product was defined as y/x, and marginal physical product was defined as Ay/Ax. Now x/y
and Ax/Ay have been calculated.

Ify/x=APP, then x/y must be 1/APP. The expression x/y represents the average cost for
nitrogen to produce the incremental unit of output, but the cost is expressed in terms of
physical units of the input, not in dollar terms. This cost is equal to 1/APP. This cost can
be converted to dollar units by multiplying by the price of nitrogen, earlier called v°. The
result is the average variable cost for nitrogen per unit of output AVC, = v°/APP.

If Ay/Ax = MPP, then Ax/Ay must be 1/MPP. The expression Ax/Ay represents the
marginal cost for nitrogen to produce the incremental unit of output, but again the cost is
represented in physical terms, not in dollar terms. This cost is equal to 1/MPP. This cost
can again be converted to dollar units by multiplying by the price of nitrogen or v°. The
result is the marginal cost for nitrogen per unit of output MC, = v°/MPP.

Atanitrogen application rate of 180 pounds per acre, marginal cost is $5.68 per bushel
of corn produced. If corn is selling for $4.00 per bushel, the incremental bushel of corn
costs $5.68 but returns only $4.00. However, at a nitrogen application rate of 160 pounds
per acre, the marginal cost of the incremental bushel of corn is but $0.458. If corn is selling
for $4.00 per bushel, the difference of $3.54 is profit to the farmer. The farmer could
increase profits by increasing the use of nitrogen fertilizer until the marginal cost associated
with the production of the incremental bushel of corn just equals marginal revenue. This
should be at a nitrogen application level of slightly less than 180 pounds per acre- 179.322
pounds to be exact. That is exactly the solution found in Chapter 3. It makes no difference
whether VMP is equated to MFC or MR is equated to MC. The solution provides the farmer
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with exactly the same conclusion with regard to how much input should be used. The
solution to the profit-maximization problem is the same regardless of whether it is done on
the output or input side.

4.4 The Inverse of a Production Function

Any production function has an underlying dual cost function or correspondence (Figure
4.6). The production function has input (nitrogen or x) on the horizontal axis and output
(cornory) on the vertical axis. The corresponding cost function expressed in physical terms
is the production function with the axes reversed. The result is the inverse production
function, or cost function expressed in physical terms. This cost function is dual to the
production function.

Maximum e}
TPP 45
Y Maximum / Y
APPTINC,
TPP
Maximum
MPP
(Inflection
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X
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_ Y
$ TC = vx $ TVC
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Point)
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Figure 4.6 A Cost Function as an Inverse Production Function

Note that this function is in many ways the mirror image of the underlying production
function. If the production function is increasing at an increasing rate, the inverse
production function increases at a decreasing rate. If the production function is increasing
at a decreasing rate, the inverse production function increases at an increasing rate.

Inverses to production functions for some simple functions might readily be calculated.
All that is required is to solve the function in terms of the X instead of y. For example,
suppose that the production function is
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(4.24) y = 2x
The corresponding inverse production function is
(4.25) X=y/2=0.5y
If the production function is
(4.26) y =bx where b is any number
the corresponding inverse production function is
(4.27) x =y/b.
Suppose that the production function is
(4.28) y = x°3
The corresponding inverse production function is
(4.29) X =y05 =y?
And if the production function is
(4.30) x=y 05 =y2
The inverse production function is
4.31) x =y =y03
For the production function
(4.32) y = ax’
The corresponding inverse function is
(4.33) X = (y/a)"®
In each ofthese examples, the inverse function contains all the coefficients contained in the
original production function and can be converted into true variable cost functions by
multiplying by the constant price (v°) of the input x. If these functions were drawn, the
vertical axis would then be in terms of dollars rather than physical units of the input X.
It is therefore not necessary to know the physical quantities of the inputs that are used
in the production process in order to determine the coefficients of the production function.
Ifthe cost function is known, it is frequently possible to determine the underlying production
function.
A general rule is that if the production function is
(4.34) y =f(x)
then the corresponding inverse production function is

(4.35) x =f(y)
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Not all production functions can be inverted into another function to obtain the
corresponding dual cost function. Any production function that includes both increasing and
decreasing TPP will not have a inverse function, but only an inverse correspondence. The
neoclassical production function is an example. The inverse in Figure 4.6 is actually a
correspondence, but not a function.

The total cost for the input expressed in terms of units of output is obtained by
multiplying the inverse function times the input price. Suppose that

(4.36) y = f(X)
Then
(4.37) x=f(y).

Multiplying by v° results in the total cost (TC,) for the input (X or nitrogen) from the
production function for corn [y = f(x)]

(4.38) vox =TFC =TC, = v°f \(y)
4.5 Linkages between Cost and Production Functions

Suppose that the price of the input is v° and the production function is
(4.39) y = 2X
Then MPP = APP = 2, and MC, = AVC, = v°/2.

If the production function is
(4.40) y = bx
Then MPP = APP =D, and MC, = AVC, =v°/b.

If the production function is
(4.41) y=x"*
then MPP= 0.5/x%°, APP = x%3/x = x%x ! = x %% = 1/x%,

MC,= (v°x°%)/0.5 = 2v°x*?, and AVC, = v°x".

If MPP is precisely one half of APP, then MC, will be precisely twice AVC,. If the
elasticity of production (E,) is defined as the ratio MPP/APP, then 1/E, is the ratio of
MC,/AVC..

If the production function is
(4.42) y = ax’
then the inverse production function is
(4.43) X = (y/a)"®
(4.44) MPP = abx""!
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(4.45) APP = ax’"!

(4.46) E,=b

(4.47) MC,= v°/abx®"!

(4.48) AVC, = v°/ax""!

(4.49) ratio of MC/AVC, = 1/b

Some important relationships between APP, MPP, MC, and AVC become clear. In stage
L, MPP is greater than APP and E, is greater than 1. As a result, MC, must be less than
AVC, in stage I. The exact proportion is defined by 1/E,. In stages II and I1I, MPP is less
than APP, and as aresult, E, is less than 1. Therefore, MC, must be greater than AVC,. The
exact proportion is again defined by 1/E,. At the dividing point between stages I and 1I,
MPP =APP and E,= 1. 1/E,= 1 and MC, = AC,, and at the dividing point between stages
Il and I1I, MPP = 0, E, = 0, 1/E, is undefined, and MC, is undefined.

4.6 The Supply Function for the Firm

The profit-maximizing firm will equate marginal cost with marginal revenue. If the firm
operates under conditions of pure competition, marginal revenue will be the same as the
constant price of the output. If the farmer produces but one output, the marginal cost curve
that lies above average variable cost will be the supply curve for the farm. Each point on
the marginal cost curve above average variable cost consists of a point of profit
maximization if the output sells for the price associated with the point. The supply curve
or function for the farm will consist of the series of profit maximizing points under
alternative assumptions with respect to marginal revenue or the price of the product.

Consider, for example, the production function
(4.50) y = ax’
The inverse production function is
(4.51) X = (y/a)"®
Variable cost is defined as
(4.52) VC = vx = v(y/a)"®
Marginal cost can be found by differentiating equation (4.52) with respect to y
(4.53) MC = d(vx)/dy = (1/b)vyP~1a="P
(4.54) MC = (1/b)vy(DPg 1P
Equating marginal cost with marginal revenue or the price (p) of the product yields
(4.55) p = (1/byvy("DPg 1P

MR= MC

Solving equation (4.55) for y yields the supply function for the firm
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(4.56) y= (bp)b/(l—b)v—b/(l—b)a(l/b)(b/(l—b))

The elasticity of supply with respect to the product price is

(4.57) (dy/dp)(p/y) = b/(1 - b)

The elasticity of supply is positive when b is less than 1.

The elasticity of supply with respect to the input price is

(4.58) (dy/dv)(v/y) = -b/(1 - b)

The elasticity of supply with respect to the input price is negative if b is less than 1.
Average (variable) cost is

(4.59) AC = vxly = [V(y/a)""]ly = vy "DP g~ 1P

Since marginal cost is

(4.60) MC = (1/b)vy(-Dbg b

The ratio of marginal to average cost is

(4.61) MC/AC = 1/b = 1/E,

In this example, the marginal and average cost functions must remain in fixed proportion
to each other. The proportion is equal to 1 over the elasticity of production for the
production function. Figure 4.7 illustrates the aggregate supply function derived for a
production function in which b is less than 1, and the product price is set at alternative
levels. The supply function is the portion of the marginal cost function above average
variable cost. However, in this example marginal cost lies above average variable cost

everywhere and is at the fixed ratio to average variable cost of 1/b.
MC = Supply

AvC

p3

p2

pt

Figure 4.7 Aggregate Supply When the Ratio MC/AC = 1/b and b is Less Than 1
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4.7 Concluding Comments

Profit maximizing conditions for the firm have been derived. Profits are maximum when
the level of output chosen is where marginal cost equals marginal revenue. The cost function
is the inverse of the production function that underlies it multiplied by the price of the input.
A close linkage thus exists between the coefficients of the production function and those of
the underlying cost function. The firm's supply curve can be derived from the equilibrium
MC = MR conditions and is represented by the marginal cost curve above average variable
cost. Expressions for elasticities of supply with respect to product and input prices can be
obtained from the equilibrium conditions.

Problems and Exercises
1. Explain the difference between total value of the product (TVP) and total revenue (TR).

2. Explain the difference between total cost (TC) and total factor cost (TFC).

3. Suppose that the price of the input X is $3. Total fixed costs are $200. Fill in the blanks.

x (Input) y (Output) TVC TC MC AVC AC
0 0 — — —
10 50 -
25 75 -
40 80 -
50 85 -

4. Suppose that the production function is
y — 3X0A5

The price of the input is $3. per unit, and total fixed costs are $50. Find and graph the
functions that represent.

a. MPP

b. APP

c. AVC

d. AC (or ATC)
e. MC

Suppose that the output price is $5. Find:
f. AVP
g. VMP
h. MFC

5. Using the data contained in Problem 4, find the profit- maximizing level of input use by
equating VMP and MFC.
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6. Using the data contained in Problem 4, find the profit-maximizing output level by
equating MR and MC. What is the relationship between the profit- maximizing output level
and the profit-maximizing input level?

7. Draw a three-stage production function on a sheet of paper. Now turn the paper so that
the input X is on the vertical axis and output Y is on the horizontal axis. Now turn the sheet
of paper over and hold the sheet of paper up to a light. Look at the production function
through the back side. What you see is the cost function that underlies the production
function, with costs expressed in physical units of input use rather than dollars. If input
prices are constant, the vertical axis can be converted to dollars by multiplying the physical
units of input by the corresponding input price.

8. Draw a graph of the corresponding total cost correspondence when fixed costs are zero,
the input costs $2 per unit, and the production function is given by

y = 0.4x + 0.09x* - 0.003x’
Reference
Viner, Jacob, "Cost Curves and Supply Curves," Zeitschrift fur Nationalokonomie III

(1931) pp. 23-46. Also in American Economics Association, Readings in Price Theory, K.
E. Boulding and G. J. Stigler eds. Homewood, IlI.: Richard D. Irwin, 1952.
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Production with Two Inputs

This chapter introduces the basics of the technical relationships underlying the factor-factor
model, in which two inputs are used in the production of a single output. The concept of an
isoquant is developed from a simple table containing data similar to that which might be
available in a fertilizer response trial. The slope of the isoquant is defined as the marginal rate
of substitution. Isoquants with varying shapes and slopes are illustrated. The shape of an
isoquant is closely linked to the characteristics of the production function that transforms the
two inputs into the output. The linkages between the marginal rate of substitution and the
marginal products of each input are derived.

Key terms and definitions:

Isoquant

Marginal Rate of Substitution (MRS)
Diminishing Marginal Rate of Substitution
Constant Marginal Rate of Substitution
Increasing Marginal Rate of Substitution
Convex to the Origin

Ax,/Ax,

Asymptotic to the Axes

Concentric Rings

Synergistic Effect

Tangency

Infinite Slope

Zero Slope

Ridge Line

Family of Production Functions
Change in Output

Change in Input

Limit

Infinitesimally Small

Partial Derivative

Total Derivative

Total Differential
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5.1 Introduction

The discussion in Chapters 2 to 4 centered on the problems faced by a farmer who
wishes to determine how much of a single input should be used or how much of a single
output should be produced to maximize profits or net returns to the farm. The basic
assumption of this chapter is that two inputs, not one inputs, are allowed to vary. As aresult,
some modifications need to be made in the basic production function. The production function
used in Chapters 1 to 4 was

(5.1) y = f(x).

Suppose instead that two inputs called x, and X, are allowed to vary. The resulting
production function is

(5.2) y = f(X,, X,)

if there are no more inputs to the production process. If there are more than two, or n different
inputs, the production function might be written as

(5.3) y =f(X1, Xo| X3, s Xy)

The inputs X, ..., X, will be treated as fixed and given, with only the first two inputs allowed
to vary.

In the single-input case, each level of input used produced a different level of output, as
long as inputs were being used below the level resulting in maximum output. In the two-input
case, there may be many different combinations of inputs that produce exactly the same
amount of output. Table 5.1 illustrates some hypothetical relationships that might exist
between phosphate (P,O;) application levels, potash (K,O) application levels, and corn yields.
The nitrogen application rate was assumed to be 180 pounds per acre.

The production function from which these data were generated is
(5.4) y = f(x;, X, | X3)
where y = corn yield in bushels per acre

X; = potash in pounds per acre
X, = phosphate in pounds per acre
X; = nitrogen in pounds per acre assumed constant at 180

Notice from Table 5.1 that potash is not very productive without an adequate availability
of phosphate, The maximum yield with no phosphate is but 99 bushels per acre and that
occurs at comparatively low levels of potash application of 20 to 30 pounds per acre. The
production function for potash in the absence of any phosphate is actually decreasing at
potash application rates of over 30 pounds per acre. In the absence of phosphate fertilizer,
stage III for potash begins quite early.
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Table 5.1 Hypothetical Corn Response to Phosphate and Potash Fertilizer

Potash (Ib/acre)

Phosphate
(Ib/acre) 0 10 20 30 40 50 60 70 80
0 96 98 99 99 98 97 95 92 88
10 98 101 103 104 105 104 103 101 99
20 101 104 106 108 109 110 110 109 106
30 103 107 111 114 117 119 120 121 121
40 104 109 113 117 121 123 126 128 129
50 104 111 116 121 125 127 129 131 133
60 103 112 118 123 126 128 130 131 134
70 102 111 117 123 126 127 131 136 135
80 101 108 114 119 119 125 129 131 134

Phosphate in the absence of potash is more productive, but only slightly so. The
maximum yield without any potash is 104 bushels per acre at between 40 and 50 pounds of
phosphate. Stage III for phosphate begins at beyond 50 pounds per acre if no potash is
applied.

Each of the rows of Table 5.1 represents a production function for potash fertilizer with
the assumption that the level of phosphate applied is fixed at the level given by the application
rate, which is the first number of the row. As the level of phosphate is increased, the
productivity of the potash increases. The marginal product of an additional 10 pounds of
potash is usually larger for rows near the bottom of the table than for rows near the top of the
table. Moreover, production functions for potash with the larger quantities of phosphate
typically achieve their maximum at higher levels of potash use.

Each of the columns of Table 5.1 represents a production function for phosphate
fertilizer with the assumption that the level of potash remains constant as defined by the first
number in the column. Again the same phenomenon is present. The productivity of phosphate
isusually improved with the increased use of potash, and as the assumed fixed level of potash
use increases, the maximum of each function with respect to phosphate occurs at larger levels
of phosphate use.

These relationships are based on a basic agronomic or biological characteristic of crops.
A crop would not be expected to produce high yields if an ample supply of all nutrients were
not available. To a degree, phosphate can be substituted for potash, or potash for phosphate.
In this example, there are several different combinations of phosphate and potash that will all
produce the same yield.



84 Agricultural Production Economics

But if the crops are to grow, some of both nutrients must be present, and the highest
yields are obtained when both nutrients are in ample supply. This concept in economics is
closely linked to Von Liebig's "Law of the Minimum," which states that plant growth is
constrained by the most limiting nutrient.

Notice also that it is possible to use too much of both potash and phosphate. Yields using
70 pounds of each are greater than when 80 pounds of each are used. The law of diminishing
returns applies to units of phosphate and potash fertilizer taken together when other inputs are
held constant, just as it applies to each individual kind of fertilizer.

Table 5.1 contains data from nine production functions for phosphate, under nine
different assumptions with regard to potash use. Table 5.1 also contains data from nine
production functions for potash, each obtained from a different assumption with regard to the
level of phosphate use.

Due to the biology of crop growth, a synergistic effect is present. This means that the
presence of ample amounts of phosphate makes the productivity of potash greater. Ample
amounts of potash makes the productivity of phosphate greater. The two fertilizers, taken
together, result in productivity gains in terms of increased yields greater than would be
expected by looking at yields resulting from the application of only one type of fertilizer.

This effect is not limited to crop production. The same phenomenon may be observed if
data were collected on the use of the inputs grain (concentrate) and forage used in the
production of milk. A cow that is fed all grain and no forage would not be a good milk
producer. Similarly, a cow fed all forage and no grain would not produce much milk. Greatest
milk production would be achieved with a ration containing a combination of grain and forage.

Each possible ration represents a particular combination or mix of inputs grain and
forage. Some of these rations would be better than others in that they would produce more
milk. The particular ration chosen by the farmer would depend not only on the amount of milk
produced, but also on the relative prices of grain and forage. These ideas are fully developed
in Chapter 7.

Figure 5.1 illustrates the production surface arising from the use of phosphate and
potash. The X, and x, axes form a grid (series of agronomic test plots) with the vertical axis
measuring corn yield response to the two fertilizers. The largest corn yields are produced
from input combinations that include both potash and phosphate.

Data for yet another production function are contained in Table 5.1. From Table 5.1 it
is possible to determine what will happen to corn yields if fertilizer application rates for
potash and phosphate are increased by the same proportion. Suppose that 1 unit of fertilizer
were to consist of 1 pound of phosphate and 1 pound of potash and that this proportion did
notchange. A table was constructed using numbers found on the diagonal of Table 5.1. These
data points are illustrated on the production surface in Figure 5.1.

These data appear to be very similar to the data in the earlier chapters for single input
production functions, and they are. The only difference here is that two types of fertilizer are
assumed be used in fixed proportion to each other. Under this assumption, the amount of
fertilizer needed to maximize profits could be found in a manner similar to that used in earlier
chapters, but there is uncertainty as to whether or not the 1:1 ratio in the use of phosphate and
potash is the correct ratio.
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Table 5.2 Corn Yield Response to 1:1 Proportionate Changes in
Phosphate and Potash

Units of Fertilizer
(1 Unit=11b of

Phosphate and 1 1b Corn Yield
of Potash) (bu/acre)
0 96
10 101
20 106
30 114
40 121
50 127
60 130
70 136
80 134

What would happen, for example, if phosphate were very expensive and potash were
very cheap? Perhaps the 1:1 ratio should be changed to 1 unit of phosphate and 2 units of
potash to represent a unit of fertilizer. Data for a production function with a 1:2 ratio could
also be derived in part from Table 5.1. These data are presented in Table 5.3.

Table 5.3 Corn Yield Response to 1 : 2 Proportionate Changes
in Phosphate and Potash

Units of Fertilizer

(1unit=11b

phosphate and 2 Corn Yield
Ib. potash) (bu/acre)
10 -- 20 103

20 -- 40 109

30 -- 60 120

40 -- 80 129

Much of the next several chapters is devoted to the basic principles used for determining
the combination of two inputs (such as phosphate and potash fertilizer) that represents
maximum profit for the producer. Here the proper proportions are closely linked to the
relative prices for the two types of fertilizer.

5.2 An Isoquant and the Marginal Rate of Substitution

Many combinations of phosphate and potash all result in exactly the same level of corn
production. Despite the fact that Table 5.1 includes only discrete values, a bit of interpolation
will result in additional combinations that produce the same corn yield. Take, for example,
a corn yield of 121 bushels per acre (Table 5.1). This yield can be produced with the
following input combinations:30 pounds of phosphate and 70 pounds of potash; 30 pounds
of phosphate and 80 pounds of potash; 40 pounds of phosphate and 40 pounds of potash; and
50 pounds of phosphate and 30 pounds of potash.
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Moreover, there are many more points that might also achieve approximately 121
bushels per acre-60 pounds of phosphate and approximately 27 pounds of potash; 70 pounds
of phosphate and approximately 27 pounds of potash; and 80 pounds of phosphate and
approximately 43 pounds of potash to name a few. All these combinations share a common
characteristic in that they produce the same yield.

A line can be drawn that connects all points on Table 5.1 representing the same yield.
This line is called an isoquant. The prefix iSo comes from the Greek iS0S meaning equal.
Quantis short for quantity. Anisoquantis literally a line representing equal quantities. Every
point on the line represents the same yield or output level, but each point on the line also
represents a different combination of the two inputs. As one moves along an isoquant, the
proportions of the two inputs vary, but output (yield) remains constant.

An isoquant could be drawn for any output or yield that one might choose. If it is
possible to draw an isoquant for a yield of 121 bushels per acre it is also possible to draw one
for a yield of 125.891 bushels per acre, if the data were sufficiently detailed, or an isoquant
could be drawn for a yield of 120.999 bushels per acre, or any other plausible yield.

If isoquants are drawn on graph paper, the graph is usually drawn with the origin (Oy,
0x) in the lower left-hand corner. The isoquants are therefore bowed toward the origin of the
graph.

Figure 5.2 illustrates the isoquants based on the data contained in Table 5.1. These are
the "contour lines" for the production surface illustrated in Figure 5.1. Notice that the
isoquants are convex to the lower left hand corner, or origin, of Figure 5.2.
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Figure 5.2 Isoquants for the Production Surface in Figure 5.1
Based on Data Contained in Table 5.1
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The slope of an isoquant is referred to by some economists as the marginal rate of
substitution (MRS).! Other authors refer to it as the rate of technical substitution (RTS) or the
marginal rate of technical substitution (MRTS). This text uses the terminology MRS.

The MRS is a measurement of how well one input substitutes for another as one moves
along a given isoquant. Suppose that the horizontal axis is labeled X;, and the vertical axis is
labeled X,. The terminology MRSxx, is used to describe the slope of the isoquant assuming that
input X, is increasing and X, is decreasing. In this example, X, is the replacing input and X, is
the input being replaced, moving down and to the right along the isoquant.

Figure 5.3 illustrates an isoquant exhibiting a diminishing marginal rate of substitution.
As one moves farther and farther downward and to the right along the isoquant representing
constant output, each incremental unit of X, (Ax,) replaces less and less X, (Ax,). The
diminishing marginal rate of substitution between inputs accounts for the usual shape of an
isoquant bowed inward, or convex to the origin. The shape is also linked to the synergistic
effect of inputs used in combination with each other. An input is normally more productive
when used with ample quantities of other inputs.

Figure 5.3 Illustration of Diminishing MRSx.x,

The MRS might also measure the inverse slope of the isoquant. Suppose that the use of
X, is being increased, while the use of X, is decreased. The terminology MRSxy, is used to
describe the inverse slope of the isoquant. In this example, X, is the replacing input, and X, is
the input being replaced, as one moves up and to the left along the isoquant. The MRSx, is
equal to 1/MRSxx,.
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The slope of an isoquant can also be defined as Ax,/Ax,.

Then?

(5.5) MRSy, = Ax,/AX,

and

(5.6) MRSxx, = Ax,/AX, = 1/MRSxx,

Isoquants are usually downward sloping, but not always. If the marginal product of both
inputs is positive, isoquants will be downward sloping. It is possible for isoquants to slope
upward if the marginal product of one of the inputs is negative.

Isoquants are usually bowed inward, convex to the origin, or exhibit diminishing
marginal rates of substitution, but not always. The diminishing marginal rate of substitution
is normally a direct result of the diminishing marginal product of each input. There are some
instances, however, in which the MPP for both inputs can be increasing and yet the isoquant
remains convex to the origin (see specific cases in Chapter 10).

Figure 5.4 illustrates the isoquants for a three-dimensional production surface derived
from a polynomial production function that produces a three-dimensional surface illustrating
all three stages of production, the two-input analog to the neoclassical production function
employed in Chapter 2. To illustrate, horizontal cuts are made at varying output levels. In
panel A, the entire three-dimensional production surface is illustrated. Panels C, D, E and F
represent cuts at successively lower output levels. Note that in panel E, the isoquant is
concave, rather than convex to the origin. Panel F illustrates an example isoquant beneath the
production surface.

Figure 5.5 illustrates some possible patterns for isoquant maps and their corresponding
production surfaces. Diagrams A and B illustrate isoquants as a series of concentric rings.
The center of the series of rings corresponds to the input combination that results in maximum
output or product. In Table 5.1, this would correspond with an input combination of 70
pounds of phosphate and 70 pounds of potash, for a yield of 136 bushels per acre. This
pattern results when output is actually reduced because too much of both inputs have been
used.

Diagrams C and D illustrate another common isoquant map and its corresponding
production surface. The isoquants are not rings; rather they approach both axes but never
reach them. These isoquants are called asymptotic to the X, and X, axes, since they approach
but do not reach the axes. A diminishing marginal rate of substitution exists everywhere on
these isoquants. These isoquants appear to be very similar to the average fixed-cost curve
discussed in Chapter 4. However, depending on the relative productivity of the two inputs,
these isoquants might be positioned nearer to or farther from one of the two axes. In this
example, more of either input, or both inputs taken in combination, will always increase
output. There are no maxima for the underlying production functions.
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Another possibility is for a concave surface with isoquants bowed outward (concave to
the origin (diagrams E and F). This pattern represents an increasing rather than diminishing
marginal rate of substitution between input pairs. As the use of X, increases and the use of x,
decreases along the isoquant, less and less additional X, is required to replace units of X, and
maintain output. This shape isnot very likely, because the pattern would suggest that the two
inputs used in combination results in a decrease in relative productivity rather than the
synergistic increase that was discussed earlier.

It is possible for isoquants to have a constant slope (diagrams G and H). The
corresponding production surface is a hyperplane. In this instance, one input or factor of
production substitutes for the other in a fixed proportion. Here, there is a constant, not a
diminishing marginal rate of substitution. For example, if inputs substituted for each other in
a fixed proportion of 1 unit X, to 2 units of X,, the following input combinations would all
result in exactly the same output—4x,, 0 X,; 3%, 2X,; 2X;, 4%X,; 1X;, 6Xy; 0X,, 8X,.

It is also possible for isoquants to have a positive slope (Diagrams I and J). This can
occur in a situation where additional amounts of one of the inputs (in this instance, input X, )
reduces output. Diagram B also includes some points where the isoquants have a positive
slope.

Finally, isoquants might be right angles, and the corresponding production surface is
shaped like a pyramid (diagrams K and L). This can occur when two inputs must be used in
fixed proportion with each other. The classic example here is tractors and tractor drivers. A
tractor without a driver produces no output. A driver without a tractor produces no output.
These inputs must be used in a constant fixed proportion to each other one tractor driver to
one tractor.

5.3 Isoquants and Ridge Lines

Two families of production functions underlie every isoquant map. Figure 5.6 illustrates
this relationship. Assume X, to be fixed at some predetermined level x¥. A horizontal line is
drawn from x¥ across the diagram. A production function for X, holding X, constant at x¥ can
then be drawn by putting X, on the horizontal axis, and noting the output obtained from the
intersection of the line drawn at x¥ with each isoquant. Now choose another level of X,. Call
this level x¥. The process can be repeated over and over again for any level of x,. Each
alternative fixed level for X, generates a new production function for X, assuming that X, is
held constant at the predetermined level.

Moreover, the same process can be repeated by holding X, constant and tracing out the
production functions for X,. Every time X, changes, a new production function is obtained for
X,. As one moves from one production function for X, to another, different quantities of output
from X, are produced, despite the fact that neither the quality or quantity of X, has changed.
This is because the varying assumptions about the quantity of X; either enhance or reduce the
productivity of X,. Another way of saying this is that the marginal productivity (or MPP) of
X, is not independent of the assumption that was made about the availability of X;, and the
MPP of X, is not independent of the assumption that is made about the availability of X,.

Now suppose that a level for X, is chosen of x¥ that is just tangent to one of the
isoquants. The point of tangency between the line drawn atx¥ and the isoquant will represent
the maximum possible output that can be produced from X, holding X, constant at x¥. The
production function derived by holding X, constant at x¥ will achieve its maximum at the point
of tangency between the isoquant and the horizontal line drawn at X¥. The point of tangency
is the point of zero slope on the isoquant and marks the dividing point between stages Il and
III for the production function

(5.7) y = f(x, | X, =x%)
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Figure 5.6 Ridge Lines and a Family of Production Functions for Input X,

This process could be repeated over and over again by selecting alternative values for
X, and drawing a horizontal line at the selected level for x,. Each isoquant represents a
different output level, just as each horizontal line represents a different assumption about the
magnitude of X,. An infinite number of isoquants could be drawn, each representing a slightly
different output level. An infinite number of horizontal lines could be drawn across the
isoquant map, each representing a slightly different assumption about the value for X,. For
each horizontal line, there would be a point of tangency on one (and only one!) of the
isoquants. This point of tangency is a point of zero slope on the isoquant. Each isoquant
would have a corresponding horizontal line tangent to it. The point of tangency represents the
maximum for the underlying production function for X, under the predetermined assumption
with regard to the fixed level of X,.
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The choice of the input to be labeled X, and X, is quite arbitrary. However, if X, remains
on the vertical axis, the same process could be repeated by drawing vertical lines from the
value chosen on the X, axis (the assumption with respect to the value for x,) and finding the
points of tangency between the vertical line and its corresponding isoquant. In this case
however, the point of tangency will occur at the point where the isoquant assumes an infinite
slope. Each point of tangency marks the division between stages Il and I11I for the underlying
production function for X, with X, set at some predetermined level x¥. The production function
is

(5.8) y = f(Xy;%,=x¥)

A line could be drawn that connects all points of zero slope on the isoquant map. This
line is called a ridge line and marks the division between stages II and III for input x,, under
varying assumptions with regard to the quantity of X, that is used. This line is designated as
ridge line 1 for X;.

A second line could be drawn that connects all points of infinite slope on the isoquant
map. This is also a ridge line, and marks the division between stages II and III for input X,,
under varying assumptions with regard to the quantity of X; that is used. This might be
designated as ridge line 2 for X,.

The two ridge lines intersect at the single point of maximum output. The neoclassical
diagram, drawn from an isoquant map that consists of a series of concentric rings, appears
not unlike a football. The ridge lines normally assume a positive slope. This is because the
level of X, that results in maximum output increases as the assumption with regard to the fixed
level for X, increases. Moreover, the level of X, that results in maximum output increases as
the assumption with regard to the fixed level for X, is increased. The football appearance is
the result of the underlying single-input production functions that assume the neoclassical
three-stage appearance.

Notice that ridge line 1 connects points where the MRS is zero. Ridge line 2 connects
points where the MRS is infinite. Finally, note that ridge lines can be drawn for only certain
types of isoquant patterns or maps. For aridge line to be drawn, isoquants must assume either
a zero or an infinite slope. Look again at figure 5.5. Ridge lines can be drawn only for
isoquants appearing in diagram B. For diagrams D, F, L, H and J, there are no points of zero
or infinite slope. This suggests that the ridge lines do not exist. Moreover, this implies that
the underlying families of production functions for X; and X, never achieve their respective
maxima. Diagram L presents a unique problem. The right angle isoquants have either a zero
or an infinite slope everywhere on either side of the angle. This would imply "thick" ridge
lines. In this example, the underlying production functions for each input are but a series of
points that represent the respective maximum output at each level of input use.

5.4 MRS and Marginal Product

The slope or MRS of an isoquant and the underlying productivity of the two families of
production functions used to derive an isoquant map are closely intertwined. An algebraic
relationship can be derived between the MRS and the marginal products of the underlying
production functions.

Suppose that one wished to determine the change in output (called Ay) that would result
if the use of X, were changed by some small amount (called Ax,) and the use of X, were also
changed by some small amount (called Ax,). To determine the resulting change in output
(Ay), two pieces of information would be needed. First, the exact magnitude of the changes
in the use of each of the inputs X, and X,. It is not possible to determine the change in output
by merely summing the respective change in the use of the two inputs. An additional piece
of information would also be needed. That information is the rate at which each input can be
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transformed into output. This rate is the marginal physical product of each input x, and x,
(MPPx, and MPPx,).

The total change in output can be expressed as
(5.9) Ay = MPPx, Ax, + MPPx, Ax,

The total change in output resulting from a given change in the use of two inputs is the change
in each input multiplied by its respective MPP.

By definition, an isoquant is a line connecting points of equal output. Output does not
change along an isoquant. The only way that output can change is to move on the isoquant
map from one isoquant to another. Along any isoquant, Ay is exactly equal to zero. The
equation for an isoquant can then be written as

(5.10) Ay = 0=MPPy, Ax, + MPPy, Ax,
Equation (5.10) can be rearranged such that

(5.11) MPPx, Ax, + MPPx, Ax, =0

(5.12) MPPy, AX, = - MPPy, AX,

Dividing both sides of equation (5.12) by Ax, gives us:
(5.13) MPPx, Ax,/Ax, = — MPPy,

Dividing both sides by MPPy, yields:

(5.14) Ax,/AxX, = — MPPx/MPPx,

or’

(5.15) MRSxx, = — MPPx/MPPy,

The marginal rate of substitution between a pair of inputs is equal to the negative ratio
of the marginal products. Thus the slope of an isoquant at any point is equal to the negative
ratio of the marginal products at that point, and if the marginal products for both inputs are
positive at a point, the slope of the isoquant will be negative at that point. The replacing input
(in this example, X,) is the MPP on the top of the ratio. The replaced input (in this example,
X,) is the MPP on the bottom of the ratio. By again rearranging, we have

(5.16) MRSxx, = - MPPx/MPPx,

The inverse slope of the isoquant is equal to the negative inverse ratio of the marginal
products. Thus the slope (or inverse slope) of an isoquant is totally dependent on the MPP
of each input.

In Section 5.3, aridge line was defined as a line that connected points of zero or infinite
slope on an isoquant map. Consider first a ridge line that connects points of zero slope on an
isoquant map. This implies that MRSxx, = 0. But MRSxx, = = MPPx/MPPx,. The only way for
MRSxx, to equal 0 is for MPPx, to equal zero. If MPPx, is zero, then the TPPX, (assuming a
given value for X, again of x¥) must be maximum, and thus the underlying production
function for X, holding x, constant at X} must be at its maximum.
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Now consider aridge line that connects points of infinite slope on an isoquant map. This
implies that MRSy, is infinite. Again MRSxx, = - MPPx/MPPx,. MRSxx, will become more and
more negative as MPPx, comes closer and closer to zero. When MPPy, is exactly equal to
zero, the MRSxy, is actually undefined, since any number divided by a zero is undefined.
However, note that when MPPx, =0, then MRSxx, =0, since MPPx, appears on the top, not the
bottom of the ratio. A ridge line connecting points of infinite slope on an isoquant map
connects points of zero inverse slope where the inverse slope is defined as Ax,/Ax,.

5.5 Partial and Total Derivatives and the Marginal Rate of Substitution

Consider again the Production function
(5.17) y = f(X,.X,)

For many production functions, the marginal product of X; (MPPx) can be obtained only by
making an assumption about the level of X,. Similarly, the marginal product of x, cannot be
obtained without making an assumption about the level of X;. The MPPx, is defined as

(5.18) MPPy, = 0f/0x, | X, = x*

The expression 0y/0X, is the partial derivative of the production function y = f(x;, X,),
assuming X, to be constant at x¥. It is the MPP function for the member of the family of
production functions for X,, assuming that X, is held constant at some predetermined level x¥.

Similarly, the MPPx,, under the assumption that x, is fixed at some predetermined level
X¥, can be obtained from the expression

(5.19) MPPy, = 0f/0x, | X, = x*
In both examples the f refers to output or y.

The big difference between dy/dx, and 0y/0X, is that the dy/dx, requires that no
assumption be made about the quantity of X, that is used. dy/dx, might be thought of as the
total derivative of the production function with respect to X,, with no assumptions being made
about the value of X,. The expression 0y/0X, is the partial derivative of the production
function, holding X, constant at some predetermined level called x%.

A few examples better illustrate these differences. Suppose that the production function
is

(5.20) y = X,*%,07
Then
(5.21) MPPx, = 9y/dx, = 0.5X, %%%,**

Since differentiation takes place with respect to X,, X, is treated simply as if it were a constant
in the differentiation process, and

. X, = X, = 0.5%, %,
(5.22) MPPx, = 9y/dx, = 0.5%, %X,**

Since differentiation takes place with respect to X,, X, is treated as if it were a constant in the
differentiation process.

Note that in this example, each marginal product contains the other input. An assumption
needs to be made with respect to the amount of the other input that is used in order to calculate
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the respective MPP for the input under consideration. Again, the MPP of X, is conditional on
the assumed level of use of X,. The MPP of X, is conditional on the assumed level of use of ;.

Now consider a slightly different production function
(5.23) y =X, +x,°°

In this production function, inputs are additive rather than multiplicative. The corresponding
MPP for each input is

(5.24) MPP, = dy/dx, = 0.5, %3
(5.25) MPP, = dy/dx, = 0.5%, *3
For this production function, MPPx, does not contain x,, and MPPx, does not contain X;.

No assumption needs to be made with respect to the level of use of the other input in order to
calculate the respective MPP for each input. Since this is true, this is an example where

(5.26) dy/Ox, = dy/dx,
and
(5.27) y/Ox, = dy/dx,

The partial and the total derivatives are exactly the same for this particular production
function.

Consider again the expression representing the total change in output
(5.28) Ay = MPPy, Ax, + MPPy, Ax,

A A denotes a finite change, and the respective MPP's for X, and X, are not exact but rather,
merely approximations over the finite range.

Suppose that Ax, and Ax, become smaller and smaller. At the limit, the changes in X,
and X, become infinitesimally small. Ifthe changes in X; and X, are no longer assumed to be
finite, at the limit, equation 5.28) can be rewritten as

(5.29) dy = MPPx, dx, + MPPy, dx,
or
(5.30) dy = Ay/0x, dx, + Ay/Ox, dx,.

Equation (5.30) is the total differential for the production function y = f(x,,X,).

Along an isoquant, there is no change iny, so dy=0. An isoquant by definition connects
points representing the exact same level of output. The total differential is equal to zero. The
exact MRSxyx, at X; = X¥ and X, = X¥ is

(5.31) MRSk, = dx,/dx, = - MPPx/MPPx, = — (3y/x,)/(3y/Ox,)
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Similarly, the exact MRSxx, is defined as
(5.32) MRSxx, = dx,/dx, = = MPPx/MPPx, = — (3y/0X,)/(0y/0X,)

The total change in the MPP for X, can be obtained by dividing the total differential of
the production function by dx,. The result is

(5.33) dy/dx, = dy/0x, + (3y/0x,)(dx,/dx,)

Equation (5.33) is the total derivative of the production function y = f(x,, X,). It
recognizes specifically that the productivity of X, is not independent of the level of x, that is
used.

The total change in output as a result of a change in the use of X, is the sum of two
effects. The direct effect (ay/gxl) measures the direct impact of the change in the use of X, on
output. The indirect effect measures the impact of a change in the use of X, on the use of
X,(dX,/dX,), which in turn affects y (through 0y/0x,).

The shape of the isoquant is closely linked to the production functions that underlie it.
In fact, if the underlying production functions are known, it is possible to determine with
certainty the exact shape of the isoquant and its slope and curvature at any particular point.
The marginal rate of substitution, or slope of the isoquant at any particular point, is equal to
the negative ratio of the marginal products of each input at that particular point. If the
marginal product of each input is positive but declining, the isoquant normally will be bowed
inward or convex to the origin.

The curvature of an isoquant can be determined by again differentiating the marginal
rate of substitution with respect to X,.* If the sign on the derivative is positive, the isoquant is
bowed inward and exhibits a diminishing marginal rate of substitution. It is also possible for
isoquants to be bowed inward in certain instances where the marginal product of both inputs
is positive but not declining. Examples of this exception are contained in Chapter 10.

Diagrams B to D of Figure 5.2 all represent isoquants that are downward sloping, and
hence dx,/dx, is negative in each case. In diagram B, d(dx,/dx,)/dx, is positive, which is
consistent with a a diminishing marginal rate of substitution. Diagram C illustrates a case in
which d(dx,/dx,)/dx, is negative, resulting in isoquants concave to the origin, while for
diagram D, d(dx,/dx, )/dx, is zero, and the isoquants have a constant slope with no diminishing
or increasing marginal rates of substitution.

The derivative dx,/dx, is positive in diagram E and undefined in diagram F. In diagram
A, the isoquants have both positive and negative slopes, and the sign on dx,/dx, depends on
the particular point being evaluated.

Thus the concept of an isoquant with a particular marginal rate of substitution at any
particular point and the concept of a production function with marginal products for each
input are not separate and unrelated. Rather the slope, curvature and other characteristics of
an isoquant are uniquely determined by the marginal productivity of each input in the
underlying production function.

5.6 Concluding Comments

This chapter has been concerned with the physical and technical relationships underlying
production in a setting in which two inputs are used in the production of a single output. An
isoquant is a line connecting points of equal output on a graph with the axes represented by
the two inputs. The slope of an isoquant is referred to as a marginal rate of substitution
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(MRS). The MRS indicates the extent to which one input substitutes for another as one moves
from one point to another along an isoquant representing constant output. The marginal rate
of substitution is usually diminishing. In other words, when output is maintained at the
constant level represented by the isoquant, as units of input X, used in the production process
are added, each additional unit of X, that is added replaces a smaller and smaller quantity of
X,.

A diminishing marginal rate of substitution between two inputs normally occurs if the
production function exhibits positive but decreasing marginal product with respect to
incremental increases in the use of each input, a condition normally found in stage II of
production. Thus the marginal rate of substitution is closely linked to the marginal product
functions for the inputs. This chapter has illustrated how the marginal rate of substitution can
be calculated if the marginal products for the inputs are known.

Notes

" Not all textbooks define the marginal rate of substitution as the slope of the isoquant. A
number of economics texts define the marginal rate of substitution as the negative of the slope
of the isoquant. That is, MRSxx, = — Ax,/AX, (or — dx,/dx,). Following this definition, a
downward-sloping isoquant exibits a positive marginal rate of substitution.

2 or — Ax,/Ax,.

? If the marginal rate of substitution is defined as the negative of the slope of the isoquant, it
is equal to the ratio of the marginal products, not the negative ratio of the marginal products.

* Let the Marginal rate of Substitution (MRS) of X, for X, be defined as dx,/dX,. Then the total
differential of the MRS is defined as

dMRS = (OMRS/0x,)dx1 + (OMRS/0x,)dx,
The total derivative with respect to X, is
dMRS/dx, = (OMRS/0x,) + (OMRS/0x,)(dx,/dx;)
or
dMRS/dx, = (OMRS/0x,) + (OMRS/0x,)-MRS
As units of X, are increased, the total change in the marginal rate of substitution (dMRS/dx;)
is the sum of the direct effect of the change in the use of X, on the MRS [(OMRS/0x,)] plus the

indirect effect [(OMRS/0x,)MRS]. The indirect effect occurs because if output is to remain
constant on the isoquant, an increase in X; must be compensated with a decrease in X,.

Problems and Exercises

1. The following combinations of X, and X, all produce 100 bushels of corn. Calculate the
MRSxx, and the MRSxy, at each midpoint.
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Combination  Units of X, Units of X, MRSxx, MR Sx.x,
A 10 1
B 5 2
C 3 3
D 2 4
E 1.5 5

2. For the production function
y =3X, +2X,

find
a. The MPP of x,.
b. The MPP of x,.
c. The marginal rate of substitution of X, for x,.

3. Draw the isoquants for the production function given in Problem 1.
4. Find those items listed in Problem 2 for a production function given by
y =ax, + bx,

where a and b are any constants. Is it possible for such a production function to produce
isoquants with a positive slope? Explain.

5. Suppose that the production function is given by

_y 05, 0333
Y=X7X

find
a. The MPP of x,.
b. The MPP of x,.
c. The Marginal rate of substitution of x; for X,.

d. Draw the isoquants for this production function. Do they lie closer to the X, or the X,
axis? Explain. What relationship does the position of the isoquants have relative to the
productivity of each input?

6. Suppose that the production function is instead

y = 2%, 5%,
find

a. The MPP of x,.

b. The MPP of x,.

c. The Marginal rate of substitution of x; for X,.

d. What happens to the position of the isoquants relative to those drawn for Problem 5?
Compare your findings with those found for problem 5.
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Maximization in the
Two-Input Case

This chapter develops the fundamental mathematics for the maximization or minimization of
a function with two or more inputs and a single output. The necessary and sufficient
conditions for the maximization or minimization of a function are derived in detail.
[lustrations are used to show why certain conditions are required if a function is to be
maximized or minimized. Examples of functions that fulfill and violate the rules are
illustrated. An application of the rules is made using the yield maximization problem.

Key terms and definitions:

Maximization

Minimization

First-Order Conditions

Second-Order Conditions

Young's Theorem

Necessary Conditions

Sufficient Conditions

Matrix

Matrix of Partial Derivatives

Principal Minors

Local Maximum

Global Maximum

Saddle Point

Determinant

Critical Value

Unconstrained Maximization and Minimization
Constrained Maximization and Minimization
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6.1 An Introduction to Maximization

An isoquant map might be thought of as a contour map of a hill. The height of the hill
at any point is measured by the amount of output that is produced. An isoquant connects all
points producing the same quantity of output, or having the same elevation on the hill. In
general, isoquants consist of concentric rings, just as there are points on all sides of the hill
that have the same elevation. Similarly, there are many different combinations of two inputs
that would all produce exactly the same amount of output.

An infinite number of isoquants can be drawn. Each isoquant represents a slightly
different output level or elevation on the hill. Isoquants never intersect or cross each other, for
this would imply that the same combination of two inputs could produce two different levels
of output. The quantity of output produced from each combination of the two inputs is unique.
If one is standing at a particular point on a side of a hill, that particular point has one and only
one elevation.

If the isoquants are concentric rings, any isoquant drawn inside another isoquant will
always represent a slightly greater output level than the one on the outside (Figure 5.1,
diagram A). If the isoquants are not rings, the greatest output is normally associated with the
isoquant at the greatest distance from the origin of the graph. No two isoquants can represent
exactly the same level of output. Each isoquant by definition represents a slightly different
quantity of output from any other isoquant.

If an isoquant map is drawn as a series of concentric rings, these rings become smaller
and smaller as one moves toward the center of the diagram. At comparatively low levels of
output, the possible combinations of the two inputs X, and X, suggest a wide range of options:
a large quantity of X, and a small quantity of x,: a small quantity of X, and a large quantity
ofX,, or something in between. At higher levels of output, the isoquant rings become smaller
and smaller, suggesting that the range of options becomes more restricted, but there remains
an infinite number of possible combinations on a particular isoquant within the restricted
range, each representing a slightly different combination of X, and x,.

The concentric rings finally become a single point. This is the global point of maximum
output and would be the position where the farm manager would prefer to operate a farm if
inputs were free and there were no other restrictions on the use of the inputs. This single
point is the point where the two ridge lines intersect. The MRS for an isoquant consisting of
asingle point is undefined, but this point represents the maximum amount of output that can
be produced from any combination of the two inputs X, and X,.

If one were standing on the top of a hill, at the very top, the place where one would be
standing would be level. Moreover, regardless of the direction that one looked from the top
ofahill, the hill would slope downward from its level top. If one were standing on the hilltop,
no other point on the hill would slope upward. Ifit did, one would not be on the top of the hill.
Every other point on the hill would be at a somewhat lower elevation.

The top of the highest hill represents the greatest possible elevation, or global maximum.
However, hills that are not as high are also level at the top. The tops of these hills represent
local, but not global maxima.

Minimum points can be defined similarly. The bottom of a valley is also level. The
bottom of the deepest valley represents a global minimum, while the bottom of other valleys
not as deep represent local but not global minima. If one were to draw contour lines for a
valley, they would be indistinguishable from the contour lines for a hill.
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The slope at both the bottom of a valley and at the top of the hill is zero in all directions.
It is not possible to distinguish the bottom of a valley from the top of a hill simply by looking
at the slope at that point, because the slope for both is zero. Much of the mathematics of
maximization and minimization is concerned with the problem of distinguishing bottoms of
valleys from tops of hills based on second derivative tests or second order conditions.

6.2 The Maximum of a Function

The problem of finding the combination of inputs X; and X, that results in the true
maximum output from a two-input production function is the mathematical equivalent of
finding the top of the hill, or the point on a hill with the greatest elevation. Two conditions
need to be checked. First, the point under consideration must be level, or have a zero slope,
which is a necessary condition, but level points are found not only at the top of hills but at
the bottom of valleys.

The saddle for a horse provides another example and problem for the mathematician. The
saddle is level in the middle, but it slopes upward at both ends and downward at both sides.
A saddle looks like neither a hill nor a valley, but is a combination of both. So an approach
needs to be taken that will separate the true hill from the valley and the saddle point.

Suppose again the general production function

(6.1) y = f(X,, X,)
The first-order or necessary conditions for the maximization of output are
(6.2) dy/Ox, =0, or f, =0
and
(6.3) dy/Ox,=0orf,=0

Equations (6.2) and (6.3) ensure that the point is level relative to both the X, and the X, axes.

The second order conditions for the maximization of output require that the partial
derivatives be obtained from the first order conditions. There are four possible second
derivatives obtained by differentiating the first equation with respect to X, and then with
respect to X,. The second equation can also be differentiated with respect to both X, and X,.

These four second partial derivatives are

(6.4) A(3y/Ox,)/Ox, = O%y/Ox2 =1,
(6.5) 9(3y/0x,)/0x, = 0%y/Ox,0%, = f,,
(6.6) 9(3y/Ox,)/0x, = 0%y/O%,0x, = T,
(6.7) O(Oy/Ox,)/Ox, = O%y/OX,* =

Young's theorem states that the order of the partial differentiation makes no difference and
that f,, =1,,.

The second order conditions for a maximum require that

(6.8) f,<0
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and

(6.9) T

Since f,,f,; is non—negative, f;,f,, must be positive for equation (6.9) to hold, and f,,f,, can
be positive only iff,, is also negative. Taken together, these first-and second-order conditions

provide the necessary and sufficient conditions for the maximization of a two-input production
function that has one maximum.

6.3 Some Illustrative Examples

Some specific examples will further illustrate these points. Suppose that the production
function is

(6.10) y = 10X, +10X, = X,% = X,2

The first order or necessary conditions for a maximum are

(6.11) f,=10-2x,=0
(6.12) X, =5
(6.13) f,=10 - 2x,=0
(6.14) X, =5

The critical values for a function is a point where the slope of the function is equal to
zero. The critical values for this function occur at the point where X, = 5, and x, = 5. This
point could be a maximum, a minimum or a saddle point.

For a maximum, the second order conditions require that

(6.15) f,, <0 andf,f, > f.f,

For equation (6.10)

(6.16) f,=-2<0

(6.17) f,,=-2

(6.18) f,, =1,, =0, since X, does not appear in f,, nor X, in f,.
Hence

(6.19) fi,f — fiofyy =4>0

The necessary and sufficient conditions have been met for the maximization of equation
(6.10) at X; =5, X, = 5. This function and its contour lines are illustrated in panels A and B
of Figure 6.1.

Now consider a production function

(6.20) y=—10%, = 10X, + X,2 + X,
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The first-order conditions are

(6.21) f=-10+2x,=0
(6.22) X, =5
(6.23) f,=-10+2x,=0
(6.24) X, =5

The second order conditions for a minimum require that

(6.25) f,>0

(6.26) fi, fp > f1y oy

For equation (6.20) the second order conditions are
(6.27) f,=2>0

(6.28) f, =2

Moreover

(6.29) fi,f — fiofy =4>0

The necessary and sufficient conditions have been met for the minimization of equation
(6.20) at X; =5, X, = 5. This function and its contour lines are illustrated in panels C and D of
Figure 6.1.

Now consider a function

(6.30) y= 10X, = 10X, = X, + X,

The first order conditions are

(6.31) f,=10-2x,=0
(6.32) X, =5
(6.33) f,=-10+2x,=0
(6.34) X, =5

For equation (6.30), the second order conditions are

(6.35) f,=-2<0
(6.36) f, =2
Moreover

(6.37) fif, — fufy, = -4<0
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The necessary and sufficient conditions have not been met for the minimization or
maximization of equation (6.30) at X, = 5, X, = 5. This function is the unique saddle point
illustrated panels E and F of Figure 6.1 that represents a maximum in the direction parallel
to the X, axis, but a minimum in the direction parallel to the X, axis.

The function
(6.38) y =~ 10X, +10X, +X,2 —X,2
results in a very similar saddle point with the axes reversed. That is, a minimum occurs
parallel to the X; axis, but a maximum occurs parallel to the X, axis. The surface of this
function is illustrated in panels G and H of Figure 6.1. Now consider a function
(6.39) y==2X; = 2X, = X;2 = X,© + 10X;X,

The first order conditions are

(6.40) f,=-2-2%+10x,=0

(6.41) f,=-2 - 2%, + 10X, =0

Solving for X, in equation (6.41) for f, gives us

(6.42) -2%,=2 - 10X,

(6.43) X, = 5%, — 1

Inserting equation (6.43) X, into equation (6.40) for f, results in
(6.44) X, = 0.25

Since X, = 5%, — 5, X, also equals 0.25.

In this instance the second order conditions are

(6.45) f,=-2 <0

(6.46) f,=-2 <0

However

(6.47) f,=f, =10

Thus

(6.48) fif — fufy =4 - 100=-96<0

Although these conditions may at first appear to be sufficient for a maximum at x, =X,
= (.25, the second order conditions have not been fully met. In this example, the product of
the direct second partial derivatives f},f,, is less than the product of the second cross partial
derivatives f,,f,,, and therefore f,,f,, —f,,f,, is less than zero. In the earlier examples, the
second cross partial derivatives were always zero, since an interaction term such as 10x,X, did
not appear in the original production function.
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As aresult, another type of saddle point occurs, as illustrated in panels I and J of Figure
6.1, which appears somewhat like a bird with wings outstretched. Like the earlier saddle
points, a minimum exists in one direction and a maximum in another direction at a value for
X; and X, of 0.25, but the saddle no longer is parallel to one of the axes, but rather lies along
a line running between the two axes. This is the result of the product of the second cross
partials being greater than the second direct partials. By changing the function only slightly
and making the coefficient 10 on the product of X; and X, a -10 results in the surface and
contour lines illustrated in panels K and L of Figure 16.1. Compare these with panels I and
J.

In the preceding examples, care was taken to develop polynomial functions that had
potential maxima or minima at levels for X, and X, at positive but finite amounts. If a true
maximum exists, the resultant isoquant map will consist of a series of concentric rings
centered on the maximum with ridge lines intersecting at the maximum.

One is sometimes tempted to attempt the same approach for other types of functions. For
example, consider a function such as

(6.49) y = 10x,%9%,%°

In this instance

(6.50) f, = 5x,7%x,>
And
(6.51) f, = 5x,%9%, %°

These first partial derivatives of equation (6.49) could be set equal to zero, but they would
each assume a value of zero only at X, = 0 and x, = 0. There is no possibility that f, and f,
could be zero for any combination of positive values for X, and X,. Hence the function never
achieves a maximum.

6.4 Some Matrix Algebra Principles

Matrix algebra is a useful tool for determining if'a function has achieved a maximum or
minimum.A matrix consists of a series of numbers (also called values or elements) organized
into rows and columns. The matrix

(6.52) a, ap, a;
a21 a22 a23
a31 a32 a33

is a square 3 X 3 matrix, since it has the same number of rows and columns. For each
element, the first subscript indicates its row, the second subscript its column. For example
a,, refers to the element or value located in the second row and third column.

Every square matrix has a number associated with it called its determinant. Fora I x
1 matrix with only one value or element, its determinant is &,,. The determinant of a 2 x 2
matrix is @,,8y, — 8,,8,;. The determinant of'a 3 x 3 matrix is a,,8,,8;; + 8,,8,385; + 8,,83,83
— @3,808,; — 8;,83,8y; — 8338,,,,. Determinants for matrices larger than 3 x 3 are very
difficult to calculate, and a computer routine is usually used to calculate them.
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The principal minors of a matrix are obtained by deleting first all rows and columns of
the matrix except the element located in the first row and column (a,,) and finding the
resultant determinant. In this example, the first principal minor is a,,. Next, all rows and
columns except the first two rows and columns are deleted, and the determinant for the
remaining 2 X 2 matrix is calculated. In this example, the second principal minor is @,,8,, —
a,,8,,. The third principal minor would be obtained by deleting all rows and columns with row
or column subscripts larger than 3, and then again finding the resultant determinant.

The second order conditions can better be explained with the aid of matrix algebra. The

second direct and cross partial derivatives of a two input production function could form the
square 2 x 2 matrix

(6.53) f,, f,,
f,) Ty
The principal minors of equation (6.53) are
(6.54) H, =f,
H, =1,,f,, — f.f,
Assuming that the first-order conditions have been met, The second-order condition for
a maximum requires that the principal minors H, and H, alternate in sign, starting with a
negative sign. In other words, H, < 0; H, > 0.
For a minimum, all principal minors must be positive. That is, H,, H, > 0.
A saddle point results for either of the remaining conditions
H,>0;H,<0
or, H <0;H,<0

6.5 A Further Illustration

A further illustration of second-order conditions is obtained from the two input
polynomial

(6.55) =40x, — 12x,2+ 1.2x,> = 0.035x,* + 40x, — 12X,* + 1.2X,* = 0.035x,"
y 1 1

This function has nine values where the first derivatives are equal to zero. Each of these
values, called critical values, represents a maximum, a minimum, or a saddle point. Figure
6.2 illustrates the function. Table 6.1 illustrates the corresponding second order conditions.
In this example, H, is f;, and H, is f,,f,, — f,,f,;.

This function differs from the previous functions in that there are several combinations
of x, and x, that generate critical values where the slope of the function is equal to zero. There
is but one global maximum for the function, but several local maxima. A global maximum
might be thought of as the top of the highest mountain, whereas a local maximum might be
considered the top of a nearby hill. There are also numerous saddle points. The second-order
conditions can be verified by carefully studying figure 6.2.
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6.6 Maximizing a Profit Function with Two Inputs

The usefulness of the criteria for maximizing a function can be further illustrated with
an agricultural example using a profit function for corn. Suppose that the production function
for corn is given by

(6.56) y = f(X,, X,)
where y = corn yield in bushels per acre

X; = pounds of potash applied per acre
X, = pounds of phosphate applied per acre

Table 6.1 Critical Values for the Polynomial y = 40x, — 12x,% + 1.2x,* = 0.035x%,*
+40x, — 12x,2 + 1.2X,* = 0.035x%,*

Xy
2.54 6.93 16.24
X, local saddle global
maximum point maximum
y=2323 y=209.5 y=378.8
16.24 H, <0 H,>0 H, <0
H,>0 H,<0 H,>0
saddle local saddle
point minimum point
y=61.9 y=39.1 y=209.5
6.93 H, <0 H,>0 H, <0
H,<0 H,>0 H,<0
local saddle local
maximum point maximum
y=84.38 y=61.9 y=2323
2.54 H, <0 H,>0 H, <0

H,>0 H,<0 H,>0
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All other inputs are presumed to be fixed and given, or already owned by the farm
manager. The decision faced by the farm manager is how much of the two fertilizer inputs or
factors of production to apply to maximize profits to the farm firm. The total revenue or total
value of the product from the sale of the corn from 1 acre of land is

(6.57) TVP = py
where

p = price of corn per bushel

y = corn yield in bushels per acre
The total input or factor cost is

(6.58) TFC = V,X, + VX,

where v, and v, are the prices on potash and phosphate respectively in cents per pound. The
profit function is

(6.59) II=TVP - TFC

Equation (6.59) can also be expressed as

(6.60) II=py - vx, —vx,,or
(6.61) IT = pf(x,,%,) = ViX; —VoX,
The first order, or necessary conditions for a maximum are
(6.62) II,=pf, - v,=0
(6.63) IL, =pf, - v,=0

Equations (6.62) and (6.63) require that the slope of the TVP function with respect to each
input equal the slope of the TFC function for each input, or that the difference between the
slopes of the two functions be zero for both inputs, or as

(6.64) pf, =V,
(6.65) pf, =V,

The value of the marginal product must equal the marginal factor cost for each input. If
the farmer is able to purchase as much of each type of fertilizer as he or she wishes at the
going market price, the marginal factor cost is the price of the input, v, or v,. This also implies
that at the point of profit maximization the ratio of VMP to MFC for each input is 1. In other
words

(6.66) pf/v, = phv, = 1
The last dollar spent on each input must return exactly $1, and most if not all previous
units will have given back more than a dollar. The accumulation of the excess dollars in

returns over costs represents the profits or net revenues accruing to the farm firm.

Moreover, the equations representing the first order conditions can be divided by each
other:
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(6.67) pf/pf, = V,/v,.
Note that the output price cancels in equation (6.67) such that
(6.68) f./f, = v,V
Recall from Chapter 5 that f, is the MPP ofx, and f, is the MPP of x,. The negative ratio
of the respective marginal products is one definition of the marginal rate of substitution of
X; for X, or MRSxx,. Then at the point of profit maximization
(6.69) MRSxyx, = V,/V,. or
(6.70) dx,/dx, = v,/v,

As will be seen later, equation (6.70) holds at other points on the isoquant map in addition to
the point of profit maximization.

The second order conditions also play arole. Assuming fixed input prices (v, and v,), the
second order conditions for the profit function are

(6.71) II,, = pf,,
(6.72) IL,, = pf,,
(6.73) IT,, =IL,, = pf,, = pf,, (by Young's theorem)

Or in the form of a matrix

(6.74)
Py pfis
phy P
For a maximum
(6.75) pf,, <0, and
(6.76) pf,pfy, — pfopfy >0

The principal minors must alternate in sign starting with a minus. Equations (6.75) and
(6.76) require that the VMP functions for both X, and x, be downsloping. With fixed input
prices, the input cost function will have a constant slope, or the slope of MFC will be zero.

The conditions that have been outlined determine a single point of global profit
maximization, assuming that the underlying production function itself has but a single
maximum. This single profit-maximization point will require less of both X, and X, than would
be required to maximize output, unless one or both of the inputs were free.

6.7 A Comparison with Output- or Yield-Maximization Criteria

A comparison can be made of the criteria for profit maximization versus the criteria for
yield maximization. If the production function is
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(6.77) y = f(X,,X,)
Maximum yield occurs where
(6.78) f, = MPPy =0
(6.79) f,= MPP. =0, or
(6.80) f=f,=0

The second-order conditions for maximum output require that f,; <0; and f,,f,, > f,,f,,.
The MPP for both inputs must be downward sloping.

The first- and second-order conditions comprise the necessary and sufficient conditions
for the maximization of output or yield and are the mathematical conditions that define the
center of an isoquant map that consists of a series of concentric rings.

Since zero can be multiplied or divided by any number other than zero, and zero would
still result, when MPP for X, and X, is zero,

(6.81) pf/v, = pf/v, =0

To be at maximum output, the last dollar spent on each input must produce no additional
output, yield, or revenue.

Recall that the first-order, or necessary conditions for maximum profit occur at the point
where

(6.82) pf, — v, =0

(6.83) pf, — v, =0

(6.84) pf/v, = phyfv, = 1

and the corresponding second order conditions for maximum profit require that
(6.85) pf, <0

(6.86) pf,,pf,, — pfiopfy, >0

(6.87) pA(f,,fyy —fofy) > 0

Since p* is positive, the required signs on the second-order conditions are the same for both
profit and yield maximization.

6.8 Concluding Comments

This chapter has developed some of the fundamental rules for determining if a function
is at a maximum or a minimum. The rules developed here are useful in finding a solution to
the unconstrained maximization problem. These rules also provide the basis for finding the
solution to the problem of constrained maximization or minimization. The constrained
maximization or minimization problem makes it possible to determine the combination of
inputs that is required to produce a given level of output for the least cost, or to maximize the
level of output for a given cost. The constrained maximization problem is presented in further
detail in Chapters 7 and 8.
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Notes

'~ A simple example can be used to illustrate that Young's theorem does indeed hold in
a specific case. Suppose that a production function

y = XiX,> Then

f, =2%x,%3
f; = 3x%x§
f,= 6x1x§
f,, = 6X,%;

A formal proof of Young's theorem in the general case can be found in most intermediate
calculus texts.

Problems and Exercises
1. Does the function y = XX, ever achieve a maximum? Explain.
2. Does the function y = X, — 2X, ever achieve a maximum? Explain.

3. Does the function y = X, + 0.1x,> = 0.05x,> + X, + 0.1x,> = 0.05X,” ever achieve a
maximum? If so, at what level of input use is output maximized.

4. Suppose that price of the output is $2. For the function given in Problem 3, what level of
input use will maximize the total value of the product?

5. Assume that the following conditions exist
f,=0
f,=0
Does a maximum, minimum, or saddle point exist in each case?
a.f, >0
ff, — f1f <0
b.f,, <0
fif, — iy, >0
c.f,;>0
fif, — iy, >0
d.f;,; <0
f,:f, — firf <O
6. Suppose that the price of the output is $3, the price of the input X, is $5, and the price of

input x, is $4. Is it possible to produce and achieve a profit? Explain. What are the necessary
and sufficient conditions for profit maximization?
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Maximization Subject to
Budget Constraints

This chapter presents the factor-factor model by relying primarily on simple algebra and
graphics. Here the concept of a constraint to the maximization process is introduced. Points
oftangency between the budget constraint and the isoquant are defined. Conditions along the
expansion path are outlined, and the least-cost combination of inputs is defined. Pseudo scale
lines are developed, and the global point of profit maximization is identified. The chapter
concludes with a summary of the fundamental marginal conditions for the factor-factor model.
The algebraic and graphical presentation forms the basis for a better understanding of the
mathematical presentation contained in Chapter 8.

Key terms and definitions:

Constraint

Budget Constraint
Iso-outlay Line

Isoquant Map

Points of Tangency

Isocline

Expansion Path

Least-Cost Combination
Equimarginal Return Principle
Input Bundle

Pseudo Scale Lines

Global Output Maximization
Global Profit Maximization
Marginal Conditions
Decision Rules
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7.1 Introduction

Chapter 6 dealt with basic relationships governing the maximization of output or profit
without regard for constraints or limitations on the maximization process. However, farmers
do not normally operate in an environment where maximization of profit can take place
without regard to constraints on the maximization process.

The consumer, seeking to purchase goods and services in such a manner as to maximize
utility, must invariably face constraints or limitations imposed by the availability of money
income. The consumer must operate within these constraints by choosing a mix of goods that
requires a total outlay not to exceed income. While the consumer might borrow money to
purchase goods and services, eventually loans need to be paid back. Ultimately, the bundle of
goods and services purchased by the consumer must be in line with the consumer's money
income.

The producer, too, faces constraints. The constraints or limitations imposed on the
producer fall into two categories: (1) internal constraints occurring as a result of limitations
in the amount of money available for the purchase of inputs, and (2) external constraints
imposed by the federal government or other institutions. An example of such a constraint
might be an acreage allotment within a government farm program.

This chapter is devoted to a discussion of how constraints internal to a farm firm might
limit the farmer's ability to achieve profit maximization. The models developed in this chapter
also provide a useful analytical tool for assessing the impact of certain external constraints
on the behavior of the farm manager. The application of these models to situations where
external constraints are imposed is developed fully in chapter 8.

7.2 The Budget Constraint

Suppose that a farmer again uses two inputs (X; and X,) to produce an output (y). The
farmer can no longer purchase as much of both inputs as is needed to maximize profits. The
farmer faces a budget constraint that limits the amount total expenditures on the two inputs
to some fixed number of dollars C°. The budget constraint faced by the farmer can be written
as

(7.1) C° = V,X, HV,X,
where V, and v, are prices on the inputs X, and X,, respectively.
Another way of writing equation (7.1) is
(7.2) Co=2vx fori=1,2
Now suppose that the farmer has $100 available for the purchase of the two inputs X,

and X,. Suppose also that X, costs $5.00 per unit and X, costs $3.00 per unit. Table 7.1
illustrates possible combinations of X, and X, that could be purchased with the $100.
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Table 7.1 Alternative Combinations of X, and X, Purchased with $100

Units of Units of Total Cost
Combination X, X, Ce
A 20.00 0.00 $100
B 15.00 8.33 $100
C 10.00 16.67 $100
D 8.00 20.00 $100
E 5.00 25.00 $100
F 0.00 33.33 $100

Table 7.1 illustrates but a few of the possible combinations of X, and X, that could be
purchased with a total budget outlay (C°) of exactly $100. If inputs are assumed to be
infinitely divisible, there are an infinite number of alternative combinations that could be
purchased for exactly $100. The assumption that inputs are infinitely divisible is nota bad one
for certain classes of inputs such as fertilizer or livestock feed. For example, 186.202 pounds
of fertilizer or 149.301 bushels of feed could be purchased. For other classes of inputs in
agriculture, the assumption is silly. No farmer would purchase 2.09 tractors or 1.57 bulls.
However, the basic model has as an underlying assumption that inputs are infinitely divisible.

Now suppose that the budget line or constraint indicated by the tabular datain Table 7.1
is plotted with input X, on the horizontal axis and X, on the vertical axis. It may seem
surprising that a budget line that has dollars as its units can be plotted on a diagram in which
the axes are physical quantities of inputs. However, the position of the budget constraint on
both the horizontal and vertical axis can be determined. First, suppose that the farmer chooses
to purchase with the $100 dollars all X, and no X,. The total amount of X, that would be
purchased is $100/$5.00 (C°/v,) or 20 units of X,. The budget constraint therefore intersects
the x, axis at 20 units.

Tabular data similar to that contained in Table 7.1 can be derived for any chosen budget
outlay. The terms iso-outlay or isocost have frequently been used by economists to refer to
the budget constraint or outlay line. The iso-outlay function can be thought of as a line of
constant or equal budget outlay.

Suppose instead that the farmer chose to allocate the $100 in such a way that no x, was
purchased and all of the $100 was used to purchase X,. The total amount of X, that could be
purchased is $100/$3.00 (C°/v,) or approximately 33.33 units of x,. The budget constraint
therefore intersects the vertical axis at 33.33 units of x,.

The final step is to determine the shape of the budget constraint between the points of
intersection with the axes. If input prices are constant, the budget constraint will have a
constant slope. A line with a constant slope might be drawn between the previously identified
points on the two axes to form a triangle. The height of this triangle is $100/$3.00 (33.33
units of X,). The length of the triangle is $100/$5.00 (20 units of x,). The slope of the triangle
is height divided by length, or
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(7.3) ($100/$3.00)+($100/$5.00)
= ($100/$3.00)($5.00/$100)
=$5.00/$3.00 = 1.67

In equation (7.3), the budget constraint has a constant slope of 5/3 or 1.67. Under the
assumption of fixed input prices, the budget constraint will always have a constant slope of
(C°Ay)(v,/C°) =V, /Vv,, sometimes called the inverse input price ratio. The term inverse is used
because the price for the input appearing on the horizontal axis appears on the top of the
fraction, the price for the input on the vertical axis at the bottom of the fraction.

By varying the total amount of the budget constraint or outlay (C°), a family of budget
constraints can be developed, each representing a slightly different total outlay. Like
isoquants, budget constraint lines are everywhere dense. That is, an infinite number of budget
constraint lines can be drawn, each with the constant slope v,/v,.

The characteristics of an iso-outlay line can be summarized by making use of the total
differential. The iso-outlay line is

Co=vX; T V,X,
The input prices are taken as fixed constants. The total differential of the iso-outlay line is
(7.4) dCe = v,dx, + v,dx,

The outlay (C°) along the iso-outlay line is assumed to be constant. Thus dC° = 0.
Therefore

(7.5) 0 = v,dX, + v,dx,
(7.6) -v,dx, = v,dx,
(7.7) dx,/dX, = —V,/\,,

The term dx,/dx, in equation (7.7) is the slope of the iso-outlay or budget constraint line in
factor-factor (X, on the horizontal axis, X, on the vertical axis) space. The slope of the budget
line is equal to the negative inverse ratio of input prices. The negative sign indicates that the
iso-outlay line is downward sloping when both input prices are positive.

7.3 The Budget Constraint and the Isoquant Map

A diagram showing a series of isoquants is sometimes referred to as an isoquant map.
The budget constraint or iso-outlay line developed in Section 7.2 is placed on a diagram with
input X, on the horizontal axis and X, on the vertical axis. This factor-factor space is the same
as that used to graph isoquants. Figure 7.1 illustrates an isoquant map superimposed on top
ofaseries of budget constraints. In each case, only selected isoquants and selected iso-outlay
lines are shown. An infinite number of either isoquants or iso-outlay lines could be drawn,
each representing a slightly different level of output or a slightly different total outlay.
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Figure 7.1 Iso-outlay Lines and an Isoquant Map

Eachisoquant has a corresponding iso-outlay line that comes just tangent to it. Moreover, for
each iso-outlay line there is a corresponding isoquant that comes just tangent to it.

Assuming that the isoquant is bowed inward or convex to the origin of the graph, the
point of tangency between the isoquant and the iso-outlay line represents the combination of
inputs that will the produce the greatest quantity of output for the expenditure represented by
the iso-outlay line. This is the maximum output given the budgeted dollars C° or subject to
the budget constraint.

Another approach is to think of the amount of output represented by a particular isoquant
as being fixed. Then the point of tangency between the isoquant and the iso-outlay line
represents the minimum-— cost, or least cost combination of input X, and X, that can be used
to produce the fixed level of output represented by the isoquant.

Either rationale leads to the same important conclusion. If the farmer faces a budget
constraint in the purchase of inputs X; and X,, and as a result is unable to globally maximize
profits, the next best alternative is to select a point of least-cost combination where the budget
constraint faced by the farmer comes just tangent to the corresponding isoquant.

Any line drawn tangent to an isoquant represents the slope or MRSxx, of the isoquant at
that point. As indicated earlier, the slope of the isoquant can be represented by dx,/dx,. But
the slope of the iso-outlay line was also found to be dx,/dx,, so the point of least cost
combination is defined as the point where the slope of the iso-outlay line equals the slope of
the corresponding isoquant. At the point of least-cost combination, both the isoquant and the
iso-outlay line will be downward sloping.

One definition of the slope of the isoquant is — MRSxx,. The slope of the iso-outlay line
is —V,/V,. Both the isoquant and the iso-outlay line are downward sloping, so the point of
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tangency between the isoquant and the iso-outlay line can be defined as

(7.8) dx,/dX; = =V, /v,
or
(7.9) dx,/dx, = dx,/dx, = v,/V,

At the point of least cost combination, the MRS of X, for X, (dx,/dx,) must equal the
inverse price ratio (V,/V,).

7.4 Isoclines and the Expansion Path

The term isocline is used to refer to any line that connects points of the same slope on
a series of isoquants. The ridge lines developed in Chapter 5 were examples of isoclines.
Ridge line I connected all points of zero slope on the series of isoquants. Ridge line 11
connected all points of infinite slope on the same series of isoquants. Each are examples of
isoclines because each connects points with the same slope.

As outlined in Section 7.3, the inverse ratio of input prices V,/V, is very important in
determining where within a series of isoquants a farm manager can operate. To produce a
given amount of output at minimum cost for inputs, or to produce the maximum amount of
output for a given level of expenditure on X, and X,, the farmer must equate MRSxx, with v,/v,.
However, if input prices are constant, a key assumption of the model of pure competition
outlined in Chapter 1, the slope of the iso-outlay line will be a constant v,/v,.

A line connecting all points of constant slope v,/v, on an isoquant map is a very
important isocline. This isocline has a special name, the expansion path (Figure 7.1). The
expansion path is a specialized isocline that connects all points onan isoquant map where the
slope of the isoquants is equal to the ratio v,/v,, where v, and v, refer to the prices on the
inputs.

The term expansion path is used because the line refers to the path on which the farmer
would expand or contract the size of the operation with respect to the purchases of X; and x,.
A farmer seeking to produce a given amount of output at minimum cost, or seeking to produce
maximum output for a given expenditure on X, and X,, would always use inputs X, and X, in
the combinations indicated along the expansion path. The exact point on the expansion path
where the farmer would operate would depend on the availability of dollars (C°) for the
purchase of inputs.

The points of tangency between the iso-outlay lines and the corresponding isoquant on
the expansion path thus represent the least cost combination of inputs that can be used to
produce the output level associated with the isoquant. There is no combination of X; and X,
that can produce that specific quantity of output at lower cost. If isoquants are convex to
the origin, or bowed inward, all points of tangency represent points of least-cost combination
for the output level associated with the particular tangent isoquant. While every point on the
expansion path is a point of least cost combination, there is only one point on the expansion
path that represents the global point of profit maximization for the farmer. This particular
point is derived in Section 7.7.

The expansion path begins at the origin of the graph (X, = 0, X, = 0) and travels across
isoquants until the global point of output maximization in reached where the MPP of both
X; and X, is zero. Points beyond the global point of output maximization, while having the
same constant slope v,/v,, would never be chosen by the entrepreneur. Note that at points
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beyond global output maximization, isoquants are no longer convex to the origin of the graph.
Points of tangency occur as a result of the isoquants curving upward from below, not
downward from above. These points of tangency represent the maximum expenditure for a
given level of output, not the desired minimum expenditure. So these points would never be
considered economic for the farmer.

Some widely used agricultural production functions generate expansion paths with a
constant slope. The class of production functions that generate linear expansion paths when
input prices are constant are referred to as homothetic production functions.

The equation for an expansion path can be derived through the use of the general
expansion path conditions

(7.10) MRSxy, = V,/V,
But
(7.11) MRSxx, = - MPPx/MPPx,

The equation for the expansion path can be obtained by solving the expression
MPPx/MPPx, =V,/v, for X, in terms of X,. For example, suppose that the production function
is
(7.12) y = ax,**x,%’

The corresponding MPP's are

(7.13) MPPy, = 0.5ax, *°x,

(7.14) MPPy, = 0.5ax,%%x, *3
The MRSxyx, is

(7.15) (0.58%,"%%,%%)/(0.5a%,"%, %)
(7.16) Xo/X, =V,

Thus, the equation for the expansion path is
(7.17) Xy = (V) X,

Since the ratio v,/v, is a constant b, the expansion path [equation (7.17)] in this example is
linear

(7.18) X, = bX,

7.5 General Expansion Path Conditions
In chapter 6 the general conditions for the maximization of profit were defined as

(7.19) VMPy /v, = VMPx /v, = 1
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There are two parts to the rule in equation (7.19). The first part requires that the ratio
of VMP to the corresponding input price be the same for both (all) inputs. The second part
requires that ratio to be equal to 1. The farmer should use inputs up to the point where the last
dollar spent on the input returns back a dollar, and most if not all prior units of input returns
more than a dollar.

What if the farmer faces a limitation or constraint on the availability of funds for the
purchase of inputs X; and X,? The farmer's next best alternative is to apply the equimarginal
return principle. The equimarginal return principle ensures that if the farmer is not at the
point of profit maximization, at least costs are being minimized for the level of output that can
be produced. Alternatively, maximum output is being produced for a given budget outlay.

The equimarginal return principle requires the farmer to operate using combinations of
inputs such that

(7.20) VMPy/V, = VMPx /v, = K

Equation (7.20) is only slightly different from the profit maximizing condition outlined
in equation (7.19). Instead of requiring that the ratio of the VMP to the corresponding input
The most important characteristic of pseudo scale lines is that the two lines intersect at the
global point of profit maximization. The intersection of the pseudo scale lines defines precisely
the point on the expansion path where profits are greatest. There is no other point more
profitable (Figure 7.4).
price to be equal to 1, now the ratio of VMP to the corresponding input price must be equal
to some constant number K, where K can be any number. The ratios of the VMP to the input
price must be the same for both inputs, and thus the ratio for both inputs must be equal to a
number K.

Another way of looking at the expansion path is that it represents the series of points
defined by equation (7.20). Any point on the expansion path has a different value for K
assigned to it. In general, as one moves outward along the expansion path, the value of K will
decline. Points along the expansion path can be identified according to the value of K.

Suppose, for example, that K= 3. The last dollar spent on the input returns $3. This is
apoint on the expansion path that represents a least cost combination of inputs (since the ratio
of VMPx/v, = VMPx/v, = 3). This is not a point of profit maximization. The farmer is
constrained by the availability of funds available for the purchase of inputs X, and x,.

Suppose that K=1. This is also a point of least-cost combination on the expansion path,
but this is the same as the previously defined point of profit maximization. The point of global
profit maximization is a special point along the expansion path where the value of K is equal
to 1, indicating that the last dollar spent on each input returns exactly a dollar of revenue.
This is probably a point on the expansion path farther out than the point where K =3, where
funds for the purchase of input were restricted.

Now suppose that K=0. This is also a point of least cost combination on the expansion
path, but VMP = pMPP where p is the price of the output. If p is positive, the only way that
K can be zero is for MPP to be zero. The last dollar spent on each input returns back
absolutely nothing in terms of revenue. The point where VMPx /v, =VMPx/v, =0 defines the
global point of output maximization where the two ridge lines intersect. There is no other point
where output is greater. This is a point that normally requires more of both X, and X, than the
global point of profit maximization.
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Whenever 0 < K < 1, the last dollar spent on each input is returning less than its
incremental cost. The section of the expansion path between the point of profit maximization
and the point of output maximization represents a section where the farmer would never wish
to operate. This is despite the fact that the isoquants in this section are curving downward
toward the budget or iso-outlay line. For example, a value for K of 0.3 suggests that the last
dollar spent on each input returns only 30 cents. The farmer would never wish to use an input
at levels beyond the point of profit maximization, despite the fact that funds can be available
for the purchase of additional units. Not only is stage III of the production function irrational,
but any point that uses more of X; and X, than the profit maximizing point in stage II is also
irrational.

Finally, suppose that K < 0. If input and output prices are positive, this suggests that
MPP must be negative. The use of both inputs must exceed the level required to globally
maximize output. The last dollar spent on an additional unit of input not only does not return
its cost in terms of VMP, but revenues are declining as a result of the incremental use of
inputs. A value for K of —0.2 suggests that the last dollar spent on the input results in a
reduction in revenue of 20 cents. The total loss from the last dollar spent on the input is $1.00
+$0.20=$1.20. This is clearly not economic and is stage I11I for the use of both inputs, since
MPP for both inputs is negative. Isoquants are tangent to the iso-outlay line, but are bowed
outward (concave to the origin), not inward (convex to the origin). The entrepreneur could
increase profit by a reduction in the use of both x, and x,.

7.6 The Production Function for the Bundle

Envision a bundle of the two inputs X; and X,. Suppose that the proportion of each input
contained in the bundle is defined by the expansion path. If the expansion path has a constant
slope, then as one moves up the expansion path, the proportion of X, and X, does not change.
Suppose that a point on the expansion path requires 2 units of X, and 1 unit of X,. If the
expansion path has a constant slope, the point requiring 6 units of X; would require 3 units of
X,. The point requiring 8.8 units of X, would require 4.4 units of X,, and so on. The size of the
bundle varies, but if the expansion path has a constant slope, the proportion of each input
contained in the bundle remains constant. In this example, that constant proportion is 2 units
of X, to 1 unit of X,.

Now suppose that a single input production function is drawn (Figure 7.2). The
difference here is that instead of showing input X, on the horizontal axis, the horizontal axis
is instead the bundle of X, and X,. Each unit of the bundle consists of 2 units of X, and 1 unit
of X,. The production function for the bundle looks very similar to the traditional three stage
single- input production function. This production function has a point of output maximization
where the MPP of the bundle of X, and X, is equal to zero. It also has a point of profit
maximization, where the VMP of the bundle is exactly equal to the price per unit of the
bundle, or the cost of 2 units of X, and 1 unit of X, taken together.

Now consider a series of isoquants in three dimensions [Figure 7.2(b)]. The inputs X,
and X, are on the horizontal plane. The third dimension is y or output. If one were to look
along the expansion path of production surface such as that depicted in figure 7.2, the shape
would correspond exactly to the shape of the production function for the bundle. The output
maximization point on the production function for the bundle would correspond exactly to the
global point of output maximization defined by the center of the series of concentric ring
isoquants.
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The point of global profit maximization, where the VMP for the bundle equals its cost,
would correspond to a point on an isoquant that is on the expansion path but below the point
of global output maximization. This is where the farmer would most like to be, in that the
point represents the greatest total profits of any possible point. The only reason that a farmer
would not operate here would be as the result of a limitation in the availability of dollars
needed to purchase such a globally optimal bundle of X, and X,, or some institutional
constraint, such as a government farm program, that would prohibit the use of the required
amount of one or both of the inputs.

7.7 Pseudo Scale Lines

Recall from Chapter 5 that two families of production functions underlie any series of
isoquants. A single-input production function can be obtained for one of the inputs by
assuming that the other input is held constant at some fixed level. By making alternative
assumptions about the level at which the second input is to be fixed, a series of production
functions for the first input can be derived. The family of production functions thus derived
each has a maximum. The maximum value for each production function for the first input (X,)
holding the second input (X,) constant corresponds to a point on ridge line I (where the slope
of the isoquant is zero). The maximum value for each production function for the second
input (X,) holding the first input (X,) constant corresponds to a point on ridge line II (where the
slope of the isoquant is infinite).

Now suppose that output has some positive price called p, and the prices for X, and X,
areV, and v, respectively. Each member of the two families of underlying production functions
will have a profit maximizing level of input use for one input, assuming that the second input
is fixed. This is not the global point of profit maximization, since only one input is allowed
to vary. For input X,, this is where pMPPx/v, = 1, assuming that X, is fixed at x§. For input
X,, this is where pMPPx/v, = 1, assuming that X, is fixed at X¥.

If input prices are positive, this profit maximizing level of input use for each member of
the family will require less X, or X, than did the output maximizing level of input use. Figure
7.3 illustrates the relationship for input x,, which is assumed to be on the horizontal axis. A
vertical line drawn from the profit maximizing level of input use to the line that represents the
assumed fixed level of the other input (X, on the vertical axis) defines also a point on an
isoquant. This point will be on an isoquant that lies below the isoquant that defines the ridge
line. This isoquant will intersect but not be tangent to the line representing the fixed level of
X,. This is because profit maximization results in less output than does yield maximization.

For input X, this point will lie to the left of the ridge line. The greater the price of X, (vy),
the farther to the left of the ridge line this point will lie, and the lower the profit maximizing
level of input X, and the resulting output from the use of X;. This procedure can be repeated
for each member in the family of the production functions for X,, by assuming alternative
values for the input X,, which is treated as fixed.

A similar approach can be used for the family of production functions for X,, assuming
that X, is held constant at alternative fixed levels. Here the points of profit maximization for
X, (holding X, constant at alternative levels) will occur below the ridge line for the second input
along the vertical line defined by the assumption with respect to the quantity of X, that is to
be used. Again the process can be repeated over and over for varying assumptions this time
with regard to the level at which X, is to be fixed.
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Figure 7.3 Deriving a Point on a Pseudo Scale Line

A line connecting all points of profit maximization for one input, assuming the other
input to be fixed at some constant level, is called a pseudo scale line. Just as there are two
ridge lines, so also are there two pseudo scale lines, one for each input. If input prices are
positive, pseudo scale lines will lie interior to the ridge lines. If inputs were free, the pseudo
scale lines would lie on top of the ridge lines, just as profits would be maximized by
maximizing output. The greater the input price, the farther will be the pseudo scale line for
that input from the ridge line for that input.
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The most important characteristic of pseudo scale lines is that the two lines intersect at
the global point of profit maximization. The intersection of the pseudo scale lines defines
precisely the point on the expansion path where profits are greatest. There is no other point
more profitable (Figure 7.4).

20 7 I
XD E Global Globa
] Profit Qutput
18 Max jmum Max \mum
| Sk—
4 0\ ‘ e
16 NS e < NV
i A (>
1 midge Line \“’04b
14 <
] o \goaly,
12 7
10
8 7
6
4
2
O ] T T T T T T T T T T
0 2 4 6 8 10 12 14 16 18 20

Figure 7.4 The Complete Factor-Factor Model

The global point of profit maximization, where profits are greatest when both inputs
can be varied, is at once a point on the expansion path, a point of least cost combination, and
a point where the pseudo scale lines intersect. There is no other point where these conditions
are met. Any other point on a pseudo scale line is no longer on the expansion path, and the
expansion path meets both pseudo scale lines only once.

Another way of looking at the concept of the pseudo scale line is in relation to the
equimarginal returns equations. The global point of profit maximization is defined by

(7.21) VMPx/V, = VMPx/V, = 1

This is the point where the pseudo scale lines intersect.
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Points on the pseudo scale line for input X, are defined by

(7.22) VMPx/V, = 1 VMPx/v, > 1
If
(7.23) VMPx/V, = 1 and VMPy/v, > 1

the farmer could increase profit by increasing the use of x,. This could be accomplished either
by increasing total outlay for X, until the global profit maximizing condition was met for both
inputs, or by a reduction in the use of X, until the expansion path condition that

(7.24) VMPx /v, = VMPx /Y, = K

is met. The closer K could be be brought to 1, the closer the farmer would be to maximum
global profit.

Points on the pseudo scale line for input X, are defined by
(7.25) VMPx/V, > 1 VMPx /v, = 1

IfVMPx /v, > 1, profits could be increased by increasing the use of X, such that the expansion
path condition is again met. Again, the closer K is brought to 1, the closer the farmer would
be to maximum profit.

7.8 Summary of Marginal Conditions and Concluding Comments

Table 7.2 summarizes the marginal conditions associated with the ridge lines, expansion
path, and pseudo scale lines. These marginal conditions comprise the decision rules for the
farmer in choosing the amount and combination of inputs to be used in a two input,
single-output, factor-factor setting.

Figure 7.5 summarizes this information. Notice that any point on the expansion path
is at once, a minimum and a maximum, that is, maximum output for a specific expenditure
level, or minimum expenditure for a specific output level. Although all points on the
expansion path represent optimal input combinations for a specific expenditure level, not all
points on the expansion path are equally preferred. In general, as the farmer expands the
operation along the expansion path, the will increase profitability only to the point on the
expansion path where the pseudo scale lines intersect, that is, to the global point of profit
maximization. Points of tangency between isocost lines and isoquants beyond the point of
profit maximization represent a reduction in profit, and are analogous to the input levels that
lie between profit maximization and output maximization in the single input case.

This chapter has developed graphically and algebraically the fundamental conditions for
the least cost combination of inputs with the factor-factor model. The expansion path along
which a farmer would expand or contract the scale of his operation was derived. All points
along the expansion path represent points of least cost combination for the farmer. Both the
global point of output maximization and the global point of profit maximization are on the
expansion path. All points on the expansion path are points of least cost combination of inputs
as long as isoquants are convex to the origin. However, there is but a single point of global
profit maximization for the farmer, as defined by the point where the pseudo scale lines
intersect the expansion path.
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Table 7.2 Marginal Conditions for Ridge Lines, the Expansion Path

and Pseudo Scale Lines

Condition

Comment

On the expansion path:
VMPx/V, = VMPx/v, = 0

VMPx/V, = VMPy/v, < 0

VMPx/V, = VMPx/V, =0 < ...
VMPx/V, = VMPy/v, = 1
VMPx/V, = VMPy/v, > 1

On the pseudo scale lines:

VMPx/V, = 1, VMPx/V, > 1

VMPx/V, > 1, VMPx/V, = 1

VMPx /v, =1, VMPx/v, = 1
On the ridge lines:
VMPx /v, =0, VMPx/v,=0

VMPx/V, =0, VMPx/V, # 0
VMPx/V, # 0, VMPx/V, =0

<1

Global output maximization

Stage III for both inputs;
the profit-maximizing farmer
would not operate here

Between profit and output
maximum; farmer would not
operate here.

Global profit maximization;
point of least-cost combination

Point of least-cost combination;

not global profit maximization

Point on pseudo scale line for
input X,; not global profit
maximization

Point on pseudo scale line for
input X,; not global profit
maximization

Global profit maximization and
on the expansion path

Global output maximization and
on the expansion path

On ridge line I for input X,

On ridge line II for input X,




Maximization Subject to Budget Constraints 133

Global Qutput Maximum

v e

(=)
250 \ Global Profit Maximum
167
Constrained
Qutput Maximum
83
( h)
O 2
20 g 2O
18 16
16 14
14 12
12 10
10 8
x2 8 6 X1
4 o 2
0 0

Figure 7.5 Constrained and Global Profit and Output Maxima
along the Expansion path

If the farmer were given a choice, he or she would prefer to operate on the expansion
path, for it is here that a given level of output can be produced at the lowest possible cost. A
point on the expansion path is sometimes referred to as a point of least- cost combination. If
the farmer were on the expansion path and a sufficient number of dollars were available for
the purchase of X; and x,, the farmer would prefer to be at the point of profit maximization
where the pseudo scale lines intersect.

The farmer would never chose a level of input use on the expansion path beyond the
point of profit maximization, for at any point on the expansion path beyond the point of profit
maximization, the last dollar spent on inputs returns less than a dollar. The condition is
analogous to using an input at a level beyond the point of profit maximization in the
single-input factor-product model. In both instances, the last dollar spent on the input (or
inputs) returns less than a dollar. Only if there is a limitation on the availability of dollars for
the purchase of the two inputs would the farmer chose to operate on the expansion path but
with an operation smaller than that needed to achieve global profit maximization.

Chapter 8 will develop the same set of decision rules for points of least-cost combination
and profit maximization. However, rather using primarily graphics and algebra as a vehicle
for presentation, Chapter 8 uses basic calculus and relies heavily on the maximization and
minimization principles presented in Chapter 6.
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Problems and Exercises

1. Consider the following table given in Problem 1, Chapter 5.

Combination Units of X, Units of X, MRSx x, MRSxx,

A 10 1
B 5 2
C 3 3
D 2 4
E 1.5 5

a. Suppose that the price of X, and X, is each a dollar. What combination of X, and x, would
be used to achieve the least-cost combination of inputs needed to produce 100 bushels of corn?

b. Suppose that the price of X, increased to $2. What combination of X, and x, would be used
to produce 100 bushels of corn?

c. If the farmer was capable of producing 100 bushels of corn when the price of X, and X,
were both $1, would he or she necessarily also be able to produce 100 bushels of corn when
the price of X, increases to $2? Explain.

2. Assume that a farmer has available $200. What is the slope of the isocost line when
a.v,=$1;v,=$2.00?
b.v,=$3;v,=$1.75?

3. Assume that the following conditions hold. What action should the farmer take in each
instance?

a. VMPx /v, = VMPxV, = 3

b. VMPu /v, = VMPx/V, = 5

c. VMPx /v, = VMPxV, = 1

d. VMPx/v, = VMPx/v, = 0.2

e. VMPx/V, = VMPx/V, = 0

£ VMPx/V, = VMPx/V, = —0.15
g. VMPxV, = 9; VMPx/V, = 5
h. VMPu /v, = —2; VMPxV, = 5
i. VMPx/V, = 2; VMPx/v, = 1

i. VMPx/v, = 1; VMPx/V, = 0
k. VMPu /v, = - 1; VMPu/v, = 1
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Further Topics in
Constrained Maximization
and Minimization

This chapter presents the factor-factor model with the use of the maximization and
minimization mathematics developed in Chapter 6. In many respects, this chapter is very
similar to Chapter 7. The same fundamental conclusions with respect to the correct allocation
of inputs are developed. However, the presentation here relies primarily on mathematics rather
than the graphical and algebraic presentation of Chapter 7. The basic similarity between this
chapter and Chapter 7 with regard to conclusions is reassuring. The use of mathematics as a
tool for presenting production theory does not mean that the marginal principles change.
Rather, the mathematics provides further insight as to why the rules developed in Section 7.8
work the way they do. The chapter provides some applications of the factor-factor model to
problems in designing a landlord tenant lease arrangement, and to a problem involving
maximization when the government imposes an acreage allotment.

Key terms and definitions:

Constrained Optimization
Classical Optimization Technique
Objective Function

Constraint

Joseph-Louis Lagrange
Lagrange's Function

Lagrangean Multiplier

Implicit (Imputed) Value

Shadow Price

Corner Solution

First-Order Conditions
Second-Order Conditions
Constrained Revenue Maximization
Constrained Output Maximization
Constrained Cost Minimization
Lease Arrangement

Acreage Allotment
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8.1 Simple Mathematics of Global Profit Maximization
Assume that a farmer is searching to operate at the global point of profit maximization.

The farmer would prefer to use the amounts and combination of inputs where total profits
(revenue less costs) are greatest. Diagrammatically, the farmer would like to operate at the
point on the expansion path where the pseudo scale lines intersect. Revenue from the sale of
an output (Y) such as corn can be defined as:
(8.1) R =py
where R =revenue from the sale of the corn

p = output price

y = quantity of corn produced
Suppose also that the production function for corn is

(8.2) y = f(X,, X,)

For the moment, assume that only two inputs are used in the production of corn, or that all
other inputs are taken as already owned by the entrepreneur.

Another way of writing the revenue function is

(8.3) R = pf(x,, X,),
since
(8.4) y = f(X,, X,).

Now suppose that each input can be purchased at the going market prices (v, for x;; v, for
X,), and the farmer can purchase as much or as little as desired. Therefore, the cost function
is

(8.5) C=vx, + V%,

The problem faced by a farmer interested in globally maximizing profits, or finding the point
where the pseudo scale lines intersect, could be expressed as a profit function:

86) II=R-C
) II=py - vx - VX,
8.8)  II=pf(x,,X,) = V;X; = VoX,
) OIL/ox, =pf, - v,=0
8.10) OIl/Ox,=pf, -~ v,=0
8.11) pf,lv,=pfiv,=1

The farmer interested in maximizing profit would equate the VMP (pf, or pf,) divided
by the price of the input. To maximize profits, this equality should be equal to 1.
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Figure 8.1 illustrates the gross revenue (TVP) and net revenue (Profit) surfaces. Notice
that the vertical axis is now measured in dollars rather than in units of output (y). The gross
revenue (TVP) maximizing point, where the ridge lines intersect, occurs input amount and
combination that maximized output. The maximum of the profit surface is, of course, lower
than the maximum pf the gross revenue surface, and occurs at the point where the pseudo
scale lines intersect, and requires less of both inputs than the gross revenue maximizing level.
Since profit can be negative, the frofit surface descends below the zero axes for X, and X,.

Revenue,
Profit Global Revenue Maximization
$
Global Profit Maximization
260
Ridge Line 2
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Total Revenue Surface — Profit Surface

Figure 8.1 TVP- and Profit-Maximizing Surfaces

Figure 8.2 illustrates the corresponding contour lines for the gross and net revenue
surfaces. The solid lines are not isoquants, but rather are isoquants converted to their revenue
equivalents by multiplying by the price of the output (y). Hence, they are, in reality, gross
isorevenue lines. Ridge lines for the gross isorevenue lines are located in the same position as
before The dotted lines are the contour lines for the profit, or net revenue surface. Now it is
possible to draw "ridge lines" for these isoprofit contours, at the points where the isoprofit
contours assume a zero, or infinite slope. These ridge lines for the isoprofit contours are, in
reality, the pseudo scale lines precisely located!
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8 10 12
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Figure 8.2 Isorevenue and Isoprofit Contours

8.2 Constrained Revenue Maximization

If the farmer is unable to globally maximize profits, the next best alternative is to find
a point of least-cost combination. The least-cost combination of inputs represents a point of
revenue maximization subject to the constraint imposed by the availability of dollars for the
purchase of inputs. The graphical presentation in Chapter 7 revealed that points of least- cost
combination were found on the expansion path. Here the same points of least-cost
combination are found with the aid of mathematics.

Any problem involving maximization or minimization subject to constraints can be
termed a constrained optimization problem. The constrained optimization problem consists
of two component parts (1) the objective function to be maximized or minimized, and (2) the
function representing the constraints on the objective function. Suppose that the objective
function faced by a farmer is to maximize revenue from the sale of corn. The objective
function to be maximized is

(8.12) R =py
or

(8.13) R = pf(x,, X,)
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The limitation or restriction in the availability of dollars for the purchase of inputs X, and X,
is represented by the expression

(8.14) CO = VX, + VX,

where C° is some fixed number of dollars that the farmer has available for the purchase of
inputs X; and X,.

The approach used here is sometimes referred to as the classical optimization technique.
This approach uses Lagrange's function to solve problems involving the maximization or
minimization of a function subject to constraints. Joseph-Louis Lagrange was a French
mathematician and astronomer who lived from 1736 to 1813. Lagrange's function consists
of'an objective function and a constraint. A new variable is also added. This variable is called
Lagrange's multiplier. A Greek letter such as A or [l is often used to represent Lagrange's
multiplier.

A general expression for Lagrange's function L is

(8.15) L = (objective function to be maximized or minimized)
+ A(constraint on the objective function)

The Lagrangean representing revenue from a farmer's production of corn (y) subject to the
constraint imposed by the availability of inputs (X, and X, ) used in the production of corn is

(8.16) L=py+ A(C°® — Vv,X; — V,X,)
or
(8.17) L = pf(X,, X,) + A(C° = V,X, — VyX,)

The necessary conditions for the maximization or minimization of the objective function
subject to the constraints are the first-order conditions. These conditions require that the first
derivatives of L with respect to X,, X,, and A be found and then be set equal to zero. Thus the
necessary conditions are

(8.18) OL/Ox, = pf, — Av, =0

(8.19) OL/Ox, = pf, — Av, =0

(8.20) OL/OA =C° - VX, — VX, =0
where

f, = dy/0x, = MPPx,, the marginal product of X,, holding X, constant
f, = dy/Ox, = MPPx,, the marginal product of X,, holding X, constant
pf, and pf, can be interpreted as the VMP of X, and Xx,, respectively
v, and Vv, are input prices or the marginal factor costs (MFC) for x, and X,
Equations (8.18)and (8.19) appear to be very similar to the profit-maximizing conditions
developed in Section 8.1, but the newly added Lagrangean multiplier now enters. The third

equation indicates that when the objective function has been maximized, all dollars available
for the purchase of X, and X, will have been spent. Lagrange's method requires that all dollars
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available for the purchase of the inputs be spent on the inputs. The farmer therefore does not
have the option of not spending some of the budgeted amount.

Equations (8.18) and (8.19) can be rearranged such that

(8.21) pfv, = A

and

(8.22) pf v, = A

Equations (8.18) and (8.19) might also be divided by each other such that
(8.23) pf,/pf, =Av,/Av,

or

(8.24) PMPPs/pMPPy, = Av,/Av,
or

(8.25) f./f, = v /v,

or

(8.26) MPPx/MPPx, = V,/V,

or

(8.27) dx,/dx, = v,/v,

Equations (8.23)-(8.27) precisely define a point of tangency between the isoquant and
the budget constraint. The first order conditions presented here represent a single point on the
expansion path. This point is the tangency between a specific isoquant and the iso-outlay line
associated with an expenditure on inputs of exactly C° dollars.

The Lagrangean multiplier A isa number, and equations (8.18) and (8.19) can also be
set equal to each other such that

(8.28) pf/v, = pfv, = A

The meaning of A suddenly becomes clear, for A is the constant K as developed in
Chapter 7. The term pf, is the VMP of input X,, or the value of output from the incremental
unit of X,. The term pf, is the VMP or value of output from the incremental unit of input X,.
The v, and v, represent costs of the incremental units of X, and X,. The Lagrangean multiplier
represents the ratio of the marginal value of the input in terms of its contribution to revenue
on the farm (VMP) relative to its marginal cost (MFC), when the inputs are allocated as
indicated by the conditions that exist along the expansion path.

In this example, the Lagrangean multiplier can be interpreted as the imputed or implicit
value of last dollar spent on the input. It represents the worth of the incremental dollar spent
on inputs to the firm if the inputs are allocated according to the expansion path conditions.

The Lagrangean multiplier can also be thought of as a shadow price. The cost of the last
dollar spent on an input is $1.00. The value of that dollar is the VMP of the dollar spent on
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the purchase of the input. The shadow price may or may not be the same as the price of the
input. IfVMPx, and v, are equal, then the last dollar spent returns precisely a dollar to the firm.
If this is also true for input X,, Lagrange's method yields exactly the same result as the
profit-maximization solution presented in Section 8.1.

As was also true for the value of K, a value for the Lagrangean multiplier of 1 defines
the point where the pseudo scale lines intersect. If this were to be the case, the farmer would
need to have precisely the correct total number of dollars (C°) available for the purchase of
X; and X, that would result in a Lagrangean multiplier of 1, since Lagranges method requires
that all dollars available for the purchase of the inputs be spent. A farmer would not
necessarily know how many total dollars would be needed.

Lagrange's method tells the farmer nothing about how much should be spent in total on
inputs. Lagrange's method merely assumes that some given fixed amount of funds in total are
available for the purchase of inputs. Lagrange's method then provides the decision rule with
respect to how the available funds should be allocated in the purchase of the two inputs.
Lagrange's method provides a formal derivation of the equimarginal return principle. The
decision rule developed with the aid of Lagrange's method states that the farmer should
allocate dollars available for the purchase of the two inputs such that the last dollar spent on
each input returns the same amount (A) for both inputs. This rule might also be represented
as

(8.29) VMPx/MFCx, = VMPx/MFCx, = A

where VMPx, and VMPy, are the values of the marginal product of X, and X,, and MFCx, and
MFCx, are the respective marginal factor costs. In a purely competitive environment, the
respective marginal factor costs are the input prices.

Another way of defining the Lagrangean multiplier in this example is that it is the change
in revenue associated with an additional dollar added to the budget outlay C. In other words,
A is dR/dC, where Ris revenue. The Lagrangean is the revenue function for values that satisfy
the cost constraint. Therefore dR/dC = dL/dC = A.

There is absolutely nothing built into Lagrange's method that ensures a A of 1, greater
that 1, or any other value. Lagranges method merely requires the ratios of VMP to MFC to
be the same for all inputs. This is equivalent to finding a point on the expansion path
associated with the budgeted outlay represented by the constraint.

Diagrammatically, if one input were cheap enough relative to the other input, it might
be possible to find a point of least cost combination uses only the cheaper input and requires
none of the more expensive input. (Isoquants would also have to intersect the axis for the
cheaper input if this were to be possible.) However, Lagrange's method rules out the
possibility of a corner solution in which production can take place in the absence of one of the
inputs.

The mathematical reason for this is that the derivatives are not defined on the axes.
Figure 8.3 illustrates the problem. If isoquants intersect the axes and if certain relative price
ratios between v, and v, prevail, it might be optimal to use none of the relatively high priced
input. The budget line depicting the corner solution may or may not be tangent to the isoquant,
and thus may or may not have a slope equal to the slope of the isoquant.
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Figure 8.3 A Corner Solution

The solution to Lagrange's method assumes that the budget constraint is tangent to the
isoquant and that both inputs must be used in strictly positive amounts. This assumption is
consistent with an underlying production function that is multiplicative (such as y = ax,*x,*?)
but not additive (such as y = ax, + bx,? +cx, + dx,?), since an additive function can produce
positive quantities of output even in the absence of one of the inputs.

8.3 Second Order Conditions

The first derivatives of the Lagrangean are the necessary but not sufficient conditions
needed in order to maximize revenue subject to a cost constraint. These conditions are

(8.30) pf, = Av, =0
(8.31) pf, — Av, =0
(8.32) Co—vx, —vX,=0

These first-order conditions define the points of tangency between the isoquant and the
budget constraint. However, it is possible on the basis of these conditions for revenue to be
minimum, not maximum. Consider a point of tangency between an isoquant and a budget
constraint that occurs at a level of input use beyond the point of global output maximization.
This point represents minimum, not maximum, revenue from the outlay represented by the
budget constraint. To ensure that that revenue is maximum, rather than minimum, the second
order conditions are needed. Equations (8.30), (8.31 ), and (8.32) are each differentiated with
respect to X,, X, and A. Define

(8.33) ofjox, = f;, i,j=1,2
Then
9(8.30)/0x, = pf;,
9(8.30)/0x, = pf,,
9(8.30)/0A = -v,
9(8.31)/0x, = pf,, = pf,, (by Young's theorem)
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Form the matrix

(8.34) pf,  pf, -V

The determinant of the matrix (8.34) is

(8.35) P PE0 + PFa(—Vo)(=V)) + pfa(—Vo)(— V)

= [(=V)PFa(=Vy) + (=V2)(~Vo)pfy, + pfiopfi,0)
(8.36) =2pf,v,v, = pfyuv, - pfy,v,2
(8.37) = p[2f,,V,V, = F,ov,% = 0,7

If the farmer is using only two inputs, equation (8.37] must be positive to ensure that
revenue has been maximized subject to the budget constraint. The first- and second-order
conditions when taken together are the necessary and sufficient conditions for the
maximization of revenue subject to the budget constraint. The first-order conditions position
the farmer on the expansion path. The second-order conditions assure a maximum rather than
a minimum or a saddle point.

Figure 8.4 illustrates the production surface for a production function that has had
vertical slices cut at varying levels of the budget constraint, consistent with a 1:1 input price
ratio. The line ABC is the function being maximized or minimized in the contrained
optimization problem. Note that in panel A of Figure 8.4, B is lower than A and C, indicating
a minimum and corresponding with an isoquant that is concave, rather than convex to the
origin. In panel B, point B is approximately at the same level as point A and C, indicating
that the isoquant has an approximately constant slope (neither maximum nor minimum). In
panels C and D point B clearly lies above points A and C, indicating a valid solution to the
constrained maximization problem. Mathematically, second order condsitions would indicate
a minimum at the input levels represented by panel A, a maximum for panels C and D. The
result for panel B would depend on whether numerically, point B was found to be slightly
graeter tha, the same as, or less than point A and B.

8.4 Interpretation of the Lagrangean Multiplier

The interpretation of the Lagrangean multiplier is much the same as the interpretation
ofthe value for K developed in Chapter 7. Economics rules out some potential points on the
expansion path. For example, suppose that the farmer were operating in a position where
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Figure 8.4 Constrained Maximization under Alternative Isoquant Convexity or
Concavity Conditions

(8.38) VMPx AV, = VMPx /v, = A = -2.8

Equation (8.38] is beyond the point of output maximization for both inputs, since A is
negative. This possibility is ruled out on the basis of the economic logic outlined in Chapter
7. Lagranges method will not find an optimal solution with a negative A, on the expansion
path, but beyond the point of output maximization.

As suggested in Chapter 7, if A were exactly zero, the farmer would be operating at
precisely the global point of output maximization with respect to both inputs. Unless both
inputs were free, a farmer interested in maximizing profits would never operate here either,
despite the fact that this solution is permitted by the mathematics of the Lagrangean method.
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As also was indicated in Chapter 7, a A of precisely 1 would coincide exactly with the
global point of profit maximization where the pseudo scale lines intersect on the expansion
path. For Lagrange's constrained optimization problem to lead to this solution, the farmer
would need a priori to have precisely the amount of dollars allocated for the purchase of X,
and X, that would correspond to the budget outlay line that cuts through this point, and this
would be highly unlikely.

If a farmer is interested in maximizing profits, he or she need only maximize the profit
function, or the difference between revenue and costs. The solution provides both the total
outlay that should be made for both X, and X, as well as indicating how these expenditures
should be allocated between the two inputs. The constrained revenue maximization problem
takes the total outlay to be spent on both inputs as fixed and given, and determines how this
outlay should be allocated between the two inputs.

Values for A between zero and 1 are points on the expansion path between the point
where the pseudo scale lines intersect (and profits are maximum) and the point where the ridge
lines intersect (and output is maximum). Except perhaps at very low levels of input use, A
exceeds one atany point on the expansion path inside the point of global profit maximization.
The Lagrangean multiplier represents the ratio of VMP to MFC for the input bundle as defined
by the proportions along the expansion path. This means that at any point on the expansion
path that requires less X, and X, than the profit-maximizing point, the contribution of each
input to revenue exceeds the cost. In general, the value of A declines as one moves outward
along the expansion path and as the budgeted outlay for the purchase of X, and X, is increased.
This is because X; and X, become less and less productive as more and more units are used

(Figure 7.2).
8.5 Constrained Output Maximization

The problem of finding the least cost combination of inputs can also be set up as a
problem with the objective of maximizing output (not revenue) subject to the same budget
constraint. The solution is very similar to the constrained revenue maximization problem, but

the interpretation of the Lagrangean multiplier differs.

Suppose that the objective is to maximize output y. Output is generated by the
production function

(8.39) y = f(X,, X,)

The constraint is again

(8.40) C° = VX, + VoX,.

The new Lagrangean is

(8.41) L = f(X,, X,) + 0(C° = V,X, — V,X,)

where 0 is the new Lagrangean multiplier. The corresponding first order conditions are
(8.42) f, - Ov,=0

(8.43) f, - Ov,=0

(8.44) Co—vX, —vX,=0
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By dividing equation (8.42) by equation (8.43), the familiar result that
(8.45) f./f, = MRSxx, = V,/V,

is obtained. Equation (8.45)is the same as for the revenue maximization problem. However,
by rearranging equations (8.42) and (8.43), we obtain

(8.46) fiv, =f,nv,=0
(8.47) MPPx/v, = MPPy/v, = 0

Maximization of output subject to the budget constraint requires that the MPP for both
inputs divided by the respective input prices be equal to 0, the Lagrangean multiplier. In this
case, O represents the physical quantity of output, not revenue, arising from the last dollar
spent on each input. The interpretation of a particular value for O is not as clear for the output
maximization problem as for the revenue maximization problem. For example, a O of 1
indicates that the last dollar spent on each input returns 1 physical unit of output.

For example, suppose the output is corn that sells for $4.00 per bushel. Then the last
dollar spent returns $4.00. To correctly interpret the Lagrangean multiplier, it is necessary to
know the price of the output. The optimal value for the Lagrangean multiplier O at the global
point of profit maximization is 1/p, where p is the price of the output. Or, more generally, O
from the constrained output maximization problem equals A/p from the constrained revenue
maximization problem.

The equation
(8.48) MPPx/v, = MPPy/v, = 0
can be multiplied by the price of the output, which results in
(8.49) PMPPx/V, = pMPPy/v, = p0
Clearly, pO = A from the constrained revenue-maximization problem.

The second-order conditions for the constrained output maximization problem are no
different from the second-order conditions for the constrained revenue-maximization problem,
since dividing by a positive output price will not change the required sign. The second-order
conditions for the revenue maximization problem (equation (8.37)) required that
(8.50) p[2f12V1V2 - f22V12 _f11V22] > O

The constrained output maximization problem requires that

(8.51) 2f12V1V2 - f22V12 _f11V22 > 0
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8.6 Cost-Minimization Subject to a Revenue Constraint

The problem of finding a point on the expansion path representing the least-cost
combination of inputs can also be constructed as a problem of minimizing cost subject to a
revenue constraint.

The objective function is to minimize cost
(8.52) © = VX, + VX,

subject to the constraint that revenue be some fixed amount R°
(8.53) °=py, or

(8.54) R° = pf(X,, X,)

The Lagrangean is

(8.55) L =V,X, + VyX, + L[R® — pf(X,, X,)]

The first order conditions are

(8.56) v, - upf,=0

(8.57) v, = upf, =0

(8.58) R° - pf(x,, X,) =0, or
(8.59) v, = upf,

(8.60) v, = upf,, or

(8.61) v,/pf, = v,/pf, = W, or
(8.62) V,/pMPPy, = V,/pMPPy, = i

Compared with the constrained revenue maximization problem, the first-order conditions
appear to be inverted. In this instance, the Lagrangean multiplier is the increase in cost
associated with the incremental unit of output. A value for the Lagrangean multiplier of 1
would again indicate the profit maximizing position, in that the last dollar of revenue cost the
farm firm exactly $1. Points of least cost combination inside the profit maximizing position
now imply a Lagrangean multiplier of less than 1,and a Lagrangean multiplier of greater than
1 implies that inputs have been used beyond the point of profit maximization but less than
output maximization. The Lagrangean multiplier approaches infinity as output maximization
is achieved, but assumes negative values of less than infinity beyond the point of output
maximization. Lagrange's method will not generate a solution calling for negative values of
the Lagrangean multiplier, and at precisely the point of output maximization, the Lagrangean
multiplier is undefined, since the MPP for both inputs is zero.

It is clear that |4 from the constrained cost-minimization problem is 1/A from the
constrained revenue-maximization problem. Moreover, A from the constrained revenue-
maximization problem is 1/l from the constrained cost-minimization problem. The
second-order conditions differ in that they must assure a minimum rather than a maximum.
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Again, each of the first-order conditions are differentiated with respect to X, X,, and W, and
a matrix is formed

(8.63) ~upf, —ppfi -pf,

~upf, —ppfy, —pf,

- pf, -pf, 0
The second order conditions require that
(8.64) wp*f ., + pphff,, - 2up*hff, <O
By substituting f, = v,/up and f, = v,/Up, the result is
(8.65) (P/R) (V2 + Vo2 = 2f,,v,v,) < 0, or
(8.66) (P/R)(2F vV, — fov 2 = ,v,%) >0

If i > 0 then the required signs on the second-order conditions are the same as those needed
for the constrained revenue-maximization problem.

8.7 An Application in the Design of a Lease

Heady proposed a model designed to determine a lease arrangement for a farm that
would be optimal both from the standpoint of both the landlord and the tenant. This section
is an adaptation of that model and illustrates an application of the factor-factor model in the
design of contractual arrangements between landlords and tenants. Landlords can elect to
charge a cash rent for the use of the land by the tenant, or they might elect a lease arrangement
in which returns and costs are shared by the tenant and the landlord.

8.7.1 Cash Rent

Consider first the case in which the landlord charges a fixed cash rent per acre to the
tenant. The landlord is no longer concerned with the success or failure of the tenant in growing
crops, except to the extent that a crop failure might jeopardize the tenant's ability to cover the
cash rent. The landlord has broader concerns of a longer-run nature than does the tenant,
relating to the tenant's interest in and ability to keeping up the productivity of the land through
activities such as maintenance of soil fertility.

Assume that the tenant is interested in a least-cost combination solution in factor-factor
space. If the cash rent were free, the tenant would be found on the expansion path. With the
imposition of a positive cash rent, the tenant would still be found on the expansion path.
However, in a constrained optimization framework, since the cash rent is paid, the availability
of dollars for the purchase of other variable inputs has declined. In other words, the value of
constraint (C° in the Lagrangean formulation of the factor-factor model) for the tenant has
declined. This means that less money will be available for the purchase of inputs such as
fertilizer that might be needed to maintain soil fertility.

The cash rent lease has the desirable feature of not altering the usual first-order
conditions for constrained revenue maximization in terms of the mix of inputs to be used in
the short-run or single-season planning horizon. Landlords must be concerned that the
availability of dollars for the purchase of inputs will be more restricted and the variable input
bundle X used on the farm will become smaller as the cash rent increases. Renters under a
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cash rent arrangement will probably underutilize inputs that have no immediate effecton
output, but which would affect output over a long planning horizon, such as soil conservation
measures designed to improve the long—run productivity of the soil. The implementation of
such measures by the tenant depends in large measure on the tenant's expectations with regard
to how many years the farm will be available for rent, as well as the specific obligations cited
in the lease agreement.

8.7.2 Shared Rental Arrangements
For purposes of exposition, the analysis is presented assuming that the farmer utilizes

only two inputs, but the same analysis could be applied to a case with more than two inputs.
In the absence of the shared rental arrangement, the profit function is

(8.67) II = pf(x,, x,) = v;x; = V,X,

The corresponding first order conditions require that
(8.68) pf, =v,

(8.69) pf, =V,

where p = price of the output

Xy, X, =Inputs
v, and v, = prices for X, and X, respectively

f, and f, = marginal products of X, and x,, respectively. First order conditions require
that the VMP's for each input be equal to the corresponding factor price.

Consider first a lease arrangement in which the landlord gets back a share of gross
revenues from the farm but pays none of the expenses. A shared rental arrangement might be
one in which the landlord gets one-fourth of the crop, with the tenant getting three-fourths.
Assume that both the landlord and tenant are interested in maximizing profits. The landlord's
profit function is
(8.70) I = 1/4 pf(x,, X,)

where f(X,, X,) =, the output of the crop, p is the price of y, and X, and x, are two inputs. The
landlord gets one-fourth of the revenue but pays no costs.

The tenant's profit function is
(8.71) IT = 3/4pf(x,,x,) = VX, = V,X,
where v, and v, are the prices on inputs X, and X,, respectively.
The landlord prefers that the inputs be used until the point where
(8.72) 1/4pf, =0
(8.73) 1/4pf, =0

where f, and f, are the marginal products of x, and X,, respectively.
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The landlord is interested in making the marginal product of X, and x, zero (or f, =f, =
0), or making the tenant maximize output or TPP on the farm, rather than profits. The
landlord's share under this arrangement is greatest if output is maximized. However, the point
is on the expansion path.

The tenant prefers that inputs be used until the point where

(8.74) 3/4pf, = v,

(8.75) 3/4pt, = v,

The usual first-order conditions for profit maximization are
(8.76) pf, =v,

(8.77) pf, =V,

The tenant acts as if the price for X, and x, were actually 4/3 of the market price. Under
this lease arrangement, the tenant would not only underutilize inputs relative to what the
landlord wanted, but would underutilize inputs relative to what should be used for global
profit maximization if there were not a landlord-tenant relationship. This point is also on the
expansion path.

Lease arrangements in which the landlord receives a share of the crop but pays none of
the cost can result in substantial conflict between the landlord and tenant with regard to the
proper quantities of each input to be used. Given these results, conflict between the landlord
and tenant with respect to the proper level of input use is not at all unexpected. A better
arrangement might be for the landlord and tenant to share in both the returns and the expenses.

Suppose that the landlord and the tenant agree to a lease arrangement in which the
landlord gets r percent of the revenue and pays S percent of the costs. Therefore, the tenant
gets 1 — r percent of the revenue and pays 1 — S percent of the costs. The values of r and s
are negotiated. The value of r may not be the same as s, but could be. The landlord's profit
equation is
(8.78) IL = rpf(X,, X,) = S(V;X; + VoX,)

The tenant's profit equation is
(8.79) I = (1 - rpf(X,,%) = (1 = S)(V,X, + V,X,)

The landlord's first-order conditions for profit maximization are

(8.80) rpf, = sv,
(8.81) rpf, = sv,, or
(8.82) pf, = (s/r)v,
(8.83) pf, = (S/T)V,
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The tenant's first-order conditions for profit maximization are

(8.84) (1 - npf,=(1 - s,
(8.85) (1 - r)pf,=(1 - S)Vv,, or
(8.86) pf, = [(1 - S)(1 - D,
(8.87) pf, = [(1 = S)(1 - D]V,

Both the landlord and tenant prefer to be on the expansion path, but conflict may exist
with regard to where each would like to be on the expansion path.

Suppose that r is greater than S. Then the ratio of S/r is smaller than 1. The landlord
would prefer that the tenant overutilize inputs relative to the global profit maximizing
condition. Similarly, if r is greater than s, then (1 — S)/(1 — r) is greater than 1. The tenant
will underutilize inputs relative to the profit maximizing solution.

If r is less then s, the ratio of s/r is greater than 1. The landlord would prefer that the
tenant use less of the inputs than would be the case for the global profit-maximizing solution.
From the tenant's perspective, (1 — S)/(1 — r) is smaller than 1, and the inputs appear to be
cheaper to the tenant than the market prices would indicate. The tenant will overutilize inputs
relative to the global profit maximizing solution.

Only ifr is equal to s and the landlord and tenant agree that costs and returns should be
shared in the same percentage, whatever that percentage might be, will the first order
conditions for the landlord and the tenant be the same as the global profit maximizing
conditions in the absence of the landlord-tenant relationship. If the landlord agrees to pay the
full cost of any particular input, the tenant will overutilize that input relative to the profit
maximizing solution. It the tenant agrees to pay the full cost of an input, the tenant will
underutilize that input. Tenants usually supply all the labor. Landlords often feel that tenants
do not work as hard as they would if they were on their own farm. If the tenant only receives
3/4 of the revenue, it is if the imputed wage for labor to the tenant is multiplied by 4/3.
Tenants will use less of the input labor as a result. The landlord is correct, but the tenant is
also behaving consistent with a profit maximizing objective.

8.8 An Application to an Acreage Allotment Problem

The factor-factor model can be used for analyzing the behavior of a farmer faced with
an acreage allotment imposed by the federal government. Consider a farmer who uses two
categories of inputs to produce a commodity such as wheat. The two categories of inputs are
land and a bundle of all other inputs. Figure 8.5 illustrates a series of isoquants for this
farmer, with the vertical axis represented by land and the horizontal axis represented by all
other inputs.

In the absence of any government program, the farmer is assumed to operate on a point
on the expansion path. Points on the expansion path are defined by

(8.88) VMP,V, = VMP,/Vy = A
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Figure 8.5 The Acreage Allotment Problem

where

VMP, = value of the marginal product of an additional acre of land in the production
of wheat

V. = rental price of the land per acre, or the opportunity cost per acre of the farmer's
funds tied up in the land

Vy = weighted price of the input bundle X

VMPy = value of the marginal product of the input bundle consisting of the remaining
inputs

The combination of individual inputs in the bundle is considered to be in the proportion
defined by the equation

(8.89) VMPx/V, = VMPx/v, = ... = VMPx v, = A

where terms are as previously defined, and A is a Lagrangean multiplier equal to a constant.
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If a wheat acreage allotment did not exist and the farmer were not constrained by the
availability of funds for the purchase or rental of land and other inputs, the farmer would find
the global point of profit maximization on the expansion path, and the value of the Lagrangean
multiplier for the farmer would be 1 in all cases for all inputs.

Now suppose that the farmer faced a restriction placed by the government on the
acreage of wheat that can be grown. A wheat acreage allotment is the same as a restriction on
the availability of land. Let the land acreage restriction be represented by the horizontal line
L* in Figure 8.2. If the farmer was initially producing fewer acres of wheat than is allowed
under the acreage restriction, the acreage allotment will have no impact on the farmer's input
allocation. For example, if the farmer was initially at point R, the acreage allotment would
have no impact.

Assume that the farmer initially was producing more wheat than the acreage restriction
allowed. In the face of such a restriction, the farmer must move back down the expansion path
to a point on the expansion path that lies on the constraint L*. Let point A in Figure 8.2
represent the initial production level. In the face of the acreage allotment, the farmer must
move back to point B. Both point A and point B are points of least cost combination, but
point B differs from point A in that at point B, the value for the Lagrangean multiplier is
larger. For example, point A might represent a point where

(8.90) VMP, V, = VMP,/V, =2
Point B might represent a point where
(8.91) VMP,V, = VMP/V, = 4

Despite the fact that point B is now consistent with all constraints and is also a point of
least-cost combination, the farmer will probably not wish to stay there. The farmer, having
previously achieved point A, clearly has more money available for the purchase of other
inputs than is being used at point B. Once reaching the land constraint L*, the farmer moves
off the expansion path to the right along the constraint. Movement to the right involves the
purchase of additional units of the input bundle X. How far the farmer can move to the right
depends on the availability of funds for the purchase of the input bundle X, but limits on the
movement can be determined.

At the ridge line for the input bundle X, the marginal product of the input bundle X is
zero. The farmer would clearly not want to move that far to the right, for units of the input
bundle surely cost something (Vx > 0). The point where the farmer will try to move is
represented by the intersection of the constraint L* and the pseudo scale line for the input
bundle X. Point C is the profit maximizing level of input use for the bundle X, and is on an
isoquant representing a larger output that was point B on the expansion path.

In the absence of a wheat acreage allotment, the farmer's only constraint is the
availability of dollars for the purchase of other inputs, and the farmer will find a point on the
expansion path where

(8.92) VMP, N, = VMP Ny = A

With the acreage allotment, the farmer will move back along the expansion path to a
point on the wheat allotment constraint. If the farmer moves back along the expansion path,
the ratio VMP, /V, will almost certainly be larger than before. However, the farmer will not
maintain this new ratio with respect to the bundle of other inputs. The farmer would increase
profitability to the farm by attempting to make the ratio VMPy/Vy as near to 1 as possible.
(The ratio VMPy/Vy is 1 at point C.) This entails using more of the inputs other than land per
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acre in order to achieve wheat production that exceeds the level that would have occurred at
the intersection of the expansion path and the land constraint.

Since the amount of land used is restricted by the acreage allotment, the land input is
treated as a fixed resource, and profit maximization for the bundle of variable inputs X is the
same as for the single factor solution outlined in Chapter 3. If the input bundle is divided into
its component inputs, and a limitation is placed on the amount of money available for the
purchase of inputs in X, the equimarginal return rule for each input in the bundle applies. In
other words, if the ratio of VMPy to V is 1, then the ratio of VMP to its price for every input
in the bundle should also be 1.

If money for the purchase of each X; in the bundle is constrained, the ratio of VMPx to
v; will be the same for all inputs but be some number larger than 1, and the farmer will be
found at a point between the pseudoscale line and the expansion path (between B and C) along
the line representing the acreage allotment constraint. The equimarginal return rule still
applies to units of each variable input in the bundle.

When a wheat acreage restriction is imposed, the total production of wheat normally
does not decline by the full amount calculated by subtracting the allotment from the acreage
without the restriction and multiplying by the yield per acre. In the face of an acreage
restriction, the least productive farmland goes out of production first, and farmers attempt to
improve yields on the remaining acres by using more fertilizer, better seed, and improved pest
management, represented in this model by the bundle of inputs X. The limited dollars available
for the purchase of these inputs is now spread over a smaller acreage, resulting in a higher
yield per acre. This model explained why the imposition of a wheat acreage allotment
improves wheat yields, and these improved yields are consistent with the goal of profit
maximization and the equimarginal return rule.

8.9 Concluding Comments

Despite the fact that the presentation of the factor-factor model in this chapter made use
of calculus, the conclusions that have been reached should be reassuringly familiar. The basic
equimarginal return rule still applies, which requires that the last dollar spent for each input
must produce the same amount in terms of revenue for the least cost combination of inputs.
Moreover, the last dollar spent on each input must return exactly $1 for profit maximization.
In addition, the factor-factor model can be applied to problems in agriculture such as the
design of lease arrangements and acreage allotment restrictions, if minor modifications to the
basic model are made.

The mathematical presentation contained in this chapter presents a formal proof of the
equimarginal return rules in the two factor setting. These rules can also be extended to a case
in which more than two factors are used. Of course, the diagrammatic presentation cannot be
used in instances where there are more than two inputs and a single output, for it is not
possible to draw in more than three dimensions. Here the mathematics must be used, and a
detailed presentation in the many factor case is given in Section 18.
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Problems and Exercises

1. Suppose that total revenue is maximized subject to the cost or budget constraint. Interpret
the following values for the Lagrangean multiplier.

0

Mo Qo o
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-2

2. Assume that profit or total value of the product minus total factor cost is maximized subject
to the budget or cost constraint. Interpret the following values for the Lagrangean multiplier.

0
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-2

3. Assume that the objective function is cost minimization subject to a total revenue
constraint. Interpret the following values for the Lagrangean multiplier.

4. Suppose that the objective function is cost minimization subject to a profit constraint.
Interpret the following values for the Lagrangean multiplier.
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5. Consumers are interested in maximizing utility subject to the constraint imposed by the
availability of money income. Show that

a. The Lagrangean multiplier in such a constrained optimization problem can be
interpreted as the marginal utility of money.

b. If the producer is interested in maximizing revenue subject to the constraint imposed
by the availability of dollars for the purchase of inputs X, and X,, what is the comparable
definition for the corresponding Lagrangean multiplier?
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6. Suppose that the production function is given by
y= X10'5X20‘3

a. Setup a Lagrangean optimization problem using this production function. Derive first
order conditions.

b. Suppose that the output, y, sells for $4.00 per unit and that X, and X, both sell for
$0.10 per unit? How much X, and x, would the farmer purchase in order to maximize profit?

Hint: Set up a profit function for the farmer and derive first- order conditions. You now have
two equations in two unknowns. Solve this the second equation for X, in terms of X;. Then
substitute X, in terms of X, into the first equation. Once you have found the value for x,, insert
it into the second equation and solve for x,. Part (b) of this problem will require a calculator
that can raise a number to a fractional power.

7. Is a cash rent lease always more desirable than a crop share lease? Explain.

8. Are both the landlord and tenant better off when they agree to share expenses and revenues
using the same percentages for both revenues and expenses (For example, a 0.6:0.4 split of
revenues and expenses between the landlord and the tenant)? Explain.

9. Under what conditions would an acreage allotment have no impact whatsoever on the
output of a commodity?

10. What possible impacts might an acreage allotment have on a farmer's demand for
fertilizer? Will the demand for fertilizer in total always decline as the result of an acreage
allotment?

11. Will a farmer be at a point of least cost combination (MRSxx, = v,/V,) when an acreage
allotment exists? Explain.

Reference
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Returns to Scale,
Homogeneous Functions,
and Euler's Theorem

This chapter examines the relationships that exist between the concept of size and the concept
of scale. The terms Size and scale have been widely misused in relation to adjustment
processes in the use of inputs by farmers. The linkages between scale economies and
diseconomies and the homogeneity of production functions are outlined. The cost function can
be derived from the production function for the bundle of inputs defined by the expansion path
conditions. The relationship between homogeneous production functions and Euler's theorem
is presented.

Key terms and definitions:

Economies of Size

Diseconomies of Size

Pecuniary Economies

Economies of Scale

Diseconomies of Scale

Homogeneous Production Function
Homogeneous of Degree n
Non-homogeneous Production Function
Returns-to-Scale Parameter

Function Coefficient

Production Function for the Input Bundle
Inverse Production Function

Cost Elasticity

Leonhard Euler

Euler's Theorem
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9.1 Economies and Diseconomies of Size

The term economies of size is used to describe a situation in which as the farm expands
output, the cost per unit of output decreases. There are anumber of reasons why costs per unit
of output might decrease as output levels increase.

The farm may be able to spread its fixed costs over a larger amount of output as the size
of the operation increases. It may be possible to do more field work with the same set of
machinery and equipment. A building designed for housing cattle might be used to house more
animals than before, lowering the depreciation costs per unit of livestock produced.

An expansion in output may reduce some variable costs. A farmer who previously relied
on bagged fertilizer may be able to justify the additional equipment needed to handle
anhydrous ammonia or nitrogen solutions if the size of the operation is expanded. While fixed
costs for machinery may increase slightly, these increases may be more than offset by a
reduction in the cost per unit of fertilizer.

The larger producer may be able to take advantage of pecuniary economies. As the size
of the operation increases, the farmer might pay less per unit of variable input because inputs
can be bought in larger quantities. Such pecuniary economies might be possible for inputs
such as seed, feeds, fertilizers, herbicides, and insecticides.

The term diseconomies of size is used to refer to increases in the per unit cost of
production arising from an increase in output. There exist two major reasons why
diseconomies of size might occur as the farm is expanded.

First, as output increases, the manager's skills must be spread over the larger farm. A
farmer who is successful in managing a 500 acre farm in which most of the labor is supplied
by the farm family may not be equally adept at managing a 2000 acre farm that includes five
salaried employees. The skills of the salaried employees will not necessarily be equivalent
to the skills of the farm manager. A firm with many employees may not necessarily be as
efficient as a firm with only one or two employees.

The farm may become so large that the assumptions of the purely competitive model are
no longer met. This could result in the large firm to a degree determining the price paid for
certain inputs or factors of production. The farm may no longer be able to sell all its output
at the going market price. Although this may seem unlikely for a commodity such as wheat,
it is quite possible for a commodity such as broilers.

The long run average cost curve represents a planning curve for the farmer as he or she
increases or decreases the size of the operation by expanding or contracting output over a long
period of time. Each of the short-run average cost curves represent possible changes in output
that could occur within a much shorter period of time. The possible changes in output
associated with each short-run average cost curve are a result of varying some, but not all, of
the inputs. Thus the respective short-run average cost curves each represent possible levels
of output during a period long enough so that some inputs can be varied, but short enough so
that all inputs cannot be varied.

The term economies of size is also used to refer to something other than economies
associated with an increase in the physical quantity of output that is produced. The U.S.
Bureau of the Census categorizes farms by size according to the value, not quantity, of output
that is produced. Their measure of size makes possible comparisons between farms that
produce widely varying products as well as makes possible measurement of the size of a farm
that produces many different products.



Returns to Scale, Homogeneous Functions, and Euler's Theorem 159

The census definition is based on total revenue from the sale of agricultural products
(py), not output (y). It is not the economist's definition of size, for an increase in the price of
a particular agricultural commodity will cause the size of the farm producing the commodity
to increase. Inflation that results in a general increase in the prices for all agricultural
commodities will cause this measure of farm size to increase, despite the fact that the physical
quantity of output may not have increased.

The term economies of size is sometimes used in conjunction with economies associated
with an increase in one or more (but not all) major input categories, either inputs normally
thought of as fixed or inputs normally thought of as variable. A common measure is the
acreage of land in the farm, an input that might change only over the long run. A commercial
grain producer may think of increasing the size of the operation by expanding the amount of
the planted acres. But a broiler operation may increase in size not by acquiring additional
land, but by adding a building and additional chickens.

So the definition of farm size is a troublesome one. Because there exist many possible
interpretations of the term "size" in relation to economies or diseconomies, great care should
be taken in the use of the term. An additional explanation is usually warranted with respect
to exactly which measure or interpretation should be made of the term size.

9.2 Economies and Diseconomies of Scale

The term scale of farm is a good deal more restrictive than the term size of farm. There
is widespread agreement as to the meaning of the term scale. If the scale of a farm is to
increase, then each input must also increase proportionately. Included are inputs commonly
thought of as fixed, as well as variable inputs.

The term economy or diseconomy of scale refers to what happens when all input
categories are increased proportionately. Assume that all input categories are doubled. If
output doubles, neither economies or diseconomies of scale are said to exist. If output more
than doubles, economies of scale exist. If output does not double, diseconomies of scale
exist.

For economies or diseconomies of size to take place, all that is required is that the output
level change. All inputs need not change proportionately. However, if economies or
diseconomies of scale are to take place, not only must output change but each of the inputs
must change in the same proportion to the others. For example, the term economies or
diseconomies of scale could be used to describe what happens to per unit costs of production
when all inputs are doubled, tripled, quadrupled, or halved. The term economies or
diseconomies of size could be used to describe what happens to per unit costs of production
when output is doubled, tripled, quadrupled, or halved but input levels do not necessarily
increase in the same proportionate amounts.

The term scale is also closely intertwined with the length of time involved. One
interpretation of the envelope long run average cost curve developed in Chapter 4 (Figure 4.1)
is that itrepresents the possible per unit costs associated with each possible scale of operation.
It is very difficult to increase or decrease the quantity of all inputs proportionately within a
short period. It might be a simple matter for a farmer to increase proportionately the use of
inputs normally thought of as variable within a production season. These inputs include feed,
fertilizer, chemicals, and the like.

As indicated, the term scale implies a proportionate increase in all inputs, not just those
treated as variable over a production season, and in agriculture inputs include categories such
as land, tractors, and other farm machinery. Moreover, many of these inputs can be increased
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or decreased only in discrete amounts. For example, a farmer might readily increase the use
of fertilizer by 57 percent, but not increase the use of tractors by the exact same 57 percent.
A change in the scale of an operation thus represents an economic concept seldom achieved
in the real world.

A farmuses land, labor, capital and management as inputs to the production process. If
the scale of the farm is to increase by a factor of 2, each input category must also increase by
a factor of 2. It is very difficult for a farmer to truly expand the scale of the operation. If a
farmer has 100 acres, 1 worker-year of labor, and one tractor, then to expand the scale of the
operation by a factor of 2 would require that the farmer purchase an additional 100 acres, an
additional tractor, and hire another laborer with exactly the same skills. The correct definition
of scale would imply that the level of management should also double.

The term scale can be misused. The most common misuse is with reference to an
increase in one or more of the input categories (such as land) without a corresponding increase
in all other input categories. This violates the economist's definition of the term scale.

If production of a commodity takes place with only two inputs, movement along a line
of constant slope out of the origin of a graph of a factor-factor model represents a
proportionate change in the use of both inputs (Figure 9.1). In Figure 9.1, each successive
isoquant represents a doubling of output. Diagram A illustrates a case in which output was
doubled with less than a doubling of inputs, so economies of scale exist. Diagram B illustrates
a case in which the doubling of output required more than a doubling of input, so
diseconomies of scale exist. Diagram C illustrates a case where the doubling of output
required that the size of the input bundle also be doubled, so constant returns to scale exist.

OA > AB > BC » CD 1 OA < AB ¢« BC < CD 1

OA = AB = BC = GD 1

Figure 9.1 Economies, Diseconomies, and Constant Returns to Scale
for a Production Function with Two Inputs
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However, production within an agricultural setting normally takes place with many more
than two inputs. Each of the inputs in the production process may differ with respect to
whether or not the amount that is used can be changed within a specific period. Thus an
illustration such as Figure 9.1 as a representation of scale economies or diseconomies can be
highly misleading, in that the production process is oversimplified and the all-important time
element required for the adjustment process is ignored.

Economies and diseconomies of scale have long fascinated economists. Despite the fact
that it is possible for diseconomies of scale to occur, empirical studies conducted for various
agricultural enterprises have revealed very little hard evidence supporting the existence of
significant diseconomies of scale within agriculture. Rather, the per unit costs of production
usually form an L—shaped curve. However, it is very difficult to verify as that true change
in scale has taken place as the output of each farm increases or decreases.

9.3 Homogeneous Production Functions

The terms economy or diseconomy of scale can be confusing to interpret. Some
economists define the terms with reference to a particular class of production functions,
known as homogeneous production functions.

Homogeneous production functions consist of a broad array of functions with a special
characteristic. A production function is said to be homogeneous of degree n if when each
input is multiplied by some number t, output increases by the factor t". Assuming that the time
period is sufficiently long such that all inputs can be treated as variables and are included in
the production function, n, the degree of homogeneity refers to the returns to scale.
Homogeneous production functions are frequently used by agricultural economists to
represent a variety of transformations between agricultural inputs and products.

A function homogeneous of degree 1 is said to have constant returns to scale, or neither
economies or diseconomies of scale. A function homogeneous of a degree greater than 1 is
said to have increasing returns to scale or economies of scale. A function homogeneous of
degree less than 1 is said to have diminishing returns to scale or diseconomies of scale.

While there are many different production functions, only certain kinds of production
functions are homogeneous. In general, they are multiplicative rather than additive although
a few exceptions exist.

The production function
(9.1) y = AX, 5%,
is homogeneous of degree 1. Multiply X, and X, by t to get
(9.2) A(tX,)°3(tX,)% = tAX,*X,*°
= tly

Thus, the function in equation (9.1) exhibits constant returns to scale without any
economies or diseconomies.

The production function

(9.3) y = Ax,%x,#
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is homogeneous of degree 1.3. Multiply X, and X, by t to get
(9.4) AX)°5(1X,)°8 = t3AX, 5%,

=ty
Thus increasing returns to scale and economies of scale exist.
The production function
9.5) y = AX,*x,%?

is homogeneous of degree 0.8. Multiply X, and X, by t to get

(9' 6) A(tXl)O'S(tX2)0‘3 =108 AX10'5X20‘3
— t048y

Thus decreasing returns to scale and diseconomies of scale exist. For multiplicative functions
of the general form

9.7) y = Ax, %P

the degree of homogeneity can be determined by summing the parameters & and f3.
An example of a function that is not homogeneous is

9.8) y = ax, +bx, +cx, + dx,?

Each input can be increased by the factor t, but it is not possible to factor t out of the
equation. As the use of X, and X, increases proportionately along the expansion path, a
function such as this may exhibit points of increasing, constant, and diminishing returns to
scale.

Homogeneous production functions possess a unique characteristic. A line of constant
slope drawn in factor-factor space will represent a proportionate change in the use of the
inputs represented on the axes. For homogeneous functions, any line of constant slope drawn
from the origin will connect all points on the isoquant map with equal slopes. In other words,
any isocline has a constant slope for a homogeneous function.

Since an expansion path is a specific isocline with a slope —V,/v,, any homogeneous
function will have an expansion path with a constant slope. (This characteristic is also true
of a broader class of production functions, called homothetic production functions, which
include homogeneous production functions as a special case.) For ahomogeneous production
function and fixed factor prices, movement along an expansion path, or, for that matter,
movement along any isocline represents a proportionate change in the use of the inputs. For
homogeneous production functions, if all inputs are included, movement along any isocline
represents a change in the scale of an operation.

9.4 Returns to Scale and Individual Production Elasticities

Assume that only a single input is required to produce an output. The production process
is described by the function
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9.9) y = Ax,?

In this example, the elasticity of production is equal to the percentage change in output divided
by the percentage change in the input. The elasticity of production is also equal to
MPPy /APPx,, and the elasticity of production is equal to [3.

The production function described by equation (9.9)is homogeneous of degree [3. The
returns to scale in this case are determined by the value of [3, the returns-to-scale parameter.
Ifthere is only one input to the production process, diminishing returns to scale is equivalent
to diminishing returns to the variable input. Constant returns to scale is equivalent to constant
returns to the variable input. Increasing returns to scale is equivalent to increasing returns to
the variable input.

Now assume that the production function contains two inputs, X, and X,. The production
function is

(9.10) y = Ax,P x,P:
(9.11) MPP,, = B,Ax, P! x,P:
(9.12) APPy, = Ax, P! x,P:
9.13) MPPy, = B,Ax, P x,P:!
(9.14) APPy, = Ax,P x,B:!
9.15) MPP./APPy, = €, = B,
(9.16) MPPx/APPx, = €, = 3,

The returns to scale parameter, sometimes called the function coefficient is

(9.17) E=€, +¢€,

= Bl + Bz
= MPPx/APPx, + MPPx,/APPx,

If the production function is homogeneous of degree n, and all inputs are represented in
the production function, then the parameter representing the returns to scale is the degree of
homogeneity. For a multiplicative power production function with g inputs, the degree of
homogeneity and the returns to scale is determined by summing the g respective [ coefficients
which are the elasticities of production for the individual inputs.

Ifthe production function is not homogeneous, the returns to scale can still be determined
by summing the respective ratios of marginal to average product (MPP/APP). These ratios
will not be constants but rather will be a function of the quantities of inputs that are being
used. An assumption will need to be made with regard to the scale of the firm (the quantities
of each individual input) before the returns to scale parameter can be determined.

Consider the production function for the input bundle developed in Chapter 7. Assuming
that the underlying production function has a linear expansion path, and there are but two
inputs to the production process, the function coefficient or the returns to scale parameter is
the ratio of MPP to APP for the bundle.



164 Agricultural Production Economics

The returns-to-scale parameter may be constant for all possible sizes of the input bundle,
or it may vary. A production function homogeneous of degree n will yield a returns-to-scale
parameter of a constant value n. This suggests that the ratio of MPP to APP for the bundle
isalso equal to n. The degree of homogeneity n is the sum of the production elasticities for the
individual inputs. If the returns-to-scale parameter varies as all inputs are increased
proportionately, the production function cannot be homogeneous.

9.5 Duality of Production and Cost for the Input Bundle

If all input prices are fixed, and therefore there are no pecuniary economies or
diseconomies, the returns to scale parameter indicates what is happening to average cost as
all inputs are increased proportionately. To see this, assume that the production function for
the input bundle (X) defined by a linear expansion path characteristic of a homogeneous
production function is

(9.18) y = f(X)

where X =w, X; + W, X,. The weights w, and w, are the proportions of X, and X, contained in

the input bundle. For example, if each unit of the bundle consists of 2 units of X; and 1 unit

of X,, then w, is 2, and w, is 1. The cost of 1 unit of the input bundle is

(9.19) VW, VoW, =V

The inverse production function is

(9.20) X =f(y)

where f! is obtained by solving the original production for the input in terms of the output.
The total cost function that is dual to the production function for the input bundle is

obtained by multiplying the inverse production function by V, the price of 1 unit of the bundle.
Therefore

(9.21) VX =V (y)
(9.22) TC = Vf \(y)

(9.23) AC = Vf \(y)ly
(9.24) MC = Vd[f'(y)}/dy

Notice that if the price of the input bundle V is known, all the information needed to derive the
dual total cost function can be obtained from the corresponding production function for the
bundle.

The production function for the input bundle is unique in that each and every point on
it represents a point of least-cost combination of inputs for a given outlay. In this sense, the
entire production function for the bundle represents the series of solutions to an infinite
number of optimization problems that lie on the expansion path; and the dual total cost
function represents a series of minimum-— cost points for a given total output or product y.

A numerical example can be used to further illustrate the point. Assume that the
production function is
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(9.25) y = X,%%,¢
(9.26) dy/dx, = 0.3x,”*"x,*
(9.27) dy/dx, = 0.6x,x, %

The MRS of x, for X, is —MPPx/MPPx, or
(9.28) =(0.3%,77%,%9)/(0.6X,°%,” ) = = (1/2)(X,/X,)

Assume that the price of X, (v,) is $1, and the price of X, (v,) is $3. Then the slope of the
budget constraint, or iso-outlay line is — 1/3.

Now equate the MRSxx, with the inverse price ratio V,/v,, and multiply both sides of the
equation by — 1. The result is

(9.29) (1/2)(%,/%,) = 1/3

Equation (9.29) provides information with respect to the slope of the expansion path as
well as the relative proportion of X, and X, contained in the bundle of inputs as defined by the
expansion path. Solving equation (9.29) for X, results in

(9.30) X, = [(2/3)X,]

The slope of the isocline representing the expansion path is a constant 2/3. One unit of
the bundle of inputs consists of 1 unit of X, and 2/3 unit of X,. The cost of 1 unit of this bundle
is $1(1) + $3(2/3) = $3.

The production function that was used in this example was homogeneous of degree 0.9.
The individual production elasticities when summed resulted in a returns-to-scale parameter
or function coefficient of 0.9. The production function for the bundle can be written as

(9.31) y =X

This production function can be inverted or solved for the bundle in terms of y to obtain
the dual cost curve expressed in physical terms

(9.32) X =y
(9.33) X = y'oo
(9.34) X =y

The inverse production function equation (9.34) can be multiplied by the price of the
input bundle V, which was determined to be $3. The result is the dual total cost function
expressed in terms of dollars and units of y

(9.35) $3 - X = $3y' !
(9.36) TC = $3y'!

(9.37) AC = [$3y"1]/y = $3y°!
9.38) MC = (1.11)$3y""!
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The returns-to-scale parameter, or function coefficient of 0 .9 indicated diseconomies
of scale. If this were the case, AC should be increasing. Therefore the slope of AC should be
increasing, and dAC/dy should be positive. In this example

(9.39) dAC/dy = (0.11)($3)y >* > 0 (since Y is greater than 0)
Therefore, AC is increasing.

The slope of MC is dMC/dy

(9.40) dMC/dy = (0.11)(1.11)$3y ¥ >0

Therefore, MC is increasing and TC must be increasing at an increasing rate. MC is 1.11 or
1/.9 times AC.

The cost elasticity ({r) can be defined as the percentage change in total cost divided by
the percentage change in output. Ifthis elasticity is greater than 1, diseconomies of scale exist.
An elasticity equal to 1 suggests neither economies nor diseconomies of scale, and a cost
elasticity of less than 1 indicates that economies of scale exist. The cost elasticity is easily
calculated, for it is the ratio of MC to AC:

(9.41) J = MC/AC

Note that for homogeneous production functions and constant input prices (no pecuniary
economies), the cost elasticity is the inverse of the function coefficient, or the inverse of the
returns-to-scale parameter (1/E). Thus the cost elasticity for the dual cost function is one over
the function coefficient of the production function for the bundle. For a homogeneous
production function, the information required to obtain the cost elasticity for the dual cost
function is available from the production function for the bundle. Furthermore, if the cost
elasticity is known, the function coefficient that applies to the bundle can be readily
calculated, assuming that the production function is homogeneous. Table 9.1 summarizes
these relationships for several homogeneous production functions.

Table 9.1 Relationships between the Function Coefficient,
the Dual Cost Elasticity, and Returns to Scale

Degree of Function Cost

Homogeneity Coefficient Elasticity Input Returns to

n E ) Prices Scale
0.0 0.0 Infinite Constant 279
0.1 0.1 10.0 Constant Diseconomies
0.5 0.5 2.0 Constant Diseconomies
1.0 1.0 1.0 Constant Constant
2.0 2.0 0.5 Constant Economies

10.0 10.0 0.1 Constant Economies
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9.6 Euler's Theorem

Leonhard Euler (pronounced "oiler") was a Swiss mathematician who lived from 1707
to 1783. Euler's theorem is a mathematical relationship that applies to any homogeneous
function. It has implications for agricultural economists who make use of homogeneous
production functions. Euler's theorem states that if a function is homogeneous of degree n, the
following relationship holds

(9.42) (Y/O%,)X, + (Oy/OX,)X, = Ny

where n is the degree of homogeneity. If the function is a production function, then
(9.43) MPPxx, + MPPxX, = ny

or

(9.44) MPPxx, + MPPxX, = Ey

where E is the returns-to-scale parameter or function coefficient.

The equation can be multiplied by the price of the output p, with the result
(9.45) PMPPxX, + pPMPPxX, = npy
Since total revenue (TR) is py, and pMPP is VMP, equation (9.45) can be rewritten as
(9.46) VMPxX, + VMPxx, = nTR

Euler was a mathematician and not an economist. Euler's theorem is a mathematical
relationship that applies to all homogeneous functions, whether or not they represent
production relationships. Euler's theorem has sometimes been interpreted as a rule to follow
not only with respect to how the individual farm or nonfarm manager should reward factors
of production, but also a rule to be followed with regard to how labor and capital should be
rewarded within a society.

The VMP of a factor of production represents the return from the use of the incremental
unit of the factor. First consider the case in which the production function is homogeneous of
degree 1, or constant returns to scale exist for the firm. Assume that the only two inputs used
on the farm are labor and capital. Following Euler's theorem, the wage rate for each unit of
labor on the farm would be equal to its VMP.

Assuming that the farmer owned the capital, the return to each unit of owned capital
would be the VMP of the last unit multiplied by the quantity that is used. Laborers would
receive a wage rate equal to their VMP. There seems something "correct" and "decent" about
the notion that laborers "ought" to receive a wage payment equal to their VMP or contribution
to revenues to the firm. Moreover, such payments would just exhaust the total revenue
produced by the firm, such that there would be no pure or economic profit that would suggest
an exploitation of labor on the part of the manager.

Now consider a similar case in which a society pays a wage rate to each laborer
according to the respective VMP. Some have argued that such a society would be very good
indeed in that labor would receive its just reward and therefore not be exploited.

Consider a case in which the farmer has a production function homogeneous of'a degree
greater than 1. This would be considered to be a very desirable and productive production
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function in that a doubling of all inputs would result in a greater than doubling of output. If
the degree of homogeneity of the function were 3, then if each factor of production were paid
according to its VMP, total revenue would be more than exhausted (three times to be exact).
The farmer would not have sufficient revenue to do this because the VMPs paid to each input
or factor would be so very large. The society faced with a very desirable production function
would be in the same predicament if it followed this rule.

A final case is a relatively unproductive production function with a degree of
homogeneity ofless than 1. If the degree of homogeneity were 0.5, then paying each factor of
production according to its VMP would exhaust only half the revenue that was produced. The
rest would remain as a pure or economic profit. Society, too, would exhaust only half the
revenue produced in a case such as this.

Euler's theorem might have applicability only in an instance where the underlying
production function was known to be homogeneous of degree 1. Even if this were the case,
there is no built in assurance that a society would be better off, that there would be less
poverty among laborers, or that the distribution of incomes would be more equal in the society
that followed the rule than in a society that did not.

The people who contributed very little to society in terms of VMP would be in poverty.
The star professional basketball player, TV newscaster, or talk show host, despite a salary
in the millions of dollars, can be underpaid relative to the contribution to revenue to the firm.
Ifeach laborer in a society truly earned its VMP, income distribution might be less equal than
in a society that did not follow this rule.

Euler's theorem should be regarded as a mathematical relationship that holds for
homogeneous functions. It should not be interpreted as a simple rule that, if followed, would
make laborers, or perhaps even an entire society, better off.

9.7 Concluding Comments

The term economy (diseconomy) of size and the term economy (diseconomy) of scale
are not the same thing. An economy of size occurs if, by increasing output, the per unit costs
of production are lowered. Conversely, a diseconomy of size occurs if per unit costs of
production increase as output increases.

The terms economy and diseconomy of scale refer to what happens to output when all
input are increased or decreased proportionately, including those normally regarded as fixed
in the short run. If output increases in exact proportion to the increase in the scale of the
operation, neither economies nor diseconomies of scale are said to exist. If output increases
by a greater proportion than the proportionate increase in the scale of the operation,
economies of scale exist. If output increases by a smaller proportion than the proportionate
increase in the scale, diseconomies of scale are said to exist. Scale economies and
diseconomies are inherently a long—run phenomena, in that all inputs must be allowed to vary.

If all inputs are included in the production function and the underlying production
function is homogeneous, the degree of homogeneity indicates the scale economies or
diseconomies. The degree of homogeneity can also be referred to as the function coefficient.
It represents the percentage change in output divided by the percentage change in all inputs,
where the percentage change is the same for each input.

The dual cost function can be derived from the production function for the input bundle
if the production function is homogeneous. The production function for the input bundle is the
function defined by the points along the expansion path. Each point on the production function
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is optimal in the sense that it represents the least cost input mix for the specific output level
represented by that point.

Euler's theorem describes a unique property of homogeneous functions. If a production
function is homogeneous of degree 1, and each factor of production earns its marginal
product, revenue will exactly be exhausted. If the production function is homogeneous of a
degree greater than 1, revenue will be more than exhausted if each factor is paid its value of
marginal product. Revenue will be less than exhausted if the production function is
homogeneous of degree less than 1 and if each factor is paid its value of marginal product.

Problems and Exercises
1. Distinguish between the term economies of size and the term economies of scale.

2. If a production function is homogeneous of degree 1, what happens to output when all
inputs are tripled?

3. What happens to output when all inputs are doubled if the production function is
homogeneous of degree 0.9?

4. Assume that Euler's theorem is used to reward or pay factors of production. What happens
when the production function is homogeneous of degree:

a. 1.9?
b. 1.0?
c. 0.2?
d. 0?

5. Consumer demand functions are frequently assumed to be homogeneous of degree zero in
all prices and income. Why? If this assumption is met, what happens to the demand for each
good when all prices and income doubles? Explain.

6. Fill in the following table. Assume constant input prices.

Homogeniety of  Function Cost Returns to
Production Coefficient Elasticity Scale
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7. Discuss the linkages between the production function for the input bundle and the
underlying cost function.

8. Is the production function y = X, + X, + X;X, homogeneous? Explain.
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10

The Cobb-Douglas
Production Function

This chapter describes in detail the most famous of all production functions used to represent
production processes both in and out of agriculture. First used in 1928 in an empirical study
dealing with the productivity of capital and labor in the United States, the function has been
widely used in agricultural studies because of its simplicity. However, the function is not an
adequate numerical representation of the neoclassical three stage production function. One of
the key characteristics of a Cobb Douglas type of production function is that the specific
corresponding dual cost function can be derived by making use of the first order optimization
conditions along the expansion path. Examples of constrained output or revenue maximization
problems using a Cobb Douglas type of function are included.

Key terms and definitions:

Cobb Douglas Production Function
True Cobb Douglas

Base 10 Logarithm

Base e Logarithm

Cobb Douglas Type of Function
Technology and the Parameter A
Homogeneity

Partial Elasticities of Production
Function Coefficient

Total Elasticity of Production
Asymptotic Isoquants
Three-Dimensional Surface
Duality of Cost and Production
Cost Elasticity

Finite Solution



172 Agricultural Production Economics

10.1 Introduction

The paper describing the Cobb Douglas production function was published in the
journal American Economic Review in 1928. The original article dealt with an early
empirical effort to estimate the comparative productivity of capital versus labor within the
United States.

Since the publication of the article in 1928, the term Cobb Douglas production function
has been used to refer to nearly any simple multiplicative production function. The original
production function contained only two inputs, capital (K) and labor (L). Moreover, the
function was assumed to be homogeneous of degree 1 in capital and labor, or constant returns
to scale.

Economists of this period, while recognizing that the law of diminishing returns (or the
law of variable proportions) applied when units of a variable factor were added to units of a
fixed factor, were fascinated with the possibility of constant returns to scale, when all factors
of production were increased or decreased proportionately. They probably believed that as
the scale of the operation changed, it was no longer possible to divide inputs into the
categories fixed and variable. In the long run, the marginal product of the bundle of inputs that
comprise the resources or factors of production for the society should be proportionate to the
change in the size of the bundle, or the amount of resources available to the society.

There were other constraints in 1928. Econometrics, the science of estimating economic
relationships using statistics, was only in its infancy. The function had to be very simple to
estimate. The lack of computers and even pocket calculators meant that at most, statistical
work had to be done on a mechanical calculator. Estimates of parameters of the function
derived from the data had to be possible within the constraints imposed by the calculation
tools of the 1920s.

10.2 The Original Cobb Douglas Function

The function proposed in the 1928 article was

(10.1) y = AX,%%,' ¢
where X, = labor
X, = capital

The function had three characteristics viewed at that time as desirable

1. It was homogeneous of degree 1 with respect to the input bundle, which was consistent
with the economics of the day that stressed that production functions for a society should
have constant returns to scale.

2. The function exhibited diminishing marginal returns to either capital or labor, when the
other was treated as the fixed input, so the law of variable proportions held. The parameter
A was thought to represent the technology of the society that generated the observations upon
which the parameters of the function were to be estimated.

3. The function was easily estimated with the tools of the day. Both sides of the function
could be transformed to logarithms in base 10 or natural logarithms in base e (2.71828...)

(10.2) logy =log A + o log X, + (1 — @) log X,
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The resulting equation is referred to as linear in the parameters or linear in the coefficients.
In other words, log y is a linear function of log X, and log X,. The transformed function is the
equation for a simple two variable regression line in which all observations in the data set used
for estimating the regression line have been transformed into base 10 or natural (base e =
2.71828..) logarithms:

(10.3) logy=b, +b, log X, +h, log x, + €
where
A = e™ if the transformation is to the natural logarithms, or
10™ if the transformation is to base 10 logarithm
b=«
b,=1-«

€ =regression error term

There was no point in empirically estimating b, if the assumption was made that the
parameters on capital and labor summed to 1. The function could be estimated with only one
input or independent variable. Cobb—and Douglas estimated the parameter on labor using
regression analysis and saved their statistical clerks a lot of work on the mechanical
calculator.

Itis important to recognize that the Cobb Douglas production function, when originally
proposed, was not intended to be a perfect representation for the United States of the technical
relationships governing the transformation of labor and capital into output. Rather, it was
chosen because it retained the two key economic assumptions of the day (diminishing returns
to each input and constant returns to scale) and because its parameters were easy to obtain
from actual data.

The Cobb Douglas function had economic properties clearly superior to what was the
probable alternative of the day, a simple linear function with constant marginal products for
both inputs

(10.4) y = ax, + bx,

As will be seen shortly, the Cobb Douglas function lacked many features characteristic
of the three stage production function proposed by the neoclassical economists, which was
graphically developed earlier. Had Cobb and Douglas perceived the massive impact of their
early work on both economists and agricultural economists, they perhaps would have come
up with something more complicated and sophisticated. Part of the appeal of the function
rested with its utter simplicity in estimation. Agricultural economists today use only slightly
modified versions of the Cobb Douglas production function for much the same reasons that
the function was originally developed-it is simple to estimate but allows for diminishing
marginal returns to each input.

10.3 Early Generalizations

The first generalization of the Cobb Douglas production function was to allow the
parameters on the inputs to sum to a number other than 1, allowing for returns to scale of
something other than 1. The function
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(10.5) y = Ax,Pix,P:
where 3, + [, sum to any number,

is sometimes referred to as a Cobb Douglas type of production function, but it is not the true
Cobb Douglas function. This function was also readily transformed to logs. Parameters could
still be estimated by least squares regression with two inputs or explanatory variables, and
with the advent of the computer, this could be done very easily.

As the use of the function moved from the problem of estimating the relationships
between capital, labor, and output at the society level to problems of representing production
processes at the individual farm level, the interpretation of some of the parameters changed.
Cobb and Douglas assumed that output could be produced with only capital and labor. Atthe
farm firm level, X, and X, more likely represent two variable inputs that are under the control
ofthe manager. The remaining inputs are treated as fixed. The parameter A might be thought
of as the combined impact of these fixed factors on the production function. In this context

(10.6) A=3XxP
Foralli=3,..,n

In equation (10.6), there are n inputs, with all but n — 2 being treated as fixed.
Technology could have an impact on the magnitude of the [3; themselves. The parameters [3,
and [3, might be expected to sum to a number substantially less than 1, particularly if there
are a large number of fixed inputs contained in the parameter A. Thus, arestriction that forced
the coefficients on the variable inputs to sum to 1 would be silly.

The second generalization was to expand the function in terms of the number of inputs.
The four input expansion is

(107) y= Axlﬁ'XZBZX3B3X4B4

A function of the general form of equation (10.7) with any number of inputs was readily
transformed to logs, and the parameters were empirically estimated from appropriate data
using ordinary least squares regression techniques. As the number of inputs treated as variable
expanded, the sum of the parameters on the variable inputs should also increase, assuming
that each variable input has a positive marginal product.

In this text, the term Cobb Douglas function or true Cobb Douglas function is used only
in reference to the two-input multiplicative function in which the sum of the individual
production elasticities is equal to 1. The term Cobb Douglas type of function is used in
reference to a multiplicative function where the elasticities of production sum to a number
other than 1, or in a case where there are more than two inputs or factors of production.

10.4 Some Characteristics of the Cobb Douglas Type of Function

The Cobb Douglas type of function is homogeneous of degree 2P;. The returns to scale
parameter or function coefficient is equal to the sum of the [3 values on the individual inputs,
assuming that all inputs are treated explicitly as variable. The [} values represents the
elasticity of production with respect to the corresponding input and are constants.
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The partial elasticities of production for each input are simply the 3 parameters for
the input. This can easily be shown. The partial elasticity of production for input X; is the
ratio of MPP to APP for that input. The MPP for input X; is

(10.8) MPPy = BAxP ! ZxP
for all j #1 =1, ..., n where n is the number of inputs. The APP for input X; is
(10.9) APPy = AxP ! E xP

The ratio of MPP to APP for the ith input is [3;,. Hence, the elasticities of production for the
Cobb Douglas type of production function are constant irrespective of the amounts of each
input that are used. The ratio of MPP to APP is constant, which is very unlike the neoclassical
three-stage production function.

Moreover, MPP and APP for each input never intersect, but stay at the fixed ratio
relative to each other as determined by the partial elasticity of production. The only
exception is an instance where the partial production elasticity is exactly equal to 1 for one
of the inputs. If this were the case, the MPP and the APP for that input would be the same
everywhere irrespective of how much of that input were used.

All inputs must be used for output to be produced. Since the Cobb Douglas function is
multiplicative, the absence of any one input will result in no total output, even if other inputs
are readily available. This characteristic may not be extremely important when there are but
a few categories of highly aggregated inputs, but if there are a large number of input
categories, this characteristic may be of some concern, since it is unlikely that every input
would be used in the production of each commodity.

There is no finite output maximum at a finite level of input use. The function increases
up the expansion path at a rate that corresponds to the value of the function coefficient. If the
function coefficient s 1, the function increases at a constant rate up the expansion path. If the
function coefficient is greater than 1, the function increases at an increasing rate. If the
function coefficient is less than 1, the function increases at a decreasing rate. Agricultural
production functions of the Cobb Douglas type when estimated usually have function
coefficients of less than 1.

For a given set of parameters, the function can represent only one stage of production
for each input, and ridge lines do not exist. If the elasticities of production are for each input
less than 1, the function will depict stage Il everywhere.

If the function coefficient is less than 1, there will normally be a point of global profit

maximization at a finite level of input use. Pseudo scale lines exist and will intersect on the
expansion path at this finite level.

10.5 Isoquants for the Cobb Douglas Type of Function
The Cobb Douglas type of production function, as given by
(10.10) y = Ax,Pix,P:

has the corresponding marginal products

(10.11) MPPy, = 0y/0x, = Bx,P ! x,P:
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(10.12) MPPy, = Oy/0x, = B,x,P x,p: !

The MRSxyx, is obtained by finding the negative ratio of MPPx/MPPx..
(10.13) MRSxx, = = (B,%.)/(BX,)
The MRS is a linear function of the input ratio X,/x;.

The equation for an isoquant is obtained by fixing the output of y at some constant level
q ) q M g y
y° and solving for X, in terms of X,

(10.14) yo = Ax, PP
(10.15) X, = yol(Ax,P)

(10.16) X, = [y°/(Ax,P)]"®:

(10.17) X, = yoU/B) A-VB. y B/B.

(10.18) dx,/dx, = —(B,/B,)yeBIA 1B x, BB 1 <

The isoquants for a Cobb Douglas type of production function have adownward slope as long
%s the inélividual production elasticities are positive. This is true irrespective of the values of
, and P,.

Moreover,
(10.19) dx,/dx,> = [(~B1/B) = 11[-Bu/Baly°"PIA Pex PP~ 0
if the individual production elasticities are positive.

The sign on equation (10.19) indicates that the isoquants for the Cobb—Douglas type of
production function are asymptotic to the X; and X, axes irrespective of the values of the
partial production elasticities, as long as the partial production elasticities are positive.
Isoquants for a Cobb Douglas type of function are illustrated in Figure 10.1, with Y1 - Y7
indicating various specific output levels represented by each isoquant. Although these
isoquants appear to be rectangular hyperbolas, their position relative to the X, and x, axes will
depend upon the relative magnitudes of [3, and [3,. The isoquant will be positioned closer to
the axis of the input with the larger elasticity of production.

Toreemphasize, the general shape of the isoquants for a Cobb Douglas type of function
are not conditional on the values of the individual production elasticities. As long as the
individual production elasticities are greater than zero, the isoquants will always be downward
sloping, convex to the origin of the graph, and asymptotic to the axes. The convexity of the
isoquants for the function occurs because of the diminishing marginal rate of substitution and
because the function is multiplicative, not additive, resulting in a synergistic influence on
output when inputs are used in combination with each other. That is, output is the product of
that attributed to each input, not the sum of that attributed to each input.
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Figure 10.1 Isoquants for the Cobb-Douglas
Production Function

The expansion path generated by a Cobb Douglas function in the X, and x, plane has a
constant slope equal to (V,/V,)(B,/,). The expansion path is obtained by setting the MRSxx,
equal to the inverse price ratio

(10.20) MRSxx, = (BX)/A(B,X,) = ViV,

10.21 Boxv, = BXoV,

(10.21)
(10.22) Bxv, = Bix,v, =0
(10.23)

10.23 X, = (VI/VZ)(BZ/BI)X]

10.6 The Production Surface of the Cobb Douglas Production Function

Figure 10.2 illustrates the three dimensional surface of the Cobb Douglas type of
production function with two inputs, under varying assumptions with respect to the values of
the 3 coefficients. Depending on the specific coefficients, the production surface for the Cobb
Douglas type of function can vary rather dramatically. Diagrams A and B illustrate the
surface and isoquants for the case in which the parameters on the two inputs sum to 1. In this
illustration, 3, is 0.4 and 3, is 0.6. Each line on the diagram represents a production function
for one of the inputs holding the other input constant. Production functions for x, begin at the
X, axis. Production functions for X, begin at the X, axis. Since X, is the more productive input,
production functions for X, have a steeper slope than do the production functions for X;. Now
move along an imaginary diagonal line midway between the X, and X, axes. The production
surface directly above this imaginary diagonal line has a constant slope. The slope of the
surface above this line represents the function coefficient or returns-to-scale parameter of 1
for this two input Cobb Douglas production function which has constant returns to scale.
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Figure 10.2. Surfaces and Isoquants for a Cobb-Douglas Type Production Function

Diagrams C and D illustrate the surface and isoquants of a Cobb Douglas type of
production function in which the elasticities of production sum to a number smaller than 1.
In this example, [3, is 0.1, and [3, is 0.2. The function is homogeneous of degree 0.3 and has
a function coefficient of 0.3. Again, X, is the more productive input, as verified by its larger
elasticity of production.

Production functions for x, are found by starting upward at the X, axis, and production
functions for X, are found by following a line upward from the X, axis. Input X, has the
production functions with the steepest slope. The marginal product of each input appears to
be very great at small values for X, and x,, but drops off rapidly as input use is increased. The
output (y) produced by the function for a specific quantity of x, and X, is much smaller than
for the function illustrated in diagram A. The production surface above the imaginary diagonal
line is concave from below. The function coefficient of .3 indicates that the marginal product
of incremental units of a bundle of X, and X, is declining.
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Diagrams E and F illustrate a Cobb Douglas type of production function in which the
individual elasticities of production for each input are less than 1 but the elasticities of
production sum to a number greater than 1. In this example, 3, is 0.6 and [3, is 0.8, yielding
a function coefficient of 1.4. The marginal product for individual production functions is
declining, but the marginal product for the bundle along the imaginary diagonal line is
increasing. This implies that the production surface above this imaginary scale line is convex,
not concave from below.

Diagrams G and H illustrate a Cobb Douglas type of production function in which one
input has an elasticity of production greater than 1, but the elasticity of production for the
other input is less than 1. In this example, B, is 0.4 and [3, is 1.5. Starting at the X, axis,
follow a line representing the production function for X,. Note that this production function
is curving upward, or increasing at an increasing rate, and the marginal product of input X,
is increasing as the level of X, is increased. But the production functions for X, which start at
the X, axis, have a declining marginal product, as evidenced by the fact that they increase at
a decreasing rate. The production surface above the imaginary diagonal line is convex from
below. The marginal product of the input bundle defined by the diagonal line increases as the
size of the bundle increases, and the function coefficient is 1.9.

Diagrams I and J illustrate a Cobb Douglas type of production function in which both
inputs have elasticities of production of greater than 1. In this example, [3, is 1.3 and 3,is 1.5
yielding a total elasticity of production or function coefficient of 2.8. That the marginal
product of both X, and X, is increasing is clearly evident from a careful examination of
individual production functions in diagram E. The production surface above the imaginary
diagonal line representing the input bundle is clearly convex from below.

10.7 Profit Maximization with the Cobb Douglas Function

Regardless of the values for the elasticities of production, a multiplicative production
function of the Cobb Douglas type never achieves an output maximum for a finite level of X,
and X,. Upon learning that the first order conditions of a maximum are achieved by setting the
first partial derivatives of a function equal to zero, students are sometimes tempted to try this
with a Cobb Douglas type of function. Unless the elasticities of production for each input are
zero, (in which case, increases in each input produce no additional output, since any number
raised to the zero power is 1) the only way for these first-order conditions to hold is for no
input to be used, and if that were the case, there would also be no output. A Cobb Douglas
type of function has no finite maximum where the ridge lines would intersect. This is not
surprising, since the ridge lines do not exist, and any point on any isoquant for a Cobb
Douglas type of function, irrespective of the parameter values, will have a negative slope.

Profit maximization is possible only if the function coefficient is less than 1, assuming
that the purely competitive model holds, with constant input and output prices. In the purely
competitive model, the price of the output is a constant p, total revenue is py and the total
value of the product (TVP) is

(10.24) TVP = px,P x,P:

The function coefficient or total elasticity of production for the production function
indicates the responsiveness of output to changes in the size of the input bundle. It is the
percentage change in output divided by the percentage change in the size of the input bundle.
Assuming a constant output price, the function coefficient also represents the responsiveness
of total value of the product to changes in the size of the input bundle. It is the percentage
change in the total value of the product or output divided by the percentage change in the input
bundle.
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With constant input prices, the marginal cost of acquiring an additional unit of the input
bundle along the expansion path is also constant, not decreasing or increasing. If the function
coefficient is greater than 1, each additional unit of the bundle produces more and additional
output and total value of the product. Incremental units of the bundle can be obtained at a
fixed constant price per unit. The manager would be better off in terms of increased revenue
by acquiring more and more additional units of the bundle. This process could occur
indefinitely, and both input use and output would be expanded up to the point where the purely
competitive assumptions with regard to both input and output prices are no longer met. Either
the manager is producing so much output that it can no longer be sold at the going market
price, or so much input is being purchased that more cannot be bought without causing the
price of the input bundle to increase.

Now consider a case in which each input has a production elasticity of less than 1 but
the total elasticity of production or function coefficient is exactly 1. If this case, a 1 percent
increase in the size of the bundle is accompanied by a 1 percentrise inrevenue. The marginal
cost of an additional unit of the bundle is a constant V. The revenue from the use of an
additional unit of the bundle is the revenue generated from an additional unit of output, or p.
The manager would attempt to equate the marginal cost of the bundle (V) with the marginal
revenue from the additional unit of output (p). Both numbers are constants. If p >V, the
manager could make additional profits by expanding use of the input bundle indefinitely,
which is the same solution as the first case. Total profit is (p — V)y where y is the number of
units of output produced. If p were less than V, then the manager should shut down since each
and all incremental units of output cost more that they generated in additional revenue. The
total loss is (p — V)y, where y is the number of units of output produced. Only if p were equal
to V would the manager be indifferent to producing or shutting down. Each incremental unit
of output cost exactly what it returned, so there would be zero profit everywhere.

Finally, consider a case in which the sum of the individual elasticities of production is
less than 1. Again the price of the input bundle is treated as a constant, but in this case the
value of the marginal product is declining. Profits can be maximized at some finite level of use
of'the input bundle, assuming that for certain levels of input use, TVP does exceed the cost of
the bundle.

Another way of looking at the profit maximization conditions for the Cobb Douglas type
of function is with the aid of the pseudo scale lines developed earlier. Assume constant input
and output prices. If the function coefficient is less than 1, the pseudo scale lines exist and
converge at some finite level of input use along the expansion path. The convergence of the
pseudo scale lines represents the global point of profit maximization. If the function
coefficient is equal to 1, the pseudo scale lines exist but diverge from each other, so that they
do not intersect for any finite level of use of the input bundle along the expansion path. If the
function coefficient is greater than 1 but the individual elasticities of production are less than
1, the pseudo scale line exist but diverge, going farther and farther apart as the use of the
bundle is expanded. A pseudo scale line for an individual input does not exist if the elasticity
of production for that input is greater than or equal to 1.

10.8 Duality and the Cobb Douglas Function

The Cobb Douglas type of function is homogeneous, and its corresponding dual cost
function exists. It is possible to derive the specific cost function in terms of output for a
Cobb—Douglas type of production function. Assume the production function

(10.25) y = Ax,P x,P:

The input cost function is



182 Agricultural Production Economics

(10.26) C=vx, + V%,

The dual cost function for a Cobb Douglas type of production function is found using
the following procedure. First, the equation for the expansion path is found by partially
differentiating the production function with respect to X, and x,, to find the marginal products.
The negative ratio of the marginal products is the MRSxx.. This is equated to the inverse input
price ratio. The result can be written as
(10.27) B,v,x, = BV,

Equation (10.27) defines the points of least cost combination along the expansion path.

Equation (10.27) is solved for X, to yield
(10.28) X, = B VX, 7', !

Equation (10.28) is inserted into equation (10.26) and x, is factored out
(10.29) C=%(Bv,B, " +vy)

Equation (10.29) defines the quantity of X, that is used in terms of cost (C) and the parameters
of the production function

(10.30) X, = C/(BV,Py " + )

Similarly, for input x;,

(10.31) X, = C/(Bv,B, ' +v))

Inputs X, and X, are now defined totally in terms of cost C, the input prices (v, and v,) and the
parameters of the production function. Inserting equations (10.30)and (10.31)into the original
production function [equation 10.25)] and rearranging, results in

(10.32) y= CﬁﬁﬁzA(Bﬂ’lBlﬂ + Vl)fﬁl (Blvzﬁ[l + Vz)iﬁz

Solving equation (10.32)for C in terms of y, the production function parameters and the input
prices yields

(10.33) C = yVBB) AZVBB) (3 1B,y + v, )P BBIB, 1By, + v,y )RR
or C = yl/(B1+Bz)Z
where

Z = A’ U(ﬁﬁﬁz)(ﬁ]* 1B2Vl+ VI)B|/(B|+E'2)(627 IBIVZ + V2)Bz/(B1+Bz)

Notice that y is raised to the power 1 over the degree of homogeneity of the original
production function. The value of Z is a constant, since it is dependent only on the assumed
constant prices of the inputs and the assumed constant parameters of the production function.
Notice that prices for inputs are available, all of the information needed to obtain the
corresponding dual cost function can be obtained from the production function. The
coefficients or parameters of a Cobb Douglas type of production function uniquely define a
corresponding dual cost function. C is cost in terms of output.
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Marginal cost is
(10.34) MC =dC/dy = [1/(B,+B,)ly" @ P 'z

The slope of MC is positive if the sum of the individual partial production elasticities or
function coefficient is less than 1. If the individual production elasticities sum to a number
greater than 1, then MC is declining. MC has a zero slope when the production elasticities sum
exactly to 1. The supply function for a firm with a Cobb Douglas type of production
function can be found by equating marginal cost (equation (10.34)) with marginal revenue or
the price of the product and solving the resultant equation for y.

Average cost is
(10.35) AC =TCly = y"®:b)-1Z

Since Z is positive, average cost decreases when the partial production elasticities sum to a
number greater than 1. Average cost increases if the partial production elasticities sum to a
number less than 1. If the production function is a true Cobb—Douglas, total cost is given by

(10.36) TC=yz

Both marginal and average cost are given by the constant Z, and therefore both MC and
AC have a zero slope. For a Cobb—Douglas type of production function, MC and AC never
intersect, except in the instance where the function coefficient (or the cost elasticity) is 1, in
which case MC and AC are the same everywhere.

The ratio of marginal to average cost or the cost elasticity (U) is

(10.37) () =1/PB, + B
= 1/E,
where E is the returns-to-scale parameter, or function coefficient.

Iftotal product along the expansion path is increasing at a decreasing rate, then costs are
increasing at an increasing rate. If total product along the expansion path is increasing at an
increasing rate, than costs are increasing at a decreasing rate. If total product along the
expansion path is increasing at a constant rate (the true Cobb Douglas function), then costs
are also increasing at a constant rate. If the product sells for a fixed price, that price is a
constant marginal revenue (MR). Marginal revenue (MR) can be equated to marginal cost
(MC) only if MC is increasing. With fixed input prices and elasticities of production, this can
happen only if the cost elasticity is greater than 1, which means that the function coefficient
for the underlying production function is strictly less than 1.

The profit function can be written as
(10.38) II=TR-TC
(10.39) II=py - zy'F
where E is the function coefficient.

Maximum profits occur if
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(10.40) dIl/idy =p -Z (VE)"™® =0
MR - MC=0
and
(10.41) d*Ildy? = -Z (1/E)[(1/E)- 1]y 2 < 0

E is positive. The only way the second derivative can be negative is for E to be smaller
than 1. This implies that MC is increasing. If E is equal to 1, the second derivative of the
profit function is zero, and that MC is constant. If E is greater than 1, the second derivative
of the profit function is positive, and MC is decreasing.

10.9 Constrained Output or Revenue Maximization

A finite solution to the problem of globally maximizing profits could be found only in
those instances where the production function had a function coefficient of less than 1. The
same conditions do not hold for the problem of finding the least cost combination of inputs
required to produce a particular level of output or revenue. The isoquants generated by a
Cobb—Douglas type of production function are convex to the origin if'the partial elasticities
of production are positive, and as a result, points of tangency that meet second order
conditions are easy to find. For example, suppose that the production function is

(10.42) Y= XX,
The individual partial elasticities of production for each input is 1, and the function
coefficient is 2. Despite its strange appearance, this is a production function of the Cobb
Douglas type.

Suppose that the price of both X, and X, is $1 per unit. The Lagrangean would be
(10.43) L =XX, + A(C° = 1x, — 1x,)

With the corresponding first order conditions

(10.44) oL/OxX, =X, — 1A =0
(10.45) OL/OX, =X, - 1A =0
(10.46) 9/OA=C° - 1x, - 1x,=0

The second order conditions require that the determinant of the following matrix be
positive

(10.47) 0o 1 -1
1 0 -1
-1 -1 0

The determinant of (10.47) is 2, which is clearly positive, thus meeting the second order
conditions for a constrained output maximization. Despite the fact that the production
function in equation (10.42) meets both first- and second-order conditions for a constrained
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revenue maximization, there is no assurance that revenue less costs will be positive when the
point of least-cost combination is found.

10.10 Concluding Comments

The Cobb Douglas type of production function has been estimated by agricultural
economists for virtually any production process involving the transformation of inputs into
outputs in an agricultural setting. Economists have used a Cobb Douglas type of specification
for virtually every conceivable type of production process. To review specific applications of
the Cobb Douglas type of function would be to review a large share of the literature in which
empirical attempts have been made to estimate production functions. Some of this literature
is cited in the reading list.

The appeal of the Cobb Douglas type of function rests largely with its simplicity. Even
when the Cobb Douglas form is not used as the final form of the function, it is often used as
a benchmark specification for comparison with other functional forms. The null research
hypothesis might be that the production function is of the Cobb Douglas type. The alternative
hypothesis is that another specification provides a better fit to the data.

Cobb and Douglas never intended that the Cobb Douglas production function represent
the subtle details of the three-stage production function of the neoclassical economists.
However, the elegant simplicity of the algebra surrounding the Cobb Douglas type of
production function seems to appeal to both economists and agricultural economists alike.
Never mind that the relationships were not always as the neoclassical economists had
proposed.

The neoclassical three-stage production function was a marvelous invention. However,
as subsequent chapters will show, the three stage production function as originally conceived
is not always the easiest thing to represent with mathematics. The problem becomes especially
difficult as extensions are made to multiple input categories. Agricultural economists use the
Cobb—Douglas specification for no better reason than that the algebra is simplified.

Problems and Exercises
1. For a Cobb Douglas type of function
y = AX,"%,P
For each case, does there exist the following?
a. A global point of output maximization.
b. A global point of profit maximization (assume constant input and output prices).

c. A series of points of constrained output maximization.
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Case Value for A Value for o Value for [3
(1) 1.0 0.2 0.3
) 1.0 0.4 0.6
3) 1.0 0.6 0.8
4) 1.0 1.0 1.0
(5) 1.0 2.0 2.0
(6) 1.0 -03 0.5
(7 -1.0 0.4 0.6

2. For each case outlined above, find MPP and APP for each input, holding the other input
constant at some predetermined level. What is the relationship between MPP and APP in each
case?

3. Suppose that the production function is
Y =XX%,

The input X, sells for $1 per unit and input X, sells for $2 per unit. The farmer has $200 to
spend on X, and X,. How much of each input will the farmer purchase in order to be at a point
of constrained output maximization?

4. Making certain that the scale on both the X, and the X, axes is the same, draw a graph for
an isoquant generated by the function

_y 0.5y 033
Y=X17X

Assume that the length of each axis represents 10 units of input use. Is the isoquant closer to
the X, axis or the x, axis? Why?

5. Assume that the ?roduction function is
y= X]0‘5X20'3

X, costs $1 per unit; X, costs $2 per unit. Find the corresponding total cost function with total
cost expressed as a function of output (y), the input prices, and the production function
parameters.

Reference

Cobb, Charles W. and Paul H. Douglas. "A Theory of Production." American Economic
Review 18: Suppl.(1928) pp 139-156.
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Other Agricultural
Production Functions

In addition to the Cobb Douglas, agricultural economists have made use of a diverse array of
other functional forms. The earliest efforts to develop production functions from agricultural
data predate the Cobb Douglas work, using a production function developed by Spillman.
The transcendental production function represented an attempt conducted in the 1950s to
develop a specification closely tied to the characteristics of the neoclassical three-stage
production function. Production functions with variable rather than constant input elasticities
represented a development during the 1960s. In the early 1970s de Janvry showed that the
Cobb Douglas function with either fixed or variable input elasticities and the transcendental
production functions were all members of a family of production functions called generalized
power production functions. All of these production functions have been used as a basis for
estimating relationships within agriculture. This chapter will be of primary interest to students
interested in doing research in agricultural economics.

Key terms and definitions:

Spillman Production Function

Transcendental Production Function

Cobb Douglas Function with Variable Elasticities
Generalized Power Production Function
Polynomial Forms
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11.1 Introduction

Despite the widespread use of the Cobb Douglas production function, it was not the first
or the only production function to be used by agricultural economists for representing
production relationships. Agricultural economics as a formal discipline is relatively new,
having had its start as a separate discipline in the first decade of the twentieth century. The
first work in agricultural economics was conducted by biological scientists who were
interested in providing farmers with useful information with regard to designing plans for
feeding livestock or fertilizing crops. Even these early efforts, conducted by biological
scientists with little or no training in economics, had a central focus in obtaining estimates of
parameters of agricultural production functions as a basis for the development of
recommendations to farmers.

11.2 The Spillman

One of the earliest efforts to estimate a production function in agriculture was conducted
by Spillman, and was published in the newly created Journal of Farm Economics (later to
become the American Journal of Agricultural Economics) in two articles in 1923 and 1924.
The first article was titled "Application of the Law of Diminishing Returns to Some Fertilizer
and Feed Data.' The second was "Law of the Diminishing Increment in the Fattening of Steers
and Hogs." It is not surprising that Spillman was interested in determining whether or not the
law of diminishing returns had empirical support within some rather basic agricultural
production processes.

The empirical efforts by Spillman were published prior to the work by Cobb and
Douglasin 1928, and the form of the production functions used by Spillman differed slightly.
The Spillman function was
(11.1) y=A(l - RX)1 - R
where A, R, and R, are parameters to be estimated. The parameters R, and R, would
normally be expected to fall between zero and 1. The sum of R, + R, would normally be less
than or equal to 1.

An example of the Spillman function is

(11.2) y=1(1 - 0.3%)(1 - 0.4%)

In equation (11 .2), if one of the inputs is increased, output increases, but at a decreasing rate.
The marginal products of X, or X, are positive but decreasing.

The marginal product of input X; (MPPx,) is

(11.3) Ay/ox, = -In Ry(1 -~ R%)AR* > 0

since AR, >0,

(11.4) (1-R,%)InR, < 0

Like the Cobb Douglas function, the marginal product is positive for any level of input use.
Moreover,

(11.5) /92 = ~1n* R,(1 -~ Ry*)ARX, <0

MPP is declining for any level of input use.
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The production surface of the Spillman function is somewhat different from the Cobb
Douglas. Figure 11.1 illustrates the surface and isoquants under the assumption that R, =0.4
and R, = 0.6 and A = 10. Compared with a Cobb Douglas with similar parameters (diagram
A, Figure 10.1), the function appears to initially increase at a much more rapid rate, and then
increase very slowly.
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Figure 11.1 The Spillman Production Function

Since the advent of the the Cobb Douglas, the Spillman has seldom been used by
agricultural economists. It is primarily of historical interest because the Spillman research
represented one of the first efforts to estimate parameters of a production function for some
basic agricultural processes.

11.3 The Transcendental Production Function

By the mid-1950s, both economists and agricultural economists were very much aware
of many of the limitations of the Cobb Douglas production function. They recognized that
although parameters of the function were very easy to estimate from data, the function did not
very well represent the neoclassical three stage production function. The problem of greatest
concern at that time was the fixed production elasticities, which require that APP and MPP
be at a fixed proportion to each other. This issue was not unrelated to the fact that the Cobb
Douglas could represent only one stage of production at a time, very much unlike the
neoclassical presentation.

Halter, Carter, and Hocking were concerned with the lack of compatibility between the
Cobb Douglas and the neoclassical three-stage production function. The researchers sought
to make modifications in the Cobb Douglas to allow for the three stages of production and
variable production elasticities, yet at the same time retain a function that was clearly related
to the Cobb Douglas and was easy to estimate from agricultural data.

The function that Halter et al. introduced in 1957 looked like a slightly modified version
of the Cobb Douglas. The base of the natural logarithm, e was added and raised to a power
that was a function of the amount of input that was used.
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The two-input function was
(11.6) y = Axlmlxzmzew1 R

The corresponding single input function was
(11.7) y = Ax%Y*
The MPP for the single input version, using the composite function rule, was
(11.8) dy/dx = 0CAX® Te?* + yeV*Ax®
=(o/X+Y)y

Since APP is y/x and the elasticity of production is MPP/APP, the elasticity of production for
the single input transcendental is

(11.9) €= (0U/X +Y)y(xy)
=0+ YX

The elasticity of production, and hence the ratio of MPP to APP, is clearly dependent on
the amount of input that is used. The change in the elasticity of production (€) with respect
to a change in the use of X (d€/dx) is equal to the parameter Y. In other words, the size of Y
indicates how rapidly the elasticity of production is declining. In the case of a single input
power production function such as y = Ax®, the elasticity of production is a constant b, and
hence de/dx is 0. This function is a special case of the single input transcendental with the
parameter Y equal to zero. Since illustrations of the neoclassical production function show
a declining elasticity of production as the use of the input increases, the transcendental
production functions of greatest interest are those in which 7y is negative.

Halter et al. worked out the properties of the transcendental production function for the
single-input case under varying assumptions with respect to the values of ¢ and y. Table 11.1
summarizes their findings.

11.4 The Two-Input Transcendental

Halter et al. proposed an extension of the single-input transcendental to two inputs
(11.10) y = Ax, 'x, e 1R

The MPP of X, is
(11.11) Ay/Ox, = (0t,/%, + Y)Y
The MPP of X, is
(11.12) AY/OX, = (Cy/%y + Y,)Y
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Table 11.1 Properties of the Single-Input Transcendental Under Varying
Assumptions with Respect to Parameters ¢ and 'y

Value of & Value of 'y What Happens to y and €

0<a<l <0 Y increases at a decreasing rate
until X = —ot/y, then decreases;
as X increases, € is declining.

>1 <0 The neoclassical case. y increases
at an increasing rate until
x = (-0 +v &)/y, increases at a
decreasing rate until
X = —ot/Y, then decreases;
as X increases, € is declining.

0<o<l 0 y increases at a decreasing
rate; € is constant equal to (.

1 0 Yy increases at a constant rate;
€ is 1; MPP and APP are the
same everywhere.

>1 0 Yy increases at an increasing
rate; € is constant equal to (.

0<a<l1 >0 Yy increases at a decreasing
rate until X = (- + \foc)/y, then
increases at increasing rate;
€ is increasing.

>1 >0 Yy increases at an increasing
rate; € is increasing

Source: Adapted from Halter et al.

APPy, is y/x, and APPx, is y/X,.
Therefore, the partial elasticity of production with respect to X; is
(11.13) €= 0+ VX
and with respect to X, is
(11.14) €= 0+ Yoo
Each production elasticity is dependent on the quantity of that input being used but not
on the quantity of the other input. If a measurement of returns to scale is the sum of the

individual production elasticities, the returns to scale are not constant but are dependent on
the amount of X, and X, that is used. The two input transcendental is not homogeneous of any
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degree.
(11.15) 9€,/0x, =y, 0€,/0%, =0
(11.16) 9€,/0x, = 0 0€,/0%, = Y,

The marginal rate of substitution of X, for X, is equal to the negative ratio of the marginal
roducts
11.17) MRSk, = dx,/dx, = = [(0,/%, + Y )y/[(0a/%, + Y5)Y]

== (0/X; + Y )/(0/X, + )

== [X (e + Y X)VX; (0 + Y2%)]
The isoquants for the transcendental when ¢, and ¢, >0 and 'y, and Y, <0 consist of a
series of concentric rings or lopsided ovals centered at the global output maximum for the

function (Figure 11.2). The exact shape of the rings is determined by the value of the
parameters for the function. The exact center of the rings occurs at X; = — 0¢,/Y, X, = — 04,/Y .
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Figure 11.2 Isoquants and Ridge lines for the Transcendental,
Y=Y, =250, =0, =4;Y;=0

The first-order conditions for profit maximization can be derived by setting the marginal
rate of substitution equal to the negative ratio of the input prices (-V,/V,). The resultant
equation defines the expansion path along which the farmer would move as output is
expanded. The first-order conditions are defined by

(11.18) (00/%, + Y D0/ + Y2) = ViV,
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The expansion path equation is defined by
(11.19) XoVo(00) + Y 1X)) = X V(0 + Y oXy)
<1 1.20) X2 = V]Xlaz/(V2a1 + VZYIXI - V]X]Y2)

The expansion path for the transcendental production function is clearly nonlinear unless Y,
and 'y, are zero.

The ridge lines for the transcendental are present only when 'y, and Y, are negative, and
are straight lines that form a right angle at the point of maximum output, where X, = —¢(,/Y,.
The position of the ridge line for X, in the horizontal axis is determined by the value of &, and
Y,. Similarly, the position of the ridge line on the X, axis corresponds to the point where X, =
-0L,/"Y,. (The slope of this ridge line dx,/dx, is clearly zero.)

The resultant square is very much unlike the football shape defined by the ridge lines for
the neoclassical case. This ridge line pattern suggests that the maximum output for the family
of production functions for the input X, occurs at the same level of use for input x,, regardless
of how much of the second input is used. The same holds for input ,. This is not consistent
with the neoclassical case in which an increase in the use of X, pushes the maximum of the
production function for X, farther and farther to the right.

A modification of the transcendental suggested by this author to make the function more

closely correspond to the neoclassical diagram would be to include an interaction term in the
power of e. The function is

o o + +
(11.21) y = Ax, 1x22671x1 Y% + V%%,

the corresponding MPP for X, is (0¢,/X; + Y, + Y3X,)y. APP is y/X,, so the corresponding partial
elasticity of production for input X, is

(11.22) €, =0, + Y ,X, + YoX,

Along the ridge line for X,, the production elasticity for X, is zero. This implies that

(11.23) 0+ Y X+ YsXoX, =0
or

(11.24) (Y, + V%) = —
(11.25) X, = = 00/(Y, + YsXy)

The amount of X, required to maximize output is clearly a function of the quantity of x,
that is available. Ridge lines no longer form right angles with each other parallel to the X, and
X, axes. If ¥ is positive, ridge lines will slope upward and to the right. Moreover, €, and €,
are functions of the amount of both inputs that are used.

11.5 Illustrations and Applications of the Transcendental
Figure 11.3 illustrates production surfaces and isoquants under varying assumptions with

respect to the parameters of the two input transcendental. Diagrams A and B illustrate the
"original" two-input transcendental with &, = &¢, =4 and 'y, =y, = - 2.
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Figure 11.3 The Transcendental Production Function Under
Varying Parameter Assumptions

The three stages of production are clearly visible, as is the fact that the maximum for
each single input production function for X, generated by assuming X, held fixed at a varying
level occurs at the same level of input use for x,. Diagrams C D, E and F illustrate what
happens as an interaction term with the parameter Y is added. Diagrams C and D assume that
Ys is 0.2, whereas diagram E and F assume that y; is 0.3. Each successive production
function for X, has a maximum to the right of the one below it. The same holds for input X,.
The shape of the production surface is highly sensitive to changes in the value of the
parameter Y.

Diagrams G and H illustrate the surface and isoquants when o, and &, are positive but
less than 1 (0.5), ¥, and Y, are negative (—2), and Y; is zero. The function increases at a
decreasing rate, and then decreases at X, = —0,/Y |, X, = = 0(,/Y>.
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Diagram I and J illustrate what happens when 7y, and Y, are positive (1.0) and ¢, and
o, are positive (0.5). The surface looks not unlike a total cost function in three dimensions,
first increasing at an increasing rate, and then increasing at a decreasing rate. The
transcendental production function can be viewed as a generalization of the Cobb Douglas
production function that can depict the three stages of production and has variable production
elasticities. The transcendental is easily transformed to natural logs to yield

(11.26) Iny=InA+ 0 InX, + 0,In X + VX, + YaXy + Y3X X,

This function is linear in the parameters, and is again easily estimated via ordinary least
squares regression techniques.

The first attempt to estimate parameters of a transcendental production function was
published by Halter and Bradford in 1959. They estimated a TVP function with gross farm
income as the dependent variable and dollar values for owned and purchased inputs as X
variables. The dependent variable was adjusted by a weather measure based on the number
of drought free days during the growing season. Data were collected from 153 individual
farms in 1952 and 1956.

The function was estimated both as a Cobb Douglas specification and as a
transcendental specification. Based on the statistical results including a comparison of actual
values for the dependent variable with those predicted by the equation, the transcendental
specification did give slightly improved results than the Cobb Douglas specification.

11.6 Cobb Douglas with Variable Input Elasticities

Another approach was to develop a Cobb Douglas type of function in which the powers
on each input were assumed to vary. The function was

(11.27) y = Ax, P10, B9

The [3; are functions of one or more inputs represented by X. These inputs may include x, and
X,, but they also may include inputs not incorporated in the function directly. One proposal
suggested that X should incorporate the skills of the manager, and that production functions
for skilled managers should have greater partial elasticities of production than production
functions for unskilled managers.

11.7 de Janvry Modifications

de Janvry recognized the linkages between the Cobb Douglas production function with
variable input elasticities and the two input transcendental. He proposed the generalized power
production function (GPPF), which had as special cases the Cobb Douglas, the Cobb Douglas
with variable input elasticities, and the transcendental.

The general form of the GPPF is

h .
(11.28) y = xlg( xl’xz)xz (xlytz)ej(xl’xz)

where g, h and j are each functions of the inputs. If j=0; g = &,; and h = ,, the function is
the traditional Cobb Douglas type. If g and h are constants and j is nonzero, the function is
a general two input transcendental, without any particular restriction of the form of . If j =
Y1X; + Y2X,, the function is the standard transcendental. The Cobb Douglas function with
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variable input elasticities results where J is zero but g and h vary according to X, and X,.

The major contribution of de Janvry was to develop a general functional form that
included as special cases many of the other production functions used by agricultural
economists.

11.8 Polynomial Forms

The production functions described so far in Chapters 10 and 11 require that a positive
amount of each input be present for output to be produced. Isoquants come asymptotic to, but
do not intersect, the axes. When isoquants intersect an axis, output is possible even in the
absence of the input represented by the other axis.

A polynomial form is inherently additive rather than multiplicative. if interaction terms
are not included, there will be an additive but not synergistic impact on output as a result of
an increase in the level of input use.

Consider the polynomial
(11.29) y =a+ bx, +cx,2 + dx, + ex,>

where a, b, ¢, d, and e are constant parameters. The marginal product of X, is b + 2¢x,. The
marginal product of X, is d + 2ex,. The marginal product of X, is not linked to the quantity of
X, that is present. The marginal product of X, is not linked to the quantity of x, that is present.
The function achieves a maximum (or possibly minimum) when b +2c¢x, =0 and d + 2ex, =
0. Ridge lines again form right angles that intersect at the global output maximum. Second
order conditions for a maximum require that ¢ be negative and ce be positive. (The proofis
left with the reader.) This implies that both ¢ and e must be negative or that the MPP with
respect to both inputs must slope downward to the right. The parameters b and d must be
positive, or there will be no point at which an increase in the use of the input will produce a
positive marginal product.

Now consider the polynomial
(11.30) y=a+ bx, +cx,2 +dx, + ex,2 + fX,X,

The marginal product of X, is b + 2¢x, + fx,. The marginal product of X, is d + 2ex, + fx,. The
marginal product of each input is linked to the quantity of the other input that is present, as
long as fis nonzero. The first order conditions for maximum output require that each marginal
product be zero. Ridge lines no longer intersect at right angles, but if f is positive, each
successive single-input production function achieves its maximum to the right of the one
below it. Second order conditions for a maximum require that 2¢ be negative and 2c2e — f*
be positive. These polynomials and any other polynomial that is linear in its parameters could
be estimated via ordinary least squares.

Figure 11.4 illustrates the polynomial
(11.31) Y =X, + X2 ~0.05%° + X, + X,2 ~0.05%, + 0.4X,X,
The three stages of production are clearly evident, and output is possible even in the absence

of one of the two inputs. Note the white area between each axis and the production surface,
indicating that the isoquants intersect both axes.
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11.9 Concluding Comments

Agricultural economists have made use of a wide array of production functions over the
last 50 years and more. Some of these efforts have represented attempts to make explicit
linkages between the mathematical specification and the traditional neoclassical three stage
production function. The effort conducted by Halter and his colleagues was clearly aimed at
that objective, as have been the attempts to estimate polynomial forms.

Other agricultural economists saw the problem somewhat differently. Efforts in the early
1970s by de Janvry and others focused on the development of general functional forms that
would encompass a number of explicit specifications as special cases.

In the 1960s and 1970s, the direction of research both in general and in agricultural
economics increasingly turned to the problem of determining the extent to which inputs to a
production process substituted for each other. This led to the development of functional forms
that are not necessarily linked to the neo classical three-stage form, but rather were useful in

estimating elasticities of substitution between input pairs. Chapter 12 discusses some of these
functional forms.

Problems and Exercises

1. For input levels between zero and 10 units, graph the following production functions and
compare their shape.

Single-input power (Cobb Douglas like):
a.y=x%

Single-input (Spillman like):
b.y=(1-0.59
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Single-input transcendental:
c.y=x'e*
where € is the base of the natural log 2.71828...
2. For part (c) in Problem 1, find the level of x corresponding to:
a. The inflection point.
b. Maximum MPP.
¢. Maximum APP.
d. Maximum TPP.
3. If the production function is a polynomial consistent with the neoclassical three stage

production function (see Problem 5, Chapter 2), show that the level of X that maximizes MPP
will be two thirds of the level that maximizes APP.
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12

The Elasticity
of Substitution

This chapter develops the concept of an elasticity of substitution. An elasticity of substitution
is a measure of the extent to which one input substitutes for another input along an isoquant.
To the extent inputs substitute for each other, a farmer can respond to changing relative input
prices by adjusting the combination or mix of inputs that are used. The constant elasticity of
substitution, or CES production function, is used as a means for illustrating how the shape
of isoquants change as the input mix changes. Examples of research using a translog
production function to estimate elasticities of substitution for agricultural inputs are cited.

Key terms and definitions:

Isoquant Pattern

Right Angle Isoquant

Diagonal Isoquant

Elasticity of Substitution

Zero Elasticity of Substitution
Infinite Elasticity of Substitution
Constant Elasticity of Substitution (CES) Production Function
Translog Production Function
Translog Cost Function
Shephard's Lemma

Cost Share Equations
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12.1 An Introduction to the Concept

Isoquants can vary widely in their patterns. Isoquants might form a series of right angles,
or they might have constant slopes and look like iso-outlay lines. Isoquants for the Cobb
Douglas production function appear to be hyperbolic. Isoquants for the transcendental
production function under certain parameter assumptions appear to be a series of concentric
rings, ovals, or lopsided ovals. The shape of the isoquants can tell a good deal about the
nature of the production functions that underlie them.

The shape of an isoquant depends on the extent to which the two inputs being pictured
substitute for each other, as changes in the mix or proportions of the two inputs are made. A
specific isoquant produces a fixed amount of output (y). Along an isoquant, a diminishing
marginal rate of substitution is usually a result of the law of diminishing returns that applies
to the underlying production functions for each input.

Consider a production function
(12.1) y = ax, + bx,

The marginal product of X, is @, and the marginal product of X, is b. Since both marginal
products are constant, the slopes of each member of the family of single input production
functions for X, and X, are also constant. The marginal rate of substitution of X, for X, =
—MPPx/MPPx, or —a/b. The slope of each isoquant is everywhere —a/b. Inputs are perfect
substitutes for each other at the rate given by the marginal rate of substitution. An example
is a production function for steers. Assume that X, is corn the farmer grew himself, and X, is
corn purchased from a neighbor. If the corn is of comparable quality, or have constant MPP's,
corn grown at home and corn grown by the neighbor should be perfect substitutes for each
other.

The production function in equation (12.1) indicates a constant marginal product of beef
from incremental units of corn. Such a super steer has not yet been developed, and it is easy
to see why such a production function is seldom used by agricultural economists. The
expansion path conditions for such a production function can be derived by the reader.

Now consider a production function in which the two inputs must be used in a fixed
proportion, such as tractors and tractor drivers. Two tractor drivers and one tractor produce
no more output than one tractor and one driver. Two tractors and one driver produce no more
output than do one tractor and one driver. Isoquants are right angles, and inputs can be
thought of as not substituting with each other at all, or zero substitutability between inputs.

Between these extreme cases lie a myriad of other possible isoquant patterns or maps.
Isoquants might be bowed in only slightly toward the origin, or they might look very nearly
like, but not quite be, right angles. The hyperbolic isoquants for the Cobb Douglas production
function thatasymptotically approach each axis appear to be in between these extreme cases.

The need exists for a simple measure linked to the shape of the isoquants that would
make it possible to determine the extent to which an one input substitutes for another. The
ideal measure would be a pure or unitless number that could assume values between zero and
infinity. The number should be unitless to make possible comparisons between isoquant maps
representing widely varying pairs of inputs. Any elasticity is a unitless or pure number in that
itrepresents the ratio of two percentages, and thus the units cancel. The ideal measure would
assume a value of zero if inputs do not substitute for each other, but approach infinity as the
inputs became perfect substitutes for each other.
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Thus the concept of the elasticity of substitution came into being. Actually, several
formulas were developed. For example, Heady proposed that the elasticity of substitution (e,)
should be equal to the percentage change in the use of X, divided by the percentage change in
the use of X,

(12.2) e, = (AX/%,)/(AX,/x,)

Assuming that the change in X, and X, is sufficiently small
(12.3) ey, = (AX,/dX, )(X,/X,)

or

(12.4) e, = MRSxx(X,/X,)

This elasticity of substitution is the slope ofthe isoquant at a particular point multiplied
by the inverse ratio of input use defined by that point.

For a Cobb Douglas type of production function, MRSxx, = 0¢;X,/®,X,, and therefore the
elasticity of substitution between the input pairs is ¢,/0.,, the ratio of the partial elasticities
of production. Moreover, this elasticity of substitution for a Cobb Douglas type of function
could vary widely even though the isoquant map for any Cobb—Douglas type function looks
very similar in terms of the shape of the isoquants. So if being able to broadly determine the
shape of the isoquant map on the basis of the elasticity of substitution was important, this
measure failed.

The more generally accepted algebraic definition of the elasticity of substitution is
somewhat more complicated, but the interpretation of the calculated values relative to the
shape of the underlying isoquant map is clear. In the two input setting, the elasticity of
substitution is defined as the percentage change in the input ratio divided by the percentage
change in the marginal rate of substitution

(12.5) e, = [% change in (X,/X;)]/[% change in MRSxx,]
= [AXo/X)/(Xo/X,) /[ AMRSx,x,/MRSx ]
If the change is sufficiently small, the formula becomes
(12.6) e, = [d(X/X,)/(Xo/%))/[AMRSx,x,/MRSx x|
= [d(X/X,)/(Xo/%)) )/ [d(dX,/dx, )/ (dX,/dX,)]
Equation (12.6) can be rearranged as
(12.7) [d(X,/%,)/d(dX,/dx ) ][(dX,/dX,)/(Xo/%))]

The expression contained within the first pair of brackets represents the rate of change
in the proportions of the two inputs being used as the marginal rate of substitution changes.
The expression in the second pair of brackets is the marginal rate of substitution divided by
the proportions of the two inputs.

This second definition for the elasticity of substitution can be presented graphically and

isillustrated in Figure 12.1. Suppose that the elasticity of substitution is to be calculated over
the finite range from point P, to point P,. First calculate the percentage change in the input
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Figure 12.1 The Arc Elasticity of Substitution

ratio. The input ratio at point P, is equal to OB/OA. The input ratio at point P, is equal to
OD/OC. The input ratio at some average point between P, and P, is OK/OJ. The percentage
change in the input ratio is (OB/OA — OD/OC)/(OK/QOJ).

Now calculate the percentage change in the marginal rate of substitution, or the
percentage change in the slope of the isoquant. The slope of the isoquant at point P, is
OH/OG. The slope of the isoquant at point P, is OF/OE. The slope of the isoquant at a point
midway between P, and P, is OM/OL. So the percentage change in the marginal rate of
substitution is (OH/OG - OF/OE)/(OM/OL).

The elasticity of substitution is the percentage change in the input ratio divided by the
percentage change in the marginal rate of substitution. So the formula for the elasticity of
substitution is

(12.8) [(OB/OA - OD/OC)/(OK/OJ)J/[(OH/OG ~ OF/OE)/(OM/OL)]

Assume that the isoquant is very nearly a line with a constant downward slope. As a
result, the percentage change in the marginal rate of substitution between point P, and P, is
very near zero. But the percentage change in the input ratio is a comparatively large number.
A very small number will be divided into a large number and the result will be a very large
elasticity of substitution.

Now suppose that the isoquant is a right angle, with P, on the horizontal portion of the
angle and P, on the vertical portion of the right angle. The slope at P, is zero, the slope at P,
is infinite. The percentage change in the MRS between P, and P, is infinite as well. The
percentage change in the input ratio between P, and P, can be calculated as a very ordinary
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number, neither very large nor very small. As the percentage change in the MRS approaches
infinity, a very ordinary number is divided by a very large number, which results in an
elasticity of substitution that approaches zero.

In the two input case, the values for the elasticity of substitution lie between zero and
infinity. Inputs that do not substitute at all with each other have a zero elasticity of
substitution, while inputs that substitute for each other in fixed proportions at any point along
an isoquant have an infinite elasticity of substitution. Values near zero indicate little potential
input substitution. Very large values indicate a great potential of substituting one input for
another within the production process.

Figure 12.1 illustrates what could be called an "arc" elasticity of substitution, since the
difference between P, and P, is assumed to be finite. The point elasticity of substitution can
be calculated with the aid of the calculus.

Henderson and Quandt provide a formula for calculating elasticities of substitution based
solely on first and second derivatives of the production function. (See Henderson and Quandt
for a detailed derivation of the formula.) Define

(12.9) f, = Ay/Ox, = MPPx,

(12.10) f, = Ay/Ox, = MPPx,

(12.11) f,, = 0%/9x,* = slope of MPPx,

(12.12) f,, = 0%y/9x,* = slope of MPPx,

(12.13) f,, =f,, (by Young's theorem) = 3%y/0x,0Xx,

Equation (12.13) is the change in the slope of MPPx, with respect to a change in the use of X,
= 9%y/0x,0x,, or the change in the slope of MPPx, with respect to a change in the use of X;.

Then the formula for calculating the elasticity of substitution is
(12.14) e, = [fifa(fix; + Lx) VX %(2F 1 f, = 176, — £,7))]

Equation (12.14) makes it possible to calculate the elasticity of substitution at a particular
point on an isoquant for any production function for which the first and second derivatives
exist.

Still other formulas for elasticities of substitution have been proposed by other authors.
These include a definition called the Allen (or AES) measure, found in his 1938 book.
McFadden proposed a definition he called the shadow elasticity of substitution. Yet another
definition is called the Morishima measure, and is found in a paper by Koizumi. All these
definitions are the same as equation (12.14) when there are but two inputs, but each measure
differs slightly from the others when more than two inputs are used in the production process.
A detailed discussion and comparison of the alternative measures can be found in the
McFadden reference.

12.2 Elasticities of Substitution and the Cobb Douglas Function

Any Cobb Douglas type of production function will have an elasticity of substitution
according to equation (12.14) of exactly 1. This means that as the percentage change in the
ratio of the use of inputs X, and X, is changed along a specific isoquant, there will be the exact
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same percentage change in the marginal rate of substitution. The conclusion is not dependent
on the magnitude of the individual production elasticities and occurs even if the elasticities do
not sum to 1. The result holds for any production function in which the marginal rate of
substitution is a linear function of the input ratio.

The proof need not rely on the Henderson and Quandt formula. The marginal rate of
substitution for a Cobb Douglas type of function is

(12.15) MRSxx, = —(B,/B,)(X,/X,)
Now let b equal the negative ratio of the elasticities of production (- [3,/[3,). Sinceﬁl and 3,

are constant, so is b. Let X = X,/X,. Therefore, the marginal rate of substitution is a linear
function of the input ratio

(12.16) MRSxx. = bx

or

(12.17) x = (1/D)MRSxx,

Therefore

(12.18) dx/dMRSxx, (the change in the input ratio with respect to a change in the

marginal rate of substitution) = 1/b
(12.19) (MRSxs,)/(Xy/X,) = bx/X

Hence, the elasticity of substitution for a Cobb—Douglas type of function is
(12.20) [d(X,/X,)/dMRSxx,][MRSxx/(X,/X,)] = (1/b)(bx/x) = 1.

To reiterate, equation (12.20) holds for any two input multiplicative production function
of'the Cobb Douglas type and does not depend on the magnitude or the sum of the individual
production elasticities.

12.3 Policy Applications of the Elasticity of Substitution

The elasticity — of— substitution concept has important applications to key issues linked
to agricultural production. The recent liquid fuels energy crisis provides an illustration of the
importance of the concept. Of concern is the extent to which other inputs can be substituted
for liquid fuels energy in agricultural production. An example might be the potential
substitutability between farm labor, farm tractors, and machinery and liquid fuels.

Agriculture in the United States as well as in most foreign countries has become
increasingly mechanized. Hence tractors and machinery can and do substitute for farm labor.
The reduction in the farm population that has taken place in the United States over the past
century and more indicates that farm tractors and machinery can substitute for human labor,
and this substitution can take place, at least in the aggregate, relatively easily. This suggests
that the elasticity of substitution is comparatively high between human labor and farm tractors
and machinery.

Massive changes in the mix of inputs required to produce agricultural products would
not have taken place without clear economic signals. These economic signals are the relative
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prices for tractors and machinery and the fuel required to run versus farm labor. Farmers
often complain about the prices for tractors and other farm machinery, but changes in the mix
of inputs toward tractors and farm machinery would not have taken had it not been economic.
Farmers look for the point of least-cost-combination today, much as they always have.

If the relative proportions of each input do not change, or change very little in the face
of changing relative input prices, then there is evidence to suggest that the elasticity of
substitution between the inputs is nearly zero. However, when relative prices change and are
accompanied by a change in the input mix, there is evidence in support of a positive elasticity
of substitution.

Liquid fuel prices increased very rapidly during the 1970s and the early 1980s. Since the
price of fuel was increasing relative to other input costs, there again was concern with respect
to whether there existed a positive elasticity of substitution between liquid fuels and other
agricultural inputs. Some even argued that rising fuel prices would eventually lead back to a
labor-oriented agriculture more broadly consistent with agriculture in the nineteenth century,
but the mix of inputs used in agriculture changed very little as a result of the increased fuel
prices.

There are some hypotheses as to why the input mix did not change significantly in
response to increases in liquid fuel prices relative to other inputs. One possibility is that the
elasticity of substitution between liquid fuels and other agricultural inputs is nearly zero. This
would imply that there would be little if any changes in the input mix even in the face of
changing relative prices. Farm tractors and the fuel to run them may be inputs that are
required in nearly fixed proportions. Clearly, a tractor cannot run without fuel. Another
possibility is that substitution is possible, but that it takes time, more time than a few years.
A farmer cannot dramatically change the approach to the production of crops and livestock
overnight. Elasticities of substitution may not remain forever constant, but change over time.

The economic motives for the replacement of a tractor might be examined. A farmer
might replace an old tractor with a new one that is more fuel efficient per unit of output
produced, thus substituting the new tractor (a form of capital) for liquid fuel energy. The
replacement suggests a positive elasticity of substitution between a new tractor and liquid
fuels. Rising relative labor costs (wage rates) and declining real fuel prices provided the
economic signals that led to the substitution of tractors and machinery for labor during much
of the twentieth century.

Consumers replaced their aging and fuel - wasting fleet of automobiles with a newer,
more expensive, but energy — conserving fleet as a result of increasing real fuel prices during
much of the last decade and a half. The result was a significant reduction in the demand for
gasoline. The elasticity of substitution between the capital embodied in a new automobile and
gasoline was clearly positive.

The elasticity of substitution between input pairs may differ significantly among various
farm enterprises. There still appear to be few substitutes for human labor in tobacco
production. Dairy remains labor-intensive, but possibilities are increasing for the substitution
of capital for labor. Wheat, corn and soybean production are capital (tractors and machinery)
intensive, and the possibility of substituting labor for capital are limited without a drastic
reduction in output. A reduction in output suggests a movement across isoquants rather than
along an isoquant. The extent to which labor, capital, and energy can be substituted in the
production of horticultural crops varies with the specific type of crop. Some crops lend
themselves to mechanization, but others remain labor intensive but liquid fuels conserving.
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Agricultural economists in developing countries need to be vitally concerned with respect
to the elasticities of substitution for the major agricultural commodities being produced. For
example, the extent to which labor is free to move out of agriculture and into other sectors of
the economy may be dependent on the elasticity of substitution between labor and the other
inputs, given the resources and technology within the developing country.

12.4 The CES Production Function

Since the Cobb Douglas type of production function imposes an elasticity of substitution
between input pairs of exactly 1, then if a Cobb Douglas type of production function were
estimated, the elasticity of substitution between input pairs would be an assumption
underlying the research rather than a result based on the evidence contained in the data. The
problem with the Cobb—Douglas type of production function is widely known and is of
particular interest to economists engaged in macro-oriented issues, such as the extent to which
capital could substitute for labor within an economy.

The study published by Arrow, Chenery, Menhas, and Solow "Capital Labor
Substitution and Economic Efficiency" in 1961 was a landmark. The study might also be
considered a remake of the 1928 effort by Cobb and Douglas without the assumption that the
elasticity of substitution between capital and labor was 1. In the study the authors first
introduced the constant elasticity of substitution (CES) production function. The CES
production function had two principal features. First, the elasticity of substitution between the
two inputs could be any number between zero and infinity. Second, for a given set of
parameters, the elasticity of substitution was the same on any point along the isoquant,
regardless of the ratio of input use at the point: hence the name constant elasticity of
substitution production function.

The CES production function is
(12.21) y=A[AX, P+ (1 = A)x, P] P

The CES appears to be a very complicated function. The developers of the CES no doubt
started with the result that they wished to obtain, a constant elasticity of substitution that
could assume any value between zero and infinity, and worked toward a functional form that
was consistent with this result. The elasticity of substitution (e,) and the parameter p are
closely related

(12.22) e,=1/(1+p)
(12.23) p=(1-e)e,

The authors retained the Cobb Douglas assumption of constant returns to scale in that A + (1
- A) = 1, but this assumption is not required.

In addition to having research application, the CES is a useful pedagogical tool in that
it can be used to illustrate what happens to the shape of a series of isoquants as the elasticity
of substitution changes. Henderson and Quandt suggest five possible cases. Figure 12.2
illustrates the production surfaces and corresponding isoquants generated under each of these
cases.

Case 1: p » +oo, g, ~ 0. At the limit, substitution between input pairs is impossible and
isoquants form aright angle. Diagrams A and B illustrate what happens as p becomes a rather
large number. The shape of the production surface becomes like a pyramid. The production
surface and isoquants illustrated in diagrams A and B was drawn with the assumption that p
= 200.
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Figure 12.2 Production Surfaces and Isoquants for the CES Production Function
under Varying Assumptions about p

Case2: 0<e,<1; p> 0. Inputs substitute for each other, but not very easily. The isoquants
are asymptotic to some value for X, and X, rather than the axes. The vertical line is at x, =
(k/A)"°_ and the horizontal line is at X, = (k/(1 = A)""?. The number k = (y/A)P. The
isoquants can be thought of as something in between the right angles in case 1 and those for
a Cobb—Douglas type function. Diagrams C and D illustrate the production surface and
isoquant map when p = 0.5. The production surface is undistinguished and looks similar to
that for the Cobb Douglas.

Case 3: e,=1; p = 0. The CES becomes the Cobb Douglas illustrated in Diagrams E and F.
The proof of this requires the use of L'Hopital's Rule and can be found in Henderson and
Quandt.
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Case 4: ;> 1; -1 < p <0. Isoquants cut both axes. In diagram G and H, for p=-0.5, ¢,
=2, note the white area directly above the X, and X, axes. This suggests that output is possible
in the absence of one of the two inputs.

Case 5: As e, — +o, p ~ —1. At the limit the isoquants consist of lines of constant slope
(withno curvature), and the production surface and isoquants are illustrated in diagram I and
J. The CES reduces to the production function y = Ax, + (1 — A)X,, and inputs substitute for
each other in the fixed proportion A/(1 — A).

The CES had some important advantages over the Cobb Douglas production function
in that the same general functional form could be used to represent a variety of substitution
possibilities and corresponding isoquant patterns, but the function had two important
disadvantages. Like the Cobb Douglas, for a given set of parameter values, only one stage
of production could be represented, usually stage II for both inputs. This problem was not
unrelated to the fact that the elasticity of substitution was the same everywhere along the
isoquant. Isoquant patterns consisting of concentric rings or ovals were not allowed.

The CES can be extended to allow for more than two inputs. However, there is but one
parameter P in the multiple-input extensions. Thus only one elasticity of substitution value
can be obtained from the production function, and this same value applies to all input pairs.
For example, in agriculture, one might expect that the elasticity of substitution between
chemicals and labor would differ markedly from the elasticity of substitution between fuel and
tractors. But the CES would estimate the same elasticity of substitution between both input
pairs. Despite its pedagogical charm for understanding the effects of changing elasticities of
substitution on the shape of isoquants, the usefulness of the CES production function for
serious research in agricultural economics in which more than two inputs were involved was
limited.

12.5 Elasticities of Substitution and the Translog Production Function

Unlike the Cobb Douglas and the CES, most production functions do not have constant
elasticities of substitution. The percentage change in the input ratio divided by the percentage
change in the marginal rate of substitution is not constant all along the isoquant but varies
from one point to another. To determine the elasticity of substitution for production functions
such as these, it is necessary not only to know the parameters of the production function, but
also to be aware of the precise point on the isoquant for which the elasticity of substitution is
to be estimated and the input ratio (X,/X;) for that point.

Application of the Henderson and Quandt formula for calculating the elasticity of
substitution can then be made. The elasticity of substitution as based on this formula for most
production functions will contain the parameters of the function as well as X, and x,.

If a production function has more than two inputs, partial elasticities of substitution for
each pair of inputs can be calculated, but the algebra for doing this quickly becomes quite
complicated. In the two-input setting, the elasticity of substitution will always be greater than
zero. However, in the multiple-input setting, it is possible for some pairs of inputs to be
substitutes and others complements. For the complement pairs, the elasticity of substitution
will be negative. An example of a pair of inputs that are complements might be a tractor and
the fuel required to run it.

A production function that has recently become popular with agricultural economists
interested in estimating elasticities of substitution between input pairs is called the translog
production function. A specification for the translog production function is
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(12.24) Iny=1Inet+ B, Inx, + B, Inx,+(1/2) y Inx, In X,

Sometimes squared terms are also included

(12.25) Iny=1Ine+ B, Inx, + B, Inx,+(1/2) y Inx, In X,
+1/2¢,(In x,)> + 1/2¢,(In x,)?

The translog production function is a member of de Janvry's generalized power production
function family. Equation (12.24) written as its antilog is

BB 7
(12.26) y=ox xe

Notice how similar the appearance of the translog production function is to the transcendental
developed by Halter, Carter and Hocking. Moreover, the Cobb Douglas is a special case of
the translog when Y equals zero.'

Equation (12.26) differs from the transcendental in that the parameter Y is usually
assumed to be positive. The function is similar to the Cobb Douglas in that for most possible
positive parameter values for 'y, the function never achieves a maximum if the level of input
use for X, and X, is finite. However, unlike the Cobb Douglas, the translog function does not
always generate elasticities of substitution of 1. The translog function is easily generalized to
problems involving more than two inputs.

The translog production function can be generalized to include any number of input
categories, and each pair of inputs may have a different elasticity of substitution. The shape
of the isoquants for the translog depend heavily on the parameter Y. If Y were zero, the
function would generate isoquants like those for the Cobb Douglas. The marginal rate of
substitution would be a linear function of the input ratio, and the elasticity of substitution
would be 1 everywhere along each isoquant. As the value of ¥ increases, output increases
markedly when both inputs are used in similar proportions to each other. As Y becomes larger
and larger, the isoquants bow inward, become more nearly a right angle, and the elasticity of
substitution becomes smaller and smaller.

The MPP of x, for equation (12.26) is
(12.27) Y/, = [By/X, + /2 In X,(1/x))]ly

The MPP can be set equal to zero and solved for X, in terms of X, is the equation for the ridge
line for X,.

The marginal rate of substitution for equation (12.26) is
(12.28) dx,/dx, = = [By/%, + ¥/2 In X,(1/X)V[Bo/Xs + Y/2 In X,(1/%,)]

While parameters of the translog production function can be estimated using physical
data on agricultural inputs, cost data on agricultural inputs generally more readily available
than physical input data. Parameters of the production function are estimated indirectly from
the cost function data. Thus, a more common research approach is to rely on duality to
estimate important parameters of the underlying production function by working with a cost
function having a translog form
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(12.29) INC=Indp+06,Inv,+6,Inv,+%0;Inv, Inv,
where C =total cost

V,, V, = input prices

d), 61, 62, 63 = parameters or coefficients

In = the natural logarithm of

Partially differentiating the natural logarithm of (12.29) with respect to the natural logarithm
of v, and v, results in

(12.30) OInC/Olnv, =0, +%0;1Inv,
(12.31) OInC/oln v, =0, + %0, 1Inv,
Notice that’

(12.32) dInC/dlnv, = (3C/Av,)(v,/C)
(12.33) 9InC/dlnv, =(OC/AV,)(V,/C)

Shephard's lemma can be used to convert equations (12.30) and (12.31) into cost-share
equations. Shephard's lemma states that

(12.34) dC/dv, = x*
(12.35) dC/dv, = x*
where X¥ and x¥ are the amounts of X; and x, defined by the points of least-cost combination
on the expansion path. Along the expansion path, the change in the cost function with respect
to each input price is equal to the quantity of input that is used. Therefore
(12.36) dInC/dlnv, = v,x¥/C =,
or the share or proportion of total cost for input X;.
(12.37) dln C/dlnv, = v,x§/C = S,
or the share or proportion of total cost for input X,.
Substitution (12.36) and (12.37) into equations (12.30) and (12.31)
(12.38) S, =0, +%0,nv,
(12.39) S,=0, +%0,Inv,
Equations (12.38) and (12.39) are the cost-share equations for inputs X, and X,. Estimates of
0,, 0,, and 0, can be used as the basis for deriving the elasticities of substitution and other
parameters or coefficients for the underlying production function.’

Economists and agricultural economists have attempted to determine the elasticities of
substitution for major input categories using the cost share approach outlined above. The

focus of economists such as Berndt and Wood has recently been to determine whether capital
and energy complement or substitute for each other. Some studies by economists have
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concluded on the basis of the estimates of the translog production function parameters that
energy and capital are complements, whereas others have concluded that they are substitutes.

Webb and Duncan, Brown and Christensen, and Aoun all estimated elasticities of
substitution for major input categories in U.S. agriculture using the translog production
function as a basis. Aoun estimated partial elasticities of substitution between the input
category energy and the input category tractors and machinery. In the 1950s and 1960s,
tractors and machinery were complements, as indicated by a negative partial elasticity of
substitution, but by the late 1970s, these two input categories had become substitutes. This
provides evidence that farmers can now substitute improved tractors and machinery (that
produce greater output per unit of fuel burned) for fuel. The belief that improvements in
tractors and machinery can come only with increased fuel use may not now hold true.

12.6 Concluding Comments

The elasticity of substitution between pairs of inputs is among the most important
concept in all of economics. Increasingly, production research both in and out of agriculture
has focused on the estimation of elasticities of substitution between input pairs. The CES
production function is a useful teaching tool for uncovering the linkage between the elasticity
of substitution and the shape of the isoquants. Despite its usefulness as a teaching tool,
because it could generate only a single estimate of an elasticity of substitution in the
multiple-input case, its application to agriculture was limited.

The development of the translog production and cost functions in the early 1970s
represented a major step forward in production theory. The translog form was not nearly as
restrictive as the Cobb Douglas and CES forms that preceded it. The translog production and
cost functions could be inverted, and recent theoretical developments related to the duality of
cost and production could have application both in and out of agriculture. The application of
translog cost functions using the cost share approach for estimating elasticities of substitution
between inputs will have applications to many different agricultural sectors in the coming
years.

Notes

' One way of looking at production functions is in terms of Taylor's series expansions.
The Cobb Douglas production function is a first-order Taylor's series expansion of Iny in In
X; and In X, and the translog is a second order expansion of the same terms. The CES is a first
order expansion of y? in X,° and x,°. If the translog production function is treated as a
Taylor's series expansion, squared terms are included:

Iny=Inc+ B, Inx, + B, Inx, +1/2y Inx, Inx,

+12¢,(In x,)* + 1/2,(In x,)?
Squared terms can also be added to the translog cost function (equation (12.29); see also
Christensen, Jorgenson and Lau).

% A detailed proof can be found in Section 13.3.
*A detailed derivation of the linkage between the parameters of the cost share equations
and the elasticity of substitution can be found in the Brown and Christensen reference.

Problems and Exercises

1. Explain what is meant by the term elasticity of substitution. How does the elasticity of
substitution differ from the marginal rate of substitution? How does the elasticity of
substitution differs from the elasticity of production? Why is the elasticity of substitution
between input pairs important in agriculture?
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2. For the following production functions, what is the elasticity of substitution?

a.y=ax, +bx
b.y= )(1()].33)(20452
c.y=Abx, 2+ (1 - b)x, )

3. Draw the isoquants associated with each production function listed in Problem 2.

4. The elasticity of substitution is closely linked to both the marginal rate of substitution and
the input ratio (X,/X;). Suppose that the marginal rate of substitution is given by the formula

MRS, = (X/X,)°

a. What is the corresponding elasticity of substitution?
b. What is known about the production function that produced such a marginal rate of
substitution?
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13

The Demand for Inputs
to the Production Process

The demand for inputs to a production process within agriculture is dependent on a number
of factors: (1) the price of the output being produced, (2) the price of the input, (3) the price
of other substitute or complement inputs that are also in the production function, and (4) the
technical coefficients or parameters of the production function itself, particularly production
elasticities for each input. Under certain conditions, the quantity as well as the price of other
inputs, and the availability of dollars for the purchase of inputs may affect the input demand
function. This chapter shows how specific input demand functions can be derived that
explicitly link the demand by a farmer for an input to the prices of other inputs and the
technical parameters of the underlying production function.

Key terms and definitions:

Derived Demand

Input Demand Function

Elasticity of Input Demand
Logarithmic Differentiation

Output Price Input Demand Elasticity
Own Price Input Demand Elasticity
Cross Price Input Demand Elasticity
Technical Complement

Technical Competitiveness
Technical Independence
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13.1 Introduction

The demand for inputs to the agricultural production process is a derived demand. That
is, the input demand function is derived from the demand by buyers of the output from the
farm. In general, the demand for an input or factor of production depends on (1) the price of
the output or outputs being produced, (2) the price of the input, (3) the prices of other inputs
that substitute for or complement the input, and (4) the parameters of the production function
that describes the technical transformation of the input into an output. In some instances, the
demand for an input might also depend on the availability of dollars needed to purchase the
mput.

For example, the demand by a farmer for seed, fertilizer, machinery, chemicals, and other
inputs is derived from the demand by users for the corn produced by the farmer. The demand
for each of these inputs is a function not only of their respective prices, but also the price of
corn in the marketplace. The demand by a dairy farmer for grain and forage is dependent not
only on the respective prices of grain and forage, but also on the price of the milk being
produced.

13.2 A Single-Input Setting

In a single input setting, the derivation of a demand function for an input X makes use
of (1) the production function that transforms the input X into the product y; (2) the price of
the output y, called p, and (3) the own price of the input, called v. Since there are no other
inputs, in a single input setting prices of other inputs do not enter.

A general statement of the problem is as follows. Given a production function y = f(X,
o) where X is the quantity of input used and o represents the coefficients or parameters of the
production function, a constant product price (p) and a constant input price (V), the
corresponding input demand function can be written as X=g((, p, V). Notice that the function
g, the input demand function, is a different function from f, the production function. The
derivation of the input demand function for a specific production function and set of prices
makes use of the firm's first order conditions for profit maximization.

Assume that the farm manager uses only one input in the production of a single output.
The farmer is operating in a purely competitive environment, and the price of the input and
the output is assumed to be fixed and given. The farmer is interested in maximizing profits.
The first order conditions for maximum profit require that the farmer equate

(13.1) pMPP,=VMP, =v
where p is the output price and V is the input price.

Now suppose that the price of the input (V) varies. Figure 13.1 illustrates what happens.
The intersection between VMP, and Vv represents the demand for the input at that particular
input price, which, in turn, traces out the demand curve or input demand function for the input
X under a series of alternative input prices. If the price of the output increases, the VMP curve
will shift upward, increasing the demand for X at any positive input price. Conversely, a
decrease in the price of the output will reduce the demand for the input X at any given input
price. The input demand function normally begins at the start of stage Il and ends at the start
of stage III.
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MFC1

\ MFC2
AVP
MFC3
Input (x)
\
Demand MEC4

VMP

Figure 13.1 The Demand Function for Input x
(No Other Inputs)

As the productivity of the underlying production function increases, the MPP, will increase.
This, in turn, will increase the demand by farmers for input X. Conversely, a decrease in the
productivity of the underlying production function will cause a reduction in the demand for
x for a given input and output price.
Assume that the production function is
(13.2) y=Ax
Where A is a positive number and b is assumed to be greater than zero but less than 1.
The corresponding MPP of X is
(13.3) MPP, = dy/dx = bAX""'
The first order conditions for maximum profit require that
(13.4) PMPP, = pbAX" ' =v
The demand for the input can be found by solving the first order conditions for X
(13.5) X' =v/pbA
(13.6)  x = (v/pbA)"®~D = yb-Dp= 1= () 10-D
Notice here that the demand for x is a function only of the price of the input (Vv), the price of

the product (p), and the coefficient or parameter of the underlying production function (b) as
suggested in the general case.
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A numerical example is used to further illustrate these relationships. Assume that A is
1 and b is 0.5. Then

(13.7)  x=0.25v"p* = 0.25p*A

Table 13.1 provides four demand schedules for input X, when A is 1 and b is 0.5, and
assuming output prices of $2, $4, $6, and $8. Each column represents a different demand
function. As the price of X increases, the quantity demanded declines. An increase in the price
of the output (y) causes a shift upward in the entire demand schedule or function.

Table 13.1 Demand for Units of Input X Under Various Assumptions
about the Output Price, p

Price of Price of 'y in dollars

X (V) in

(dollars 2 4 6 8
1 1.00 4.00 9.00 16.00
2 025 1.00 225 4.00
3 0.11 044 1.00 1.78
4 0.0625 0.25  0.5625 1.00
5 0.04 0.16 036 0.64

13.3 The Elasticity of Input Demand

In consumer demand, the elasticity of demand is defined as the percentage change in
quantity of a good taken from the market divided by the percentage change in the price of that
good. Using calculus, the point elasticity of demand is defined as

(13.8) (dQ/dP)(P/Q)

where P is the price of the good being demanded by the consumer, and Q is the quantity of the
good

Now suppose that the specific demand function is

(13.9) Q=p?

Taking natural logarithms of both sides of equation (13.1), results in
(13.10) InQ=alnP

Now let r equal In Q and s equal In P; equation (13.10) may be rewritten as
(13.11) r=as

Now differentiate equation (13.11):
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(13.12) dr/ds = a
But notice that
(13.13) dlnQ/dnP=a

The elasticity of demand for Q can be shown to be equal to the coefficient or parameter a.
In this example

(13.14) dg/dp = aP?!
(13.15) (dg/dp) (P/Q) = (Ap* )(P/Q) = (Ap* ')(P/P?) =a

which is the same result as that obtained in equation (13.13).In general, any elasticity can be
expressed as the derivative of the logarithm of one of the variables with respect to the
derivative of the logarithm of the other variable.

Parallel formulas for input demand elasticities exist. The own price elasticity of demand
for an input is defined as the percentage change in the quantity of the input taken from the
market divided by the percentage change in the price of that input. Using calculus, the own
price input demand elasticity is

(13.16) (dx/dv)(V/X), or
(13.17) dinx/dlnv.
The output-price elasticity can be similarly defined as the percentage change in the

quantity of the input taken from the market divided by the percentage change in the price of
the output. Using calculus, the output-price demand elasticity is defined either as

(13.18) (dx/dp)(p/x)
or as
(13.19) dinx/dInp.

If there were more inputs to the production process than one, both own—price and
cross-price elasticities can be defined. The own price elasticity is the same as is the single
input case, that is, the percentage change in the quantity of the input X, taken from the market
divided by the percentage change in the price of that input (v;). The subscript i indicates that
the price and quantity are for the same input. The formula using calculus would be either

(13.20) (dlxy/dv;)(Vi/%)
or as
(13.21) dinx;/dlnv,

The cross-price elasticity is defined as the percentage change in the quantity of input X;
taken from the market divided by the percentage change in the price of input X; (v;). The
subscript i is not the same as j. Using calculus, the formula is
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(13.22) (dxy/dv;)(vy/x,)
for all i

or as

(13.23) dinxy/dIny,

Now consider a production function
(13.24) y = Ax°

The input price (v) and the output price (p) are assumed constant and the farmer is assumed
to maximize profits. The input demand function is

(13.25) X = (V/pbA)" =D = b= 1b=D(Bg)~1b-D
The own price elasticity of input demand is derived as follows
(13.26) dx/dv=[1/(b - DNV]x =[1/(b - 1)](x/v)
(13.27) (dx/dv)(v/x) = [1/(b = D]xNV)(v/x)=1/(b - 1)

The own— price elasticity could be obtained by taking natural logarithms of the input demand
function and then finding the derivative

(13.28) dinx/dInv = 1/(b-1)

The own price elasticity of demand for the input depends entirely on the parameter b
from the underlying power production function. Given information about the elasticity of
production for the input, the corresponding input demand elasticity can be calculated. For
example, if b were 0.5, the own—price elasticity of demand for x is 1/(0.5 — 1) = —2. There
exists a close association between the elasticity of demand for an input and the underlying
elasticity of production for that input. This analysis breaks down if b is greater than or equal
to 1. If b is greater than 1, VMP cuts MFC (v) from below, and the second-order conditions
for profit maximization do not hold for any finite level of use of x. Ifbisequal to 1, VMP
= MFC everywhere and there is no demand function based on the profit-maximization
assumption.

A similar analysis can be made for the output-price elasticity

(13.29) dx/dp = [~ 1/(b - 1)](x/p) = ~x/[p(b - 1)]
(13.30) (dx/dp)p/x = —px/[px(b - 1)] =~ 1/(b - 1)
or

(13.31) dinx/dIlnp=-1/b - 1)

In the single-input case, the output-price elasticity of demand for input X is equal to the
negative of the own—price elasticity of demand. In this case, the output-price elasticity of
demand is 2. This suggests that a 1 percent increase in the price of the output will be
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accompanied by a 2 percent increase in the demand for the input X. Again, the output-price
elasticity of demand is a function solely of the elasticity of production of the underlying
production function.

13.4 Technical Complements, Competitiveness, and Independence

An input (X,) can be defined as a technical complement for another input (X,) if an
increase in the use of X, causes the marginal product of X, to increase. Most inputs are
technical complements of each other. Notice that inputs can be technical complements and still
substitute for each other along a downward- sloping isoquant.'

A simple example of technical complements in agriculture would be two different kinds
of fertilizer nutrients in corn production. For example, the presence of adequate quantities of
phosphate may make the productivity of nitrogen fertilizer greater.

Technical complements can also be defined by

(13.32) d(MPPy,)/dx, > 0
Consider a production function given by
(13.33) y = AX,2X,°
MPP, is
(13.34) dy/dx, = aAx,* 'x,”
(13.35) d(dy/dx,)/dx, = baAx,* 'x,°"' > 0

By this definition, inputs are technical complements for a broad class of Cobb Douglas type
of production functions. An increase in the use of X, causes the MPPx, to shift upward.

Aninput (X,) is said to be technically independent of another input if when the use ofx,
is increased, the marginal product of X, (MPPx) does not change. This requires that

(13.36) d(MPPy,)/dx, = 0

Consider a production function given by
(13.37) y = ax, + bx,2 + cx, + dx,2
(13.38) dy/dx, = a + 2bx,
(13.39) d(dy/dx,)/dx, = 0

For additive production functions without interaction terms, inputs are technically
independent.

Examples of technically independent inputs to a production process within agriculture
are difficult to find. Even the marginal product of a laborer may be affected by the availability
of other inputs such as seed and chemicals.

Aninput (X,) is said to be technically competitive with another input (X, ) if when the use
of X, is increased, the marginal product of X, (MPPx,) decreases. This requires that
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(13.40) d(MPPx,)/dx, < 0

An example of a production function in which this might occur is an additive function
with a negative interaction term.

Consider a production function given by

(13.41) y = ax, + bx,x, + cx,
(13.42) dy/dx, = a + bx,
(13.43) d(dy/dx,)/dx, = b

If b were negative, the inputs would be technically competitive.
Examples of inputs that are technical substitutes for each other would include inputs that
are very similar to each other. For example, suppose that X, represented nitrogen applied as

ammonium nitrate and X, represented nitrogen applied as anhydrous ammonia. The presence
of ample quantities of X; would reduce the marginal product of X,.

13.5 Input-Demand Functions in a Two-Input Setting

Input demand functions in a two input setting can also be derived. Suppose that the
farmer is again interested in maximizing profits, and that output and input prices are given.
The production function is
(13.44) y = AX,?,
The profit function corresponding to equation (13.44) is
(13.45) II=py-vx - vx,

= PAX,®X," = V| X; — VX,

Suppose also that a + b < 0 (decreasing returns to scale). Then the first order conditions for
profit maximization are

(13.46) oll/0x, = apAx,2 'x, = v, = 0
(13.47) Oll1/0x, = bpAx,2x,0 ! = v, =0

One approach for finding the input demand function for X, would be to solve the
first-order condition equation %1 3.46) for X, in terms of the remaining variables. This yields

(13.48) X2 = v,(apA) %, "
(13.49) X, = v, @ D(apA) @Dy, -bla-h

Equation (13.49) expresses the demand for X, in terms of its own price (V,) the price of the
output (p), and the quantity of the other input (X,). This approach leads to a demand function
made up of points of intersection between a single VMP function (that assumes a constant x,)
and the price of X; (v,). But the quantity of X, used will probably change if the price of X,
changes, so the assumption that X, can be assumed constant is untenable.
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Figure 13.2 illustrates three cases. Diagram A illustrates the common case in which an
increase in the price of X; causes the quantity of X, that is used to decrease. Diagram B
illustrates a case in which the use of X, increases as a result of an increase in the price of X;.
Diagram C illustrates a special case in which the use of X, remains constant when the price
of X, increases. Diagram C illustrates the only case in which this approach would yield the
correct input demand function.

Figure 13.2 Possible Impacts of an Increase in the Price of X, on the Use of X,

Only if inputs are technically independent will the marginal product and VMP of one
input be unaffected by the quantity of the other input(s) that is(are) available. In other words,
it is highly unlikely that the VMP for X, would be unaffected by the availability of X,. As a
result, the input demand function specified in equation (13.49)wil probably make the demand
function for the input X, appear less elastic than it really is.

As the price of input X, increases, the farmer will use less of it, because the level of
that maximizes profits will shift to the left. This effect is captured by the own price elasticity
in equation (13.49). However, the farmer might also respond to the increased price for X, by
substituting X, for x,, and equation (13.49) ignores this substitution possibility. The quantity
of X, used by the farmer is treated as fixed.

Another approach is clearly needed that will explicitly take into account the possibility
of substitution X, for X, as the price of X, rises. The use of X, should be a function not of the
quantity of X, but rather of the price of X,. Such an approach would allow the farmer to move
from one VMP function to another as the price of X, (V,) changes. A change in the price of X,
causes the use of X, to change, which in turn, results in a new VMP function for x, (Figure
13.3).
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Figure 13.3 Demand for Input X, When a Decrease in the price of X,
Increases the Use of X,

The new approach makes use of the same first order conditions (equations (13.46) and
(13.47)) as those used in the first example. Prices and production function parameters are
treated as knowns, the quantities of X, and X, are unknowns. Equations (13.46) and (13.47)
thus represent two equations in two unknowns that are solved as a system. To solve the
system, first-order condition (13.46) is divided by first-order condition (13.47) to yield

(13.50) ax,/bx, = v,V
or
(13.51) X, = v,bX,/av,

Equation (13.51) is then substituted into first-order condition (13.46) and solved for X,

(13.52) Apax, =ty by, P b at =y,
(13.53) X1 =y 1y b(pA) T ab b
(13,54) X, = Vl(l—b)/(am— l)vzb/(a+b— l)(pA)f 1(atb=1)4(b=1)/(atb=1)py-biatb-1)

For equation (13.54), the input own—price demand elasticity is
(13.55) (dx,/dv,)(v,/%,) = (1 - by(@a+b - 1)<0
(13.56) dinx,/dlnv, = (1 - b)/(a+b - 1)<0

Ifa+ b <1, then the input own— price demand elasticity is negative. For any specific set of
values for a and b, the input own—price demand elasticity may be calculated.
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( T)he cross price demand elasticity between input X, and X, may be defined from equation
13.54) as

(13.57) (dx,/dv,)(vy/%,) =b/@a+b - 1)< 0
(13.58) dinx,/dlnv, = b/(@a+b - 1)<0

This elasticity is also negative when a + b < 1. As the price of X, increases, less of X, will be
used.

The output price elasticity is
(13.59) (dx,/dp)(p/x))=-1/(a+b-1)>0
(13.60) dinx,/dlnp=-1/a+b - 1)>0

This elasticity is positive when a + b < 1. This suggests that the demand for X, increases as
the output price increases.

Notice also that the sum of the input own—price and cross-price elasticities equals the
negative of the output price elasticity

(13.61) (1-b)a+b-1)+bfa+b-1)=-1[-1/a+b - 1)]

The relationship defined in equation (13.61) between elasticities holds for production functions
with decreasing returns to scale. This relationship would also hold in instances where there
are more than two inputs. In general, the sum of the own— price and cross-price input demand
elasticities equals the negative of the output-price input demand elasticity.

The own—price and product-price elasticities obtained from the second approach will in
general be more strongly negative or elastic than those obtained from the first approach (see
Figure 13.3). However, the exact relationship between elasticities will depend on the extent
to which the farmer substitutes X, for X, in the face of rising prices and the impact that this
substitution has on the VMP function for x,. Estimates of elasticities from the second approach
normally should more accurately portray the extent of the adjustment process by the farmer
in response to changing input prices than those estimates obtained from the first approach.

13.6 Input-Demand Functions Under Constrained Maximization

Ordinarily, no attempt would be made to derive individual input demand functions for
production functions that have constant or increasing returns to scale. If there were increasing
returns to scale and input prices were constant (not a function of the demand for the input),
profits to the farmer could be maximized by securing as much of both (or all) inputs as
possible. Here, no demand function as such could exist. If there were constant returns to scale,
the farmer would shut down if the cost of the inputs per unit of output exceeded the output
price. If the cost of the inputs per unit of output was less than the product price, the farmer
would again attempt to secure as much of each input as possible, and no demand function for
the input would exist.

However, if the farmer has a constraint or limitation in the availability of dollars for the
purchase of inputs, it may be possible to derive input demand functions even when the
underlying production function has no global profit maximizing solution, or in other situations
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where a constraint exists in the availability of dollars for the purchase of inputs. Such demand
functions are sometimes referred to as conditional demand functions, in that they assume that
the specific budget constraint is met. The conditional demand function specifies the quantity
of X, and X, that will be demanded by the farmer for a series of input prices v, and v,, and
assuming that C° total dollars are spent on inputs.

Consider the production function
(13.62) Y = XX,

The function coefficient for this production function is 2. Now suppose that the farmer
faces a budget constraint C°

(13.63) ° = v,X, + VoX,

At the budget level defined by equation (13.63), output y° can be produced.
The Lagrangean representing the constrained maximization problem is

(13.64) L= XX, + A(C° = V,X; — V,X,)

A key assumption of Lagranges formulation is that the farmer must spend exactly C° dollars
on X, and X,. The corresponding first order conditions are

(13.65) OL/OX, =X, — AV, =0
(13.66) OL/OX, =X, — AV, =0
(13.67) OL/OA =C° - vX, — VX, =0

Dividing equation (13.65) by equation (13.66) and rearranging gives us
(13.68) X, = (V)X

Inserting equation (13.68) into equation (13.67) yields

(13.69) C° ~ VX, VX, = 0
(13.70) C° -2v,X, =0
(13.71) 2v,x, = C°

(13.72) x, = C°/2v,

In this example, the demand for input X, is a function only of its own price and the
dollars available for the purchase of X,. However, this conclusion is a result of the particular
set of coefficients or parameters chosen for the production function and does not hold in the
general case.

The input demand function for X, could be derived analogously. The price of X, (v,)
would have appeared in the input demand function if both X, and x, appear in each MPP. The
price of the output does not enter. The constrained maximization problem assumes that the
output level defined by the isoquant tangent to the budget constraint will be produced
regardless of the output price. The possibility that the farmer may wish to instead shut down
is not recognized by the calculus.
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13.7 Comparative Statics and Input Demand Elasticities
Consider a general profit function for the two-input case

(13.73) T = pf(X;,Xy) - ViX, - VX,

The first order profit-maximizing conditions are

(13.74) Om/9x, = pf, - v, =0

(13.75) OT/Ox, = pf, - v, = 0.

How does the use of the inputs X, and X, vary with prices of the inputs v, and v, and with the
output price p. To determine this, it is necessary to take the total differential of (13.74) and
(13.75), treating the input quantities and the prices of both the inputs and the outputs as
constants.

The elasticity of demand for input X, with respect to its own price is (dx,/dv,)(v,/X,) =
dinx,/dInv,; with respect to the price of the second input is (dx,/dv,)(v,/X,) = dlnx,/dInv,; with
respect to the product price is (dx,/dp)(p/x,) = dlnx,/dInp. The sign on each of these
elasticities determines whether the firm will increase or decrease its use of the input or factor
of production with respect to a change in each of the prices.

The prices and input quantities are always positive, and hence, do not affect the sign on
each elasticity. However, the sign on dX, and dx, when either v,, v,, or p changes determines
the sign on the corresponding elasticity. Hence, dx, and dx, must each be calculated assuming
a change in v, (dv,), a change in v, (dv,) and a change in p (dp).

To do this, the total differential of equations (13.74) and (13.75) is calculated, allowing
input quantities and the prices of inputs and the output to vary. The result is.

(13.76) pf,,dx, + pf,,dx, = dv, - f,dp
pf,,dx,; + pfy,dx, = dv, - f,dp

First, equation 13.76 is solved. It is easier to employ matrix notation to do this.

tfu s
(13.77)
o Pl

dx

dx,

(dv, - f,dp)
(av, - f,dp)

1

Solving for dx, and dx,,
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m tfu P,
(13.78) -
dx, o1 Pl

Equation (13.78) can be solved for dx, or dx, by using Cramer's rule. For example, dx,

-1

(@v, - f,dp)
(av, - f,dp)

is

(dv, - fidp) pf,

(v, - fdp) pfy,
phy Pl
Phy Py

(13.79)  dx, =

Since by Young's theorem, f, =f,,, then
_ Py, — fidp) - phy(dv, — f,dp)

(13.80)  dx
p2(f11f22 - f122)

1

Notice that pis always positive. Furthermore, for second order conditions to be met for profit
maximization, the quantity f,,f,, -f,,”> must always be positive. Therefore, the bottom half of
equation (13.80) must always be positive. Hence, the sign on d¥, is conditional on the sign on
the top half of equation (13.80).

First, suppose that the input's own price increases, while other prices are held constant.
Thus, dv, increases, but dv, and dp are assumed to be zero. Equation (13.80) becomes

Pl - ) - p 0 - Of)

(13.81) dx, . .
p (fl}fzz B f12)
Therefore,
dx
(13.82) L - In

iy - fiD)

Since the bottom half of equation (13.82) is always positive, the sign on dx,/dv, depends
entirely on the sign on f,,. The second derivative f,, is the slope of MPPx,, which must be
negative to fulfill the second order conditions for profit maximization derived by
differentiating equations (13.74) and (13.75). Therefore, without exception, if the first and
second order profit-maximizing conditions are fulfilled, then the firm will always use less of
an input in response to an increase in the input's own price. Since the own-price input
elasticity of demand is defined as (dx,/dv,)(v,/X,), and v,/X, is always positive, the input's
own-price elasticity of demand is therefore always negative.

Now consider the demand for input X, in response to an increase in the price of the
product, p. Equation (13.81) becomes
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) 2,0 - fidp) - pf,,(0 - f.dp)

(13.83) dx, . .
P ~ 1)
Rearranging,
dx - +
(13.84) L = W * T

dp p(fnfzz - f122)

What is known about the sign on equation (13.84)? Once again the bottom half of the fraction
must be positive in order to fulfill the second order conditions for profit maximization. We
know that if the inputs have positive prices, then both f, and f, must be positive, since MPPx,
and MPPx, are always positive at the point of profit maximization. The second derivative, f,,
(the slope of MPPy,), is always negative for a maximum. Therefore the term -f,f,, is always
positive. Sincef, is also positive, the sign on equation (13.84) depends in part on the sign on
f,. Only iff , is negative is there a possibility that dx,/dp could be negative. Iff,, is negative,
then the sign on dx,/dp will be negative if the absolute value of f,f,, is greater than f,f,,.

Clearly, we cannot conclude that the firm will always use more of X; in response to an
increase in the output price. However, the circumstances under which f;, would be negative
enough for the firm do decrease its use of X, in response to an increase in the product price are
quite rare. To illustrate, it is helpful to understand the economic interpretation of the cross
partial f,,. The cross partial f,, is the change in MPPx, with respect to an increase in the use
ofX,. (By Young's theorem, f,, is also the change in the MPPXx, with respect to an increase in
the use of X,.) In other words, if the use of X, is increased, f,, tells us by how much this
increase will affect MPPx,.

Consider three production functions. The first is
(13.85) y=x"+xr.

For equation (13.85), since there are no cross products (interaction terms containing the
product of X, and x,), f,, is zero. In general, this will be true for all additive functions that do
not include interaction terms (cross products) between the two inputs.

Suppose, however, that equation (13.85) was modified such that
(13.86) y =X+ %P + 8x,X,.

For equation (13.86), f,, could be negative if O were negative, but this would mean that an
increase in the use of one of the inputs decreased the productivity of the other input. Even if
O were negative, it would need to be quite negative if the absolute value of f,f,, were to be
greater than greater than f,f,,. This means that for the elasticity of demand for input X, to be
negative with respect to the price of the product, increases in the use of input X, would need
to result in a substantial decline in MPPx,!

Finally, consider a Cobb-Douglas type function
(13.87) y = Ax,*X,P.
Assuming that ¢, and [ are positive, f,, will always be positive. Thatis, an increase in the use

ofx, cannot decrease the marginal productivity of X,. The reader may verify the sign on f,, for
other production functions in this book.
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The firm's response to changes in the price of a second input depends only on the sign
on f,,, that is, whether input X, is a substitute or a complement to input X,. To illustrate,
assume a positive change in the price ofthe second input v,, and therefore that dv, is positive.
Then,

_ 20 - ) - Py, - )

(13.88)  dx ) _
(i - 112)
Therefore,
dx —
(13.89) L i

dv, Pty - )

If f,, is positive, the firm will decrease its use of input X, in response to an increase in the
price of the second input (v,). In this instance, the inputs are technical complements and
increases in the use of X, increase MPPx,. If f, is negative (however near zero) the firm will
increase its use of X, in response to an increase in the price of the second input. In this
instance, the inputs are technical substitutes. For the production function represented in

%quation (13.86), the inputs are technical complements if > 0, but technical substitutes if
<0.

By Young's theorem, f,, equals f,,, and as a consequence, dx,/dv, equals dx,/dv,. As a
result, the elasticity of demand for input X, with respect to a change in the price of input X,
is always exactly equal to the elasticity of demand for input x, with respect to a change in the
price of input X,. This is the symmetry of the cross-price input demand elasticities.

13.8 Concluding Comments

This chapter has shown how demand functions for inputs or factors of production can
be obtained from the production function for a product. A key assumption of the model of
pure competition, that the prices for both inputs and outputs be constant and known with
certainty, was made throughout the analysis. The demand for an input is then determined only
by the input and output prices and the coefficients or parameters of the underlying production
function.

Notes

! The definitions for technical complements, technical substitutes, and technical
independence proposed here are quite different from those suggested in Doll and Orazem (pp.
106-107). Doll and Orazem argue that technical complements must be used in fixed
proportion to each other, resulting in isoquants consisting of single points or possibly right
angles. Downward sloping isoquants indicate that inputs are technical substitutes. By the Doll
and Orazem definition, most inputs are technical substitutes, not complements. In all three
cases specified in this text, isoquants can be downward sloping.
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Problems and Exercises

1. Assume that the production function is y = x**. The price of the input is $2, and the price
of the output is $5. What is the profit-maximizing level of use of X? What is the own-price
elasticity of demand for input x? What is the output-price elasticity of demand for input x?

2. Find the demand function for input X under an alternative set of prices for x. Graph the
function. Now increase the price ofy to $7 per unit. Graph the function again. Now decrease
the price of y to $3 per unit. Again graph the function.

3. Suppose that the production function is given as y = 0.3X. Is there a demand function for
input X? Explain.

4. Suppose that the production function is given as y = X*. Is there a demand function for input
X? Explain.

5. Suppose that the production function is given as
y= X10'3X20‘9

Find the input demand function for X, assuming that input X, is allowed to vary. What
happens to the demand for X, when the price of X, declines? What is the own-price elasticity
of demand for input X,? What is the cross-price elasticity of demand for X, (the elasticity of
demand for input X, when the price of input X, changes)? What is the output or product-price
elasticity of demand for input x,?

6. Assume that the production function is
y= X10'5X20‘5

The price of y is $10 per unit, and the price of X; and X, are each $2 per unit. How much of
each of X, and X, would the manager demand if he or she had but $100 to spend on X, and X,?
Now suppose that the price of X, increases to $10 per unit, and the manager has the same
$100 to spend. How much of X, and x, would the manager demand?

7. Verify that for the profit maximizing firm, regardless of the specific production function
employed, the sum of the elasticities of demand with respect to the input's own and the other
input prices plus the elasticity of demand for the input with respect to the product price equals
zero. That s, verify that all input demand functions must be homogeneous of degree zero with
respect to product and all factor prices.

Hint: First multiply equation (13.82) by v//X,, equation (13.84) by p/x, and equation (13.89)
by v, /x,. Then remember that for the profit-maximizing firm, the MPP for each input equals
the respective factor/product price ratio.

8. Suppose that the production function that generated the isoquants in Figure 13.2 was
equation 13.86. For each case, what must be the value of 0?

Reference

Doll, John P., and Frank Orazem. Production Economics: Theory with Applications. 2nd ed.
New York: John Wiley, 1984.
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14

Variable Product
and Input Prices

This chapter relaxes the fixed input and product price assumptions of the purely competitive
model and derives the marginal conditions for profit maximization, allowing for the possibility
of variable input and product prices. The possibility exists that input or product prices may
vary according to how much product is produced or input is used. For a single farmer to affect
the price of a product, he or she must control a significant share of the output for the product.
The farmer may be able to buy inputs in volume at discount, thus affecting the constant input
price assumption.

Key terms and definitions:

Price Variation

Downward Sloping Demand Curve
Volume Discounts

Price Flexibility

Function-of-a-Function Rule

Composite Function Rule

Total Value of the Product (TVP)
General Profit Maximization Conditions
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14.1 Relaxing the Assumptions of Pure Competition

Until now, two key assumptions of the purely competitive model have been carefully
followed. These assumptions were (1) that the farmer can produce and sell as much output
as desired at the going, fixed market price, and (2) the the farmer can purchase as much of any
input as needed at the going market price. But what if one or both of these assumptions about
the real world no longer hold? There are several possible instances in which one or both of
these assumptions might not hold.

It is not easy to see how the individual North Dakota wheat producer, by his or her
output decision, could possibly influence the market price for wheat, but what about the
broiler producer large enough to produce 10 percent of the available broilers for sale in U.S.
markets? Surely his or her output decisions could have an influence on broiler prices in the
United States. What about a single producer who dominates a small market such as the
parsley market? His or her decision not to produce would have an impact on the price of
parsley. Control of the market price for an agricultural commodity requires a degree of size
on the part of the individual firm.

For certain agricultural commodities, such as broilers, the firm must be rather large in
terms of the dollar volume of sales relative to total production of the agricultural commodity
to have an impact on prices. For other commodities, such as parsley, where the total market
is small, all that is required is that the firm control a significant share of the total output. The
percent of the total market that a single farm firm must control in order to have an impact on
the price of the commodity varies from commaodity to commodity. For a product with a highly
inelastic demand curve by consumers in the aggregate, control of but 1 percent of the total
output may be sufficient for the individual firm to exert an influence on the market price.

There are two possible rationale for variation in input prices in response to changes in
the demand for an input by a farmer. A farmer might be so large as to be the dominant buyer
of a particular input in the local market. The farm is large enough such that additional units
of the input cannot be purchased without incurring a higher price. It is difficult to see how a
market for feed grain or fertilizer could be dominated by a single producer such that the price
of feed grains or fertilizer for all producers would be influenced. More likely, market
domination in the purchase of inputs might occur for a highly specialized input required solely
by the producers of the single commodity which the farm firm dominates, and in a situation
for which there may be but a few producers of the input.

The second rationale for variation in input prices is as a result of quantity or volume
discounts by input suppliers. Fertilizer purchased by the ton is often cheaper than fertilizer
purchased by the pound in a bag, but the crop does not care if the fertilizer was bagged or not.
What is required here is that the farm merely be of sufficient size such that the quantities of
inputs required to take advantage of the volume discount can be used.

14.2 Variation in Qutput Prices from the Output Side

If output prices vary with the output level for the farm, the farm must have a degree of
monopoly power over the market. The farm need not be the sole producer of the commodity
in order to have monopoly power. All that is required is that the output level by the farmer be
sufficiently large such that if the level of output from the farm is changed, the market price
level will also change.

The example used here relies on some of the characteristics of the model of pure
monopoly that are a usual part of introductory economics courses. An important characteristic
ofamodel of amonopoly is adown - sloping demand curve for the product. A down—sloping
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demand curve, in turn, results in marginal revenue no longer the same as the price of the
product. The producer can sell additional units of output only by accepting a lower price for
each incremental unit.

In the model of pure competition, with fixed output prices, total revenue is price times
output (TR = py). Thus the total revenue function under pure competition is a line with a
constant positive slope p. Now suppose that price is a function of output. Or p = p(y) (this
notation is read p equals p of Y, not p equals p times Yy). Then total revenue is defined as

(14.1) TR = p(y)y

Marginal revenue can be obtained by differentiating total revenue with respect to output using
the composite function rule

(14.2) MR = dTR/dy = p dy/dy +y dp/dy
(14.3) MR = p +y dp/dy

The derivative dp/dy represents the slope of the demand function by consumers fory. The new
marginal revenue is equal to marginal revenue under constant product prices plus an
expression that explicitly takes into account the slope of the demand function for the output.

Now divide and multiply MR by the output price p
(14.4) MR = p[1 + (y/p)(dp/dy)]

The expression (dy/dp)(p/y) is the elasticity of demand for the output y or E,. Marginal
revenue under variable output prices is

(14.5) MR = p(1 + 1/E,)

The term price flexibility is sometimes used as the expression for 1 over an elasticity of
demand. A price flexibility represents the percentage change in output price divided by a
percentage change in quantity.

The elasticity of demand will be negative if the demand function is downward sloping.
As the elasticity of demand for y becomes larger and larger in absolute value (approaching
negative infinity), 1 over the elasticity of demand becomes smaller and smaller. At the limit,
when the elasticity of demand becomes infinite, marginal revenue is the price of the product
and the pure competition assumption is met. If the industry contains monopoly elements, the
demand curve will slope downward to a degree and the price of the product will not be equal
to marginal revenue.

In other words, if the elasticity of demand lies between zero and — o, marginal revenue
will not be the same as the price of the product. If the elasticity of demand falls in the range
(- < E4 < 1), marginal revenue will be positive, but less than the product price. If the
elasticity of demand falls in the range (- 1 < E; <0), marginal revenue will be negative. If
the elasticity of demand equals — 1, then marginal revenue is zero. The gain in revenue from
an increase in the physical quantity of output is just offset by the reduction in revenue
attributable to the decrease in the product price.

When marginal revenue is positive, total revenue increases as output is increased. Total
revenue is increasing if the elasticity of demand for the product is between —and — 1. When
marginal revenue is zero, total revenue is constant or perhaps at its maximum. Total revenue
is constant when the elasticity of demand for the product exactly — 1 (sometimes called unitary
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elasticity). When marginal revenue is negative, total revenue is declining as output is
increased. The decrease in revenue from the price reduction more than offsets the increase in
revenue from the additional physical quantity of output. Total revenue is decreasing when
elasticities of demand for the product lie between 0 and — 1 (Figure 14.1).

Maximum TR

Total
Revenue

TR = ay fbyz

IEpI > 1

Demand
p=a - by

1Epl <1

Marginal Revenue
MR = a - 2by

Figure 14.1 Total Revenue, Marginal Revenue, and the Elasticity of Demand

Now suppose that the demand function for the output is
(14.6) p=a- by
where a and b are constants. Total revenue is
(14.7) TR=py = (a - by)y =ay - by’
Marginal revenue is
(14.8) MR = dTR/dy =a - 2by

Marginal revenue descends at a rate twice as fast as the demand curve. Hence, for a linear
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demand function, marginal revenue cuts the horizontal axis at a point exactly one half the
distance from the origin to where the demand function cuts the horizontal axis (Figure 14.1).
The slope of the demand function for y is
(14.9) dp/dy = -b
The price flexibility of demand for y is
(14.10) (dp/dy)y/p = —b(y/p)
The elasticity of demand (E,) for y is
(14.11) E,= (- 1/b)ply
For a linear demand function, the elasticity of demand will vary along the demand
function. The elasticity of demand at a particular point on the demand function can be
determined if the corresponding p and y is known.
Marginal revenue is

(14.12) MR = p[1 + (-b)(y/p)]
=p — (bp)(y/p)

14.3 Variation in Qutput Prices from the Input Side

The farmer controls the level of output that is produced by adjusting the quantity of input
that is used. A change in the amount of input that is used will, in turn, affect the amount of
output produced. If the market price changes as a result of a change in output, the change in
the amount of input that is used can also indirectly affect output prices.
Suppose that the production function is given by
(14.13) y = y(X)
Equation (14.13) should be read y equals y of X, not y equals Yy times X. The function y(X) is
the same old production function as f(x), but the new notation will simplify the economic
interpretation of some of the derivatives.

The product price is again given by
(14.14) p=p(y)
The price of the product is a function of'y, or some p of y, not p times Y.

Equations (14.13) and (14.14), when taken together mean that
(14.15) p=ply(X)]

Output price is equal to p of y of X, not p times Yy times X. In this example the output price is
determined by the quantity of output that is produced. The quantity of output that is produced
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in turn is a function of the quantity of input that is used. This model suggests that the price
of the output is indirectly determined by the quantity of the input that is used.

The equation

(14.16) p=ply(X)]

is known as a function of a function. Such an equation can be differentiated using the simple
function-of-a-function rule, whichstates that the function should be differentiated from the
outside in and the result multiplied together

(14.17) dp/dx = (dp/dy)(dy/dx)

The change in the product price with respect to the change in the quantity of the input used
is the product of two slopes. The first (dp/dy) is the slope of the demand function and
represents the rate of change in product price as a result of a change in output. The second
slope (dy/dx) is our old friend MPP, and indicates how fast output changes in response to an
increase in the use of the input X. The derivatives dp/dy and dy/dx might be constants but they
need not be constant. If dp/dy is constant and negative, then the demand function has a
constant negative slope. If dy/dx is constant, MPP is constant.

The rule is readily extended for a production function with more than one input.
Recognize that a change in the use of X, also affects the use of X,. The partial notation for
MPPy, and MPPx, is used, and the products are summed for each input

(14.18) Y =Y(X;, Xp)

(14.19) p=p(y)

(14.20) P = plY(X,,X,)]

(14.21) dp/dx, = (dp/dy)(Dy/Ox,) + (dp/dy)(Dy/Ox,)(dx,/dx,)
(14.22) dp/dx, = (dp/dy)(Dy/Ox,) + (dp/dy)(Dy/Ox,)(dx,/dx,)

The expressions to the far right of the equalities in equations (14.21) and (14.22) link
explicitly the use of X, to X, and the use of X, to X,. If the slope of the demand function (dp/dy)
isnonzero and MPPx, and MPPx, are nonzero, the expressions on the far right will be zero only
if a change in the use of one of the two inputs is not accompanied by a change in the use of
the other input. This would be highly unlikely.

Suppose again the single-input production function
(14.23) y = y(X)
The total value of the product (TVP) is given by
(14.24) TVP = p[y(x)][y(X)]

Figure 14.2 illustrates the relationship between total value of the product under fixed product
prices and under variable product prices. There is no assurance that when output increases,
total value of the product will also increase if product prices decline in the face on the increase
in the output level. Diagram A illustrates a case where the new TVP actually declines. In
diagram B, the new TVP remains constant. In diagram C, both the old and new TVP increase,
but the TVP with decreasing product prices at a slower rate than TVP with constant product
prices.
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0°=p%y9
p" =0y "
v =y°x9

y "= yx")

C

Figure 14.2 Possible TVP Functions Under Variable Product Prices

To calculate the marginal value of the product (MVP), both the composite function rule
and the function of a function rule are needed

(14.25) MVP = dTVP/dx = p dy/dx + y[(dp/dy)(dy/dx)]
= dy/dx(p +y dp/dy)
= MPP, [p + y(the slope of the demand function)]
=pMPP, (1 + 1/E,)
=VMP, (1 + 1/Ey)
=VMP, + VMP,/E,

The marginal value of the product (MVP) under variable product prices equals the old value
of the marginal product (VMP,) under constant market prices plus the value of the marginal
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product under constant market prices divided by the price elasticity of demand. Since the price
elasticity of demand for the output is usually negative, MVP will usually be less than VMP
under constant product prices. Moreover, the slope of MVP will usually be more strongly
negative than the slope of VMP. The slope of VMP is influenced only by the declining
marginal product of the underlying production function, The slope of MVP is influenced both
by the declining MPP of the production function and the decrease in price associated with the
downward-sloping demand function.

14.4 Variable Input Prices

Two possibilities arise. Increasing input prices in response to increased demand could
occur ifthe individual producer were large enough to influence the market. This would imply
dv/dx > 0, where v is the price of X. The other possibility is dv/dx < 0. This would imply
quantity discounts, which result in a lower price per unit of input in response to an increase
in demand for the input. If dv/dx = 0, input prices are constant and the pure competition
assumption with regard to input prices is met.

The variable input price could be defined as
(14.26) vV =V(X)
The input price Vv is a function of X and equal to v of X (not v times x).
The total factor cost (TFC) is
(14.27) TFC = V(X)X
The total factor cost is V of X times X.
Marginal factor cost (MFC) can be found with the aid of the composite function rule
(14.28) MFC = dTFC/dx = v dx/dx + x dv/dx
=V + x dv/dx
=v[1 + (x/v)(dv/dx)]

=v(1 +1/E))
where

E, = (dx/dv)(v/x)

The elasticity E, may be positive, negative, or zero. If v is constant, then dx/dv =0, the
assumption of pure competition is met and MFC = v. If dx/dv is positive, the farmer can
obtain additional units of X but only at an increasing price. This condition is consistent with
the dominant input buyer case. If dx/dv is negative, additional units of the input can be
purchased at a decreasing incremental cost per unit. This condition is broadly consistent with
the quantity or volume discounts case.

14.5 A General Profit Maximization Statement

The general conditions for profit-maximization on the input side can be derived. These
conditions allow for variable product and input prices, but include fixed product and input
prices as a special case.
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Suppose that revenue (R) is a function of output (y)

(14.29) R = r(y)

Output is a function of input use

(14.30) y = y(X)

Cost (C) is a function of input use

(14.31) C =c(X)

Profit (II) is revenue minus cost

(14.32) I = r[y(x)] - c(x)

The first-order conditions for the maximization of profit in equation (14.32) require that
(14.33) dIL/dx = (dr/dy)(dy/dx) - dc/dx =0
(14.34) MVP - MFC =0

(14.35) MVP = MFC

The first-order or necessary conditions require that the marginal value of the product
(MVP) equal marginal resource cost (MFC), and this occurs at the point where the profit
function has a slope of zero. This rule must be followed irrespective of whether or not the
input prices are fixed or variable.

The second-order conditions require that
(14.36) d’Il/dx* = dMVP/dx -dMFC/dx < 0
(14.37) dMVP/dx < dMFC/dx

The slope of MVP must be steeper or more negative than the slope of MFC. If MVP is
downward sloping and MFC is constant or sloping upward, the second-order condition is
always satisfied at the intersection. A downward-sloping demand curve for the output leads
to an MVP function with a more strongly negative slope than would be the case under constant
output prices. But if MVP is downward sloping and so is MFC, the MVP function must cut
the MFC function from above. This condition is ordinarily met, but if the farmer were
receiving huge discounts for volume purchase of X, it might be possible for the slope of MFC
to be more strongly negative than the slope of MVP, and profits would not be maximum.

In the two-input case, the production function is defined as

(14.38) Y = Y(X,, X,)
The revenue function is
(14.39) R = r(y)
Thus

(14.40) R = rly(x,, X,)]
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The cost function is

(14.41) C = (X, X,)

Profit is

(14.42) I = rly(x,, X,)] = c(X;, X,)

First-order (necessary) conditions for maximum profit in equation (14.42) require that
(14.43) I1 = (dr/dy)dy/dx, - dc/Ox, =0

(14.44) I1 = (dr/dy)dy/Ox, - c/Ox, =0

The slope of the profit function equals zero with respect to both inputs. Moreover,
(14.45) MVPy, = MFCx,

(14.46) MVPy, = MFCx,

and

(14.47) MVPx/MFCx, = MVPx/MFCyx, = 1

Second order conditions require that

(14.48)
{0[(dr/dy)(Ay/0x,))/Ox, — A(Ac/Ox,)/0x,} {A[(dr/dy)(3y/Ox,)]/Ox,
— 0(3c/0x%,)/0%,} > {J[(dr/dy)(Ay/0X,)]/Ox, — A(AC/OX,)/OX,}
{0[(dr/dy)(3Ay/0x,))/O%, — A(Ac/OX,)/O%, }

One implication of these second-order conditions is that if profit maximization is to take place,
the MVP curve must intersect the MFC curve from above. This condition holds irrespective
of whether the MVP curve or the MFC curve has a positive or a negative slope. These first-
and second-order conditions could be extended to any number of inputs.

14.6 Concluding Comments

This chapter has provided a set of general profit maximization conditions that are no
longer linked to the pure competition assumption of constant input and product prices. These
conditions allow for the possibility of downward-sloping demand curves for the product and
volume discounts for input purchases. However, the marginal rules developed in Chapter 7
have not been significantly altered. The value of the incremental unit of the input in terms of
its worth in the production process is still equated to the cost of the incremental unit. This rule
applies irrespective of whether product and factor prices are allowed to vary.
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Problems and Exercises

1. For the following, indicate if a point of profit maximization exists. Explain your answer for
each case.

a. VMP cuts MFC from above.

b. VMP cuts MFC from below.

c. VMP and MFC are parallel.

d. VMP and MFC diverge.

e. VMP = §3 everywhere; MFC = $3 everywhere.

f. MFC and VMP intersect, but MFC has a more strongly negative slope than VMP.

2. Assume the following values. In each case find marginal revenue.

a. Total revenue (TR) = $3y
b.y=50-2p
c.p=10-y
d.p=(10-y)*?

3. Find the relationship between VMP and MVP for the following elasticities of demand for
product y.

a. —0.001
b. -0.2
c. -1

d. -5

e. —1000

4. Suppose that the revenue (R) and cost (C) functions are given by
R — 6y0A5
C =3y?

Find the first- and second-order conditions for profit maximization.
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15

Production of More
Than One Product

This chapter introduces the product-product model, in which a single input is used in the
production of two products. The basic production possibilities model familiar to students in
introductory microeconomics courses is reviewed. The linkages between the production
possibilities curve and the product transformation curve for the product-product model are
developed. The rate of product transformation represents the slope of the product
transformation function. Examples of competitive, complementary supplementary, and joint
enterprises are given. Product transformation functions are derived from single-input
production functions. An elasticity of substitution on the product side is defined.

Key terms and definitions:

Production Possibilities Curve
Concave to the Origin

Bowed Outward
Product-Product Model

Product Transformation Function
Total Differential

Rate of Product Transformation
Competitive Products
Complementary

Supplementary Products

Joint Products

Elasticity of Substitution on the Product Side
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15.1 Production Possibilities for a Society

The concept of a production possibilities curve is familiar to students in introductory
economics courses. A production possibilities curve represents the range of options open to
a society given the resources that are available to the society. The appearance of a
production possibilities curve differs from an isoquant in important ways. For example,
alternative outputs, not inputs, appear on the axes.

The production possibilities curve represents the amount of each output that can be
produced given that the available resources or inputs are taken as fixed and given. The
production possibilities curve is usually drawn bowed outward, or concave to the origin of the
graph, rather than convex to the origin of the graph. Figure 15.1 illustrates the classical
production possibilities curve.

Guns Production
Possibilities Curve
For a Resource

Bundle X °

Butter

Figure 15.1 A Classic Production
Possibilities Curve

The classical example of a production possibilities curve for a society has but two goods,
butter and guns. Butter represents consumer goods that a society might be able to produce
with its resources. Guns represent military weapons. A society might choose any point on its
production possibilities curve.

The position of the Soviet Union would be near the guns axis on its production
possibilities curve. The United States has chosen to produce some guns and some butter, with
a somewhat greater emphasis on butter than guns. The United States would be nearer the
butter axis of its curve than would the Soviet Union. A society such as Japan, which invests
nearly everything in goods for consumers and virtually nothing on defense, would be found
very near the butter axis of its curve.

No two societies have the exact same set of resources available for the production of
butter and guns. Therefore, no two societies would have the same production possibilities
curve. A society could choose to produce at a point interior to its production possibilities
curve, but this would mean that some of the resources available to the society would be
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wasted. A society could not operate on a point outside its production possibilities curve in
that this would require more resources than are available to the society.

A production possibilities curve thus represents the possible alternative efficient sets of
outputs from a given set of resources. A simple equation for a production possibilities curve
is

(15.1) X =g(B,G)

where X" = fixed quantity of resources available to the society
B = amount of butter that is produced
G = amount of guns that are produced

A series of production possibilities curves could be drawn, each representing a slightly
different value for the resource bundle X. Production possibilities curves representing smaller
resource bundles would lie inside, or interior to, production possibilities curves representing
larger resource bundles. Like isoquants, production possibilities curves representing different
size input bundles would never touch each other.

15.2 Production Possibilities at the Farm Level

The product-product model of agricultural production is a firm—level version of the
production possibilities curve. The production possibilities curve at the firm level is called a
product transformation curve. The resource base for the farm is a bundle of inputs that could
be used to produce either of two outputs. The farmer must choose to allocate the available
bundle of inputs between the alternative outputs.

A society faces a problem in attempting to determine how best to allocate its resource
bundle between guns and butter, for it cannot rely entirely on market signals. Consumers as
individuals would each demand all consumer goods and no defense. But in the aggregate, the
society may need protection from other warring nations, so market signals are useless in
determining how much of a society's resources should be allocated to the production of guns
or butter.

The farmer, or for that matter, any firm, faces a much simpler problem. Firm owners can
rely on the market to provide an indication of the proportions of the input bundle that should
be allocated to each alternative use. The market provides these signals through the price
system. The relative prices, or price ratios, provide important information to the farm firm
with respect to how much of each output should be produced.

The other piece of information that a farmer needs to know is the technical coefficients
that underlie the production function transforming the input bundle into each alternative
output. Just as a family of production functions underlie an isoquant map, so do they underlie
aseries of product transformation curves or functions. And the law of diminishing returns has
as much to do with the outward bow of the product transformation curve as it did with the
inward bow of the isoquants.

Consider a farmer who has available 10 units of an input bundle x. Each unit of the input
bundle consists of the variable inputs required to produce either corn or soybeans. The
proportions of each input in the bundle are equivalent to the proportions defined by the
expansion path for the commodity. Since the two commodities require very nearly the same
set of inputs, suppose that each unit of the bundle is exactly the same regardless of whether
it is being used in the production of corn or soybeans. (This is a bit of a simplification in that
no two commodities do require exactly the same inputs in the same proportion. Corn requires
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nitrogen and seed corn. Soybeans require little if any nitrogen and seed soybeans. Overlook
this problem for the moment.)

The farmer is faced with hypothetical production function data (Table 15.1). The
farmer faces a constraint that no more than 10 units of the input bundle X be used. The data
for the soybean production function are presented starting with the greatest amount of input
first. Each row of Table 15.1 may thus be looked upon as the quantity of each output
produced from a total of 10 units of the input bundle. The production function for both corn
and soybeans is subject to the law of diminishing returns. Each additional unit of the input
bundle produces less and less additional output. The farmer cannot circumvent the law of
diminishing returns in the production of either corn or soybeans.

Table 15.1 Production Function for Corn and Soybeans from a
Variable Input Bundle x

Units of Yield on Units of Yield on

X Applied an Acre X Applied an Acre

to Corn (bushels) to Soybeans (bushels) Point
0 0 10 55 A
1 45 9 54 B
2 62 8 52 C
3 87 7 49 D
4 100 6 45 E
5 111 5 40 F
6 120 4 34 G
7 127 3 27 H
8 132 2 19 I
9 135 1 10 J

10 136 0 0 K

The greatest yields result when the farmer allocates all of the input bundle to the
production of one of the possible outputs, but then none of the alternative output is produced.
Suppose that the farmer initially allocates all 10 units of X to the production of corn and
receives 136 bushels per acre. This point is depicted at A on Figure 15.2. By allocating,
instead, 1 of the 10 units of X to the production of soybeans instead of corn, the farmer gives
up but 1 bushel of corn. In return, 10 bushels of soybeans are received. What is happening
is that the unit of the input bundle is being taken away from corn production in a very
nonproductive region of the corn production function, where the MPP of X for corn is very
low. The unit of the bundle is applied to the production function for soybeans in a very
productive region of the soybean production function, where the MPP of x for soybeans is
very high. Figure 15.2 illustrates some of the other options represented by the tabular data.
Each additional unit of X taken from corn production results in a greater and greater loss in
yield. As these additional units of X taken from corn production are applied to soybeans, each
additional unit of X produces fewer and fewer additional soybeans. If a line is drawn that
connects each of these points, the product transformation curve of function for the farmer
results. The bowed-out shape of the production possibilities curve is a direct result of the law
of diminishing returns, as evidenced by the declining marginal productivity of X in the
production of each output.

If the production functions for both outputs do not have diminishing marginal returns,
then the product transformation curve would not be bowed outward but would have a constant
downward slope. The product transformation curve would be bowed inward if both underlying
production functions had increasing marginal returns, or increased at an increasing rate.
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Figure 15.2 Deriving a Product Transformation Function from Two Production Functions

15.3 General Relationships

There exists a close association between the shape of a product transformation function
and the two underlying production functions. Suppose that the equation for the product
transformation curve is given by

(15.2) X=g(Y,, )

where X is the input bundle and y, and y, are alternative outputs, such as corn and soybeans
in the earlier example.
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This is clearly not a production function, for it tells the amount of the input bundle that
will be used as a result of varying the quantity of y, and y, that are produced. Note how
similar this function is to the earlier function representing a product transformation curve for
a society, but the function g is clearly not the same as the now familiar production function

Following the procedure outlined earlier for taking the total differential of a function, we
have

(15.3) dx = (3g/dy,)dy, + (Og/dy,)dy,

The partial derivatives dg/dy, and 0g/dy, can readily be interpreted. The function g is
actually X, and the equation could have been written as X = x(y,, y,). (Again, X equals X of y,
and y,, notX equals x times Y, and y,.) Each partial derivative represents the change in the use
of the input bundle X that arises from a change in the production of one of the outputs and is
an inverse marginal product. The partial derivative g/dy, is 1/MPPxin the production of y,,
assuming that Y, is constant. This might be called 1/MPPyy,. The partial derivative dg/dy, is
1/MPPx in the production of y,, assuming that Y, is held constant. This might be called
1/MPPyxy,. The equation for the total differential could then be rewritten as

(15.4) dx = (1/MPPyy,)dy, + (1/MPPx.)dy,

The basic assumption underlying a specific product transformation function is that the
quantity of the input bundle X does not change. The product transformation function thus
provides the alternative quantities of y, and y, that can be produced from a fixed amount of
X. Hence dx, the change in X along a product transformation function, is zero. The total
differential may then be rewritten as

(15.5) 0= (1/MPPxy,) dy, + 1/MPPxy,) dy,
(15.6) ~ (1/MPPyy,) dy, = (1/MPPy,) dy,
(15.7) ~ (1/MPPy,) = (1/MPPxy,)(dy,/dy,)
(15.8) ~ (1/MPPxy)/(1/MPPxy,) = dy,/dy,
(15.9) ~ MPPyx,/MPPyy, = dy,/dy,

The expression dy,/dy, represents the slope of the product transformation curve at a
particular point. (The slope between a pair of points could be called Ayz/Ay, ) The slope of
aproduct transformation function has been called different things by various economists. The
term most often used is the rate of product transformation (RPT). The RPT is the slope (or
in some textbooks, the negative slope) of the product transformation function and indicates
the rate at which one output can be substituted for or transformed to the production of the
other output as the input bundle is reallocated.

For the derivative dy,/dy,, y, is substituting and Yy, is being substituted. The derivative
dy,/dy, is the rate of product transformation of 'y, for y,, or RPTy,.. Some textbooks define
the RPTyy, as the negative of dy,/dy,, so that the rate of product transformation is positive
when the product transformation function is downward sloping. The derivative dy,/dy, is
RPTyy,.

Along a product transformation function, the RPTyy, is equal to the negative ratio of
individual marginal products
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(15.10) RPTyy, = — MPPx,/MPPxy,

(If the rate of product transformation is defined as —dy,/dy,, it is equal to MPPx,,/MPPxy,.)

The rate of product transformation for each point in the tabular data can be calculated with
this rule (Table 15.2).

15.4 Competitive, Supplementary, Complementary and Joint Products

Given a fixed amount of the resource bundle X, one output must be forgone in order
to produce more of the other output. Therefore, under ordinary circumstances, the RPTy,y, will
be negative. Hence the two outputs are competitive with each other. Two outputs are said to
be competitive when the product transformation function is downward sloping.

(15.11) dy,/dy, <0 implies competitive products.

Anoutput V, is said to be supplementary, if some positive level of production of the
output Y, is possible without any reduction in the output of y,. Supplementary outputs imply
either a zero or infinite rate of product transformation, depending on which output appears on
the horizontal axis. This suggests that

(15.12) dy,/dy, = 0 or dy,/dy, = =

Table 15.2. The Rate of Product Transformation of Corn for Soybeans
from a Variable Input Bundle X.

Units of  Yieldper MPP of  Units of Yield per MPP of  RPT of
X Applied  Acre xin Cormn X Applied Acre xinBean Corn for
to Corn  (bushels) Production to Soybeans  (bushels) Production Soybeans
0 0 10 55
45 1 1/45 =0.022
1 45 9 54
17 2 2/17=0.118
2 62 8 52
15 3 3/15=10.200
3 87 7 49
13 4 4/13=0.308
4 100 6 45
11 5 5/11 =0.455
5 111 5 40
9 6 6/9 =0.667
6 120 4 34
7 7 7/7=1.00
7 127 3 27
5 8 8/5=1.60
8 132 2 19
3 9 9/3=3.00
9 135 1 10
1 10 10/1 =10.0

10 136 0 0
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An example of a supplementary enterprise sometimes cited is a farm flock of chickens.
The farm wife's labor would be wasted were it not for the chicken flock. The chicken flock
does not reduce the output from remaining enterprises on the farm. This example is not very
popular with women's groups. Neither is it a very good example. Even if the farm wife's labor
were wasted, chickens take other inputs such as feed, that would reduce the output from the
other enterprises. A good example of a supplementary enterprise is difficult to find. Usually,
the enterprise is supplementary only with respect to certain types of inputs contained within
the input bundle, in this example, the housewife's labor.

An output y, is said to be complementary, if production of y, causes the output of y, to
increase. The rate of product transformation is positive at least for certain combinations of
y, and Y,. In other words;

(15.13) dy,/dy, > 0 for certain production levels for y, and y,

An often cited example of a complementary enterprise is a legume in a rotation. The
legume increases production of grain crops in alternate years. But it is not entirely clear that
such a rotation would necessarily increase the total output of crops over a horizon of several
years, and the farmer may produce more output by using chemical fertilizers instead of the
legume. Good examples of complementary farm enterprises are difficult to find. Again, these
examples are usually called complementary only with respect to a few of the inputs contained
in the bundle needed for production.

Joint products, narrowly defined, are those that must be produced in a fixed ratio to
each other. As a result, the product transformation function will either be a single point or a
right angle. The classical example is the production of beef and hides. Only one hide can be
produced per beefanimal, no more and no less. The elasticity of product substitution between
beef and hides is zero.

Another example is the production of wool and lamb. Although these may appear to be
joint products, much like beef and hides, some sheep tend to produce more wool, whereas
others are favored for the production of meat. Over time a farmer might substitute a wool
breed for a meat breed and produce more wool but less lamb. Or the meat breed might be
substituted for the wool breed to produce more meat and less wool. So substitution could take
place over time but within a narrow range of possibilities. It would not be possible to raise a
sheep that produced all lamb and no wool, or all wool but no lamb.

Figure 15.3 illustrates some possible product transformation functions representing
competitive, supplementary, and complementary products. Two outputs are normally

competitive everywhere on the product transformation function. It is possible for two outputs
to be supplementary or complementary over only a portion of the transformation function.

15.5 Product Transformations from Single-Input Production Functions
It is often possible to develop a specific transformation relationship between two

products by working with the underlying single-input production functions. Suppose that the

two single input production functions are given by

(15.14) Y1 =2%,

(15.15) ¥2 = 3%,

(15.16) Xy, + Xy, = X
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where y, and y, are alternative outputs and Xy, and Xy, represent the quantities of X used in the
production ofy, and y,, respectively. The sum of these quantities must be equal to X, the total
amount available. Solving the first and second equations for Xy, and Xy, and substitution into
the third equation yields

Y,|Supplemantary
Y 2 Range
< | \
-y Y,
Competitive ! Supplementary
Y,|Complementary Y,
Range \(
[ ] [ J
o [ ]
» o
g y1 y1

Complementary Joint

Figure 15.3 Competitive, Supplementary, Complementary and Joint Products

(15.17) Xy, = Y,/2
(15.18) Xy, = Yo/3
Therefore,

(15.19) V2 +y)/3=x

If x is fixed at a particular value, this becomes an equation for the product
transformation curve. The total differential of equation (15.19) is

(15.20) dx = 1/2dy, + 1/3dy,

Along a product transformation function, there is no change in X, and dx is zero
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(15.21) dy,/dy, =RPTyy. = (- 1/2)/(1/3) = -3/2

The product transformation function has a constant downward slope of —3/2. The slope
arises directly from the fact that the underlying single-input function exhibit constant marginal
returns to the input bundle x.

Now consider a slightly more general form for the underlying production functions

(15.22) y, = bxy,
(15.23) Y, = CXy,
(15.24) Xy, + Xy, = X

where b and c are positive constants and other terms are as previously defined. Solving
equations (15.22) and (15.23) for Xy, and Xy, and substituting into equation (15.24) results in

(15.25) (1/b)y, + (1/c)y, = X

The total differential of equation (15.25) is
(15.26) dx = (1/b)dy, + (1/c)dy, = 0
Rearranging yields

(15.27) dy,/dy, = RPTyy.= - c/b

Again the rate of product transformation is constant and equal to the negative ratio of the
marginal products for the two underlying production functions.

Now consider the case where the underlying production functions are

(15.28) Y, = Xy,0
(15.29) Y, = Xy,05
(15.30) Xy, + Xy, = X

Solving equations (15.28) and (15.29) for Xy, and Xy, yields

(15.31) Xy, =y, 5 =y,?2

(15.32) Xy, =Y, H =y,?

The equation for the underlying product transformation function is
(15.33) Y2+ Y.} =X

The rate of product transformation of y, for y, (RPTy,,) can be derived by taking the total
differential of equation (15.33)

(15.34) dx =2y, dy, + 3y, dy, =0
(15.35) dy,/dy, = —2y,/3y,’
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The slope of the product transformation curve will vary and depend on the specific values of
y, and Y, as well as the parameters of the underlying production functions for y, and y,.

A still more general formulation assumes that a general multiplicative production
function exists for the production of both outputs

(15.36) y, = Axy?
(15.37) Y, = Bxy?
(15.38) X = Xy, + Xy,

Solving equations (15.36)and (15.37) for xy, and Xy, and inserting into equation (15.38) yields

(15.39) X2 =y /A=y, A"
(15.40) Xy, =y, A A1
(15.41) X =y,/B=y, B
(15.42) Xy, = y,"0 B

Substitute equations (15.40) and (15.42) into equation (15.38). The equation for the resultant
product transformation function is

(1543) X = yll/a A*l/a_i_ y21/b Bfl/b

The total differential of equation (15.43) is
(15.44) dx = A(’l/a)(l/a)yl[(l*a)/a] dy1
+ B(f1/b)(1/b)y2[(1—b)/b]dy2 =0

A general expression for the RPTyy, is obtained by setting dx in equation (15.44) equal to zero
and solving for dy,/dy,

(15.45) dy,/dy, = —[A"2(1/a)y, "2 [B~® (1/b)y, ]
= — [B" by, [0 [A2 qy, (D]

Therate of product transformation is explicitly linked to the parameters of the two underlying
production functions.

The process of solving the production function for y, and y, in terms of x involves
inversion of the production function. The production function for each output must be solved
for X in terms of the output. The production functions used here were chosen primarily
because they could easily be inverted. Suppose that the production functions for y, and y,
were

(15.46) y, = ax + bx?
(15.47) y, = bx + dx?
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Such functions are not easily inverted. For certain values of the parameters a, b, and d, the
inverse functions do not exist. It is difficult to solve for the product transformation function
in any instance where the underlying production functions exhibit negative marginal product
for certain values of x. The inverse is a correspondence but not a function.

15.6 Product Transformation and the Qutput Elasticity of Substitution

An output elasticity of substitution could be defined analogous to an elasticity of
substitution on the input side. The definition of the output elasticity of substitution is the
percentage change in the output ratio divided by the percentage change in the rate of product
transformation. The value for the elasticity of product transformation would provide a clue
as to the shape of the product transformation function, just as an elasticity of substitution on
the input side provides an indication of the shape of an isoquant.

Products that could be substituted for each other without incurring the law of diminishing
marginal returns would have a product transformation function with a constant negative
slope. This would result in an infinite elasticity of substitution on the product side. Products
that could be produced only in fixed proportions would have a right angle product
transformation function and a zero elasticity of substitution on the product side.

The common cases would lie between these two extremes, and elasticities of product
substitution in the two-output case would normally lie between zero and infinity. Some
formulas for the elasticity of product substitution (e,,) are

e, = percentage change in the outputratio (y,/y,) divided by the percentage change in the
rate of product transformation

(15.48) = [AY./Y )Yy, V(ARPTy/RPTy,,)
At the limit, when A =d
(15.49) &, = [A(Y2/y))/Y/y, VARP Ty /RP Ty,

= [A(yo/y)/d(RPTyy,) IIRPTy./(yo/y1)]

The development of algebraic formulas representing the product transformation
relationship has not taken place to the extent that two-input production functions have been
developed. Klein proposed a function

(15.50) X = Ay 2y,°

where A, a and b are parameters. The function looks very similar to a Cobb Douglas type
of production function. Just, Zilberman and Hochman presented a CES type of function for
the output side

(1551) X = B[lljlyliv + l|J2)y2*V]fl/v

However, under the usual parameter assumptions, neither equations (15.50)0r(15.51) would
generate product transformation functions concave to the origin, consistent with neoclassical
theory. Equation (15.51) will generate product transformation functions if v < — 1.

Figure 15.4 illustrates the isoproduct surfaces and contours for the CES type of function
for four alternative values for v < - 1.

Case 1: v~ —1, e, ~ —o. Atthe limit the isoproduct contours consist of lines of constant
slope, and the production function is a hyperplane (without curvature, diagrams A and B).
The rate of product transformation is constant everywhere and equal to the negative of the
slope of the isoproduct contours.
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Figure 15.4 Isoproduct Surfaces and Isoproduct Contours for a
CES type of Function, v <-1

Case2: v=-2,e, =-1. Isoproduct contours become concave to the origin and intersect the
axes. The rate of product transformation is no longer constant, but increases (in absolute
value) from left to right along a specific isoproduct contour.

The isoproduct surface now has a concave curvature.

Case3: v=-5,¢,=-.25. Isoproduct contours become increasingly concave to the origin and
the surface , when viewed from the top, appears more concave than in case 2.

Case4: v~ -, e, ~ 0. As v becomes more negative the elasticity of substitution in
product space also becomes more negative. At the limit, e, the elasticity of substitution
approaches 0 from the negative side. Isoproduct contours form right angles. Figures G and
H were generated assuming a value for v of —200. The surface forms an inverted pyramid.
Compare G and H with Diagrams I and J of Figure 12.2.

The sum of the parameters Y, and {, control scale effect in product space. If I, + ¢,
> 1, Isoproduct contours representing constant incremental increases in input bundle (X) use
will be positioned closer and closer together. If {r; + {r, = 1 Isoproduct contours will be
equally spaced. If {J, + {r, < 1, isoproduct contours along a ray from the origin will be placed
farther and farther apart.

The position of the isoproduct contours also depends on the relative magnitude (ratio)
of Y, + {1, and each isoproduct contour will be positioned closest to the axis representing the

largest Y.

Policy Applications

Like its factor space counterpart, the elasticity of substitution in product space is of
considerable importance for policy applications and empirical analysis. Suppose, first ofall,



Production of More Than One Product 257

that two commodities that a farmer produces are not substitutes at all. Hence, €, approaches
0. An example would be two unrelated crops, for example, brocolli and soybeans, that require
very different inputs. The farmer would continue to produce the two commodities in
approximately the same proportions irrespective of their relative prices.

Now consider the opposite extreme, an instance where the isoproduct contours have a
constant RPT, and the €, approaches —. As a result, even the slightest shift in relative
prices would cause a huge (at the limit, total) shift in the production of one output. In North
Dakota, for example, hard red spring wheat requires virtually identical inputs to the
production of durum wheat. However, the two wheats are put to quite different uses, the hard
red spring wheat for making bread, and the durum wheat for making pasta products. Durum
wheat makes inferior bread and hard red spring wheat, although occasionally percentage
blended with durum wheat in pasta production, makes inferior, glue-like, pasta. As a result,
the relative prices for the two wheats can be quite different. North Dakota wheat producers
do indeed make substantial shifts in acreages of the two wheats, based on relative prices at
planting time, indicating that the elasticity of substitution in product space for these two
wheats approaches — o,

Grain producers in the corn belt face a slightly different situation is making a decision
between corn and soybean production. While these two crops use a similar complement of
resources, there are a few differences. For example, there are differences in the required
harvesting equipment, and corn requires nitrogen whereas soybeans, a legume, normally does
not. As aresult, one would expect that farmers would shift to a degree from corn to soybean
production or from soybean to corn production, as the relative prices for corn and soybeans
changed, but clearly the shift is not complete based on the relative price ratios alone. This
would correspond with an intermediate case, in which the elasticity of substitution in product
space is negative, but not infinite.

Empirical analysis employing a function such as equation 15.1 could provide valuable
information about elasticities of substitution faced by farmers when attempting to choose
among possible products. The could be used as a guide in making agricultural policy. With
knowledge of product space elasticities of substitution, a federal policy maker, attempting to
set support prices for commodities such as wheat and corn would be better able to determine
the responsiveness of farmers in acreage and production as a result f changing relative prices.

15.7 Concluding Comments

This chapter has developed the physical relationships underlying the product-product
model. The product transformation curve is the production possibilities curve on a firm, rather
than society level. The slope of the product transformation function is closely tied to the
marginal products of the single-input production functions that underlie the transformation of
input into outputs. An expression for an output elasticity of substitution can be derived, but
specific equations representing input use in the production of alternative outputs have not been
developed to the extent that single-output production functions using alternative inputs have
been developed by economists and agricultural economists.
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Problems and Exercises

1. Assume the following production function data

Units of Output Units of Output
X Applied of X Applied of
oy, i oy, Y2
0 0 10 50
1 20 9 49
2 30 8 47
3 38 7 44
4 45 6 40
5 51 5 35
6 56 4 29
7 60 3 22
8 63 2 14
9 64 1 5
10 64.5 0 0

If only 10 units of input x are available, graph the production possibilities (product
transformation) curve from this production function data.

2. Suppose that at a particular point, the MPP of x in the production of y, is positive but the
MPP ofx in the production of y, is negative (stage I1l of production). What would be the slope
of the product transformation function? Explain.

3. Assume the following production functions for X in the production ofy, and y,. Find the rate
of product transformation of'y, for y,.

025
=X
));1 — 0.3
2

4. What do competitive, supplementary, complementary, and joint enterprises each imply
about the shape of the production functions that underlie the product transformation
functions?
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16

Maximization in a
Two-Output Setting

This chapter presents the marginal allocation conditions for a single input in the production
of two outputs. First, a graphical and tabular presentation is used. Then the fundamental
constrained maximization conditions on the output side are derived. Comparisons are made
of solutions when the constraint is the physical quantity of the input versus dollars available
for the purchase of the input. Global profit maximization conditions on the output side are
outlined. Starting with the individual production functions for the two products, the product
transformation and input demand functions are derived. The product-product model is applied
to an output restriction problem.

Key terms and definitions:

Family of Product Transformation Functions

Output Maximization on the Product Side

Isorevenue Line

Constrained Revenue Maximization on the Product Side
Output Expansion Path

Output Pseudo Scale Line

Marginal Cost in Physical Terms

Output Restriction
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16.1 The Family of Product Transformation Functions

A family of product transformation functions can be created by varying the assumptions
with respect to the availability of the resource or input bundle x. Along each product
transformation function, the amount of the resource or input bundle remains constant. Figure
16.1 illustrates a family of product transformation functions. Like isoquant families, an
infinite number of product transformation functions can be drawn. No two product
transformation functions will touch each other or intersect. Each successive product
transformation function assumes a slightly different level of use of the input bundle.

10
Y2

Y

Figure 16.1 A Family of Product Transformation Functions

16.2 Maximization of Qutput

Assume that there is no limitation on the availability of the input bundle x. The equation
describing the family of product transformation functions is

(16.1) X=g(Y,, V)

Suppose that the farm manager wishes to determine the amount of the input X that would be
required such that the output of both y, and y, is at its maximum. The farm manager has
available any amount of the input bundle X, and, at least for the moment, the cost of the input
bundle is of no consequence.

One way is to look at the first derivatives of the product transformation equation dx/dy,
and dx/dy,. The expression dx/dy, is 1/(dy,/dx) or 1/MPPxy,. The expression dx/dy, is
1/(dy,/dx) or 1/MPPxy,. These expressions represent the marginal cost of producing an
additional unit of y, ory,, expressed in terms of physical quantities of the input bundle. If the
farm manager is interested in maximizing the production of both y, and y,, alevel of input use
where both y, and Y, are at their respective maxima must be found.

If the amount of both outputs are at a global maximum, an additional unit of the input
bundle will produce no additional output of either y, or y,. In other words, the marginal
product of X in the production of y, (MPPxy,) and the marginal product of X in the production
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of'y, will be zero. As MPPxy, and MPPyy, approach zero, 1/MPPxy, and 1/MPPxy, become very
large, and approach infinity. If MPPxy, and MPPxy, were exactly zero, 1/MPPxy, and 1/MPPxy,
are undefined, although economists frequently treat them as infinite.

What happens to the appearance of an isoquant map as output approaches a maximum
is clear. Isoquants become smaller and smaller concentric rings until the point of output
maximum is achieved and the single point represents the isoquant for maximum output.

What happens to the appearance of a product transformation function as A global
maximum for both outputs is approached is less clear. As more Yy, and y, is produced, each
successive product transformation function becomes larger and larger and is drawn farther
and farther from the origin of the graph. Exactly what happens to the shape of the product
transformation function as the level of use of the input bundle X becomes large enough to
achieve maximum output is not obvious, since at the point of output maximization for X in the
production of both y, and y,, the 1/MPPX in the production of either output is undefined.

When confronted with a problem such as this, economists frequently make assumptions
such that they need not worry about the problem. Some arguments used to avoid thinking
about such issues do make sense.

The assumption usually made to get around the problem is that the size of the resource
or input bundle will always be constrained by something. Farmers nearly always face
limitations in their ability to produce more because of the unavailability of land. Anunlimited
input bundle would imply that a single farmer owned all the farmland in the United States, not
to mention all foreign countries. Then the constraint becomes the size of the earth. (Moreover,
ifasingle farmer were to acquire all the world's farmland, the purely competitive assumptions
would no longer hold!)

Every farmer faces capital constraints limiting the ability to borrow money for the
purchase of more inputs. Perhaps the fact that a truly global point of output maximization
cannot be achieved with the product-product model may not be such a serious problem after
all. Important conclusions can be reached without looking at the case in which output is
maximized without constraints.

16.3 The Isorevenue Line
The revenue function (R) for the farmer who produces two outputs is
(16.2) R=py: Py,

Assume that a farmer needs $1000 of revenue. The price of'y, is $5 and the price of'y, is $2.
The farmer might choose to generate $1000 by producing all y,, in which case he or she would
need to produce 200 units ($1000/$5). Or the farmer might choose to produce all y,, and 500
units of output ($1000/$2) would be required. Perhaps some combination of the two outputs
might be produced. The procedure for creating an isorevenue line is exactly the same as the
procedure for creating an isocost line, with the following exceptions. Revenue replaces cost
in the equation. Prices are now output prices rather than input prices. Table 16.1 illustrates
some combinations of y, and Y, that would yield $1000 of revenue.
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Table 16.1 Alternative Combinations of y, and y, that Result in
$1000 of Revenue (p, = $5, p,=9%$2)

Combination Units of'y, Units of 'y, Revenue
A 200 0 $1000
B 150 125 1000
C 100 250 1000
D 50 375 1000
E 0 500 1000

There are many more (in fact, an infinite number) of combinations of y, and y, that
would yield $1000 in revenue. The isorevenue line can be drawn on a graph with y, on the
horizontal axis and Y, on the vertical axis. The position where the isorevenue line cuts the
horizontal axis can be found by assuming that the production of'y, is zero, and solving the
revenue function representing a fixed amount of revenue (R°) for y,

(16.3) R°=p,y, + Op,
(16.4) R°=py,
(16.5) y, =R°/p, = $1000/$5 = 200

where p, and p, are prices for y, and y,, respectively.

A similar procedure can be use to find the point where the isorevenue line cuts the y, axis
(16.6) y, = R°/p, = 1000/2 = 500
The slope of an isorevenue line is —Y,/y,, or
(16.7) (R°/p,)/(R°/p,) = —p,/p, = (1000/2)/(1000/5) = —5/2

The slope of an isorevenue line is a constant ratio of the two output prices. Ify, appears
on the vertical axis and Yy, on the horizontal axis, the slope of the isorevenue line is the
negative inverse output price ratio, —p,/p..

The term isorevenue means equal revenue. At any point on an isorevenue line, total
revenue is the same, but if total revenue is allowed to vary, a new isorevenue line can be
drawn. The greater the total revenue, the farther the isorevenue line will be from the origin of
the graph. If output prices are constant, the slope over every isorevenue line will be the same.
No two isorevenue lines will ever touch or intersect. Families of isorevenue lines are drawn
with each isorevenue line representing a slightly different revenue level.

16.4 Constrained Revenue Maximization

A family ofisorevenue lines can be superimposed on a family of product transformation
functions (Figure 16.2). Each isorevenue line has its own product transformation function that
comes just tangent to it. The point of tangency represents the maximum revenue attainable
from a given product transformation function. Itis the point where the slope of the isorevenue
line just equals the rate of product transformation. This point represents the position where
the farmer would most like to be among the series of points along a product transformation
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Figure 16.2 Product Transformation Functions, Isorevenue Lines,
and the Output Expansion Path

function, for it represents maximum revenue from the given level of inputs which defines that
particular product transformation function. The assumption is that the amount of the input
bundle is fixed and given. These points of tangency can be defined by the following equations:

(16.8) ~RPTyy, = —dy,/dy,
= (1/MPPyy,)/(1/MPPyy,)
= MPPxy,/MPPxy,
=pi/p

Both the RPTy,, and the isorevenue line are negative, as indicated by the sign. By multiplying
both by -1, the result is

(16.9) RPTyy, = —dy,/dy, = —p,/p,

An increase in the price of one of the outputs relative to the other will push the point of
tangency toward the axis for the output that experienced the price increase. If the price of one
output drops relative to the other, the production of the other output will be favored.

The path along which the farmer will expand his or her operation is a line that connects
all points of tangency between the isorevenue lines and the corresponding product
transformation curve. This line is called the output expansion path (Figure 16.2). To generate
more revenue, the farmer must expand the resource base, or the availability of the input
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bundle x. As this happens, the farmer will move from one product transformation function
to another along the output expansion path. If output prices are constant, most product
transformation maps have underlying production functions that will result in an output
expansion path with a constant slope.

Consider the data presented in Table 15.2 again, here presented in Table 16.2. Assume
that soybeans sell for $9 per bushel and corn is $6 per bushel. The input combination where
the rate of product transformation of corn for soybeans equals the price ratio is the
combination between the combination 120 bushels of corn and 34 bushels of soybeans and the
combination 111 bushels corn and 40 bushels soybeans. Total revenue for the first
combination is 111'6 +409 = $1026. Total revenue for the second combination is 1206 +
349 =$1026.

Table 16.2 The Rate of Product Transformation of Corn for Soybeans
from a Variable Input Bundle X

Units of  Yield per MPP of  Units of Yield per MPP of RPT of
X Applied  Acre Xin Corn X Applied Acre X'in Bean Corn for
to Corn (bushels)  Production to Soybeans (bushels)  Production Soybeans
0 0 10 55
45 1 1/45=0.022
1 45 9 54
17 2 2/17=0.118
2 62 8 52
15 3 3/15=0.200
3 87 7 49
13 4 4/13=0.308
4 100 6 45
11 5 5/11=0.455
5 111 5 40
9 6 6/9 =0.667
6 120 4 34
7 7 7/7=1.00
7 127 3 27
5 8 8/5=1.60
8 132 2 19
3 9 9/3=3.00
9 135 1 10
1 10 10/1=10.0
10 136 0 0

Both combinations yield the same total revenue, but combinations on either side of these
two combinations yield less total revenue. The exact point where revenue would be maximum
lies between the two combinations yielding the same revenue. Tabular data can at best
provide only an approximation of the true point where the rate of product transformation
equals the inverse price ratio, as was the case here.

Not surprisingly, an increase in the price of one of the two outputs will tend to shift
production toward the commodity that experienced the price increase and away from the other
commodity. For example, if the price of corn remains unchanged, an increase in the price of
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soybeans will move the point of tangency between the product transformation function toward
soybean production and away from corn production.

By observing what happens to the output of two products as the relative prices change,
it is sometimes possible to discern the shape of the underlying product transformation
function and the elasticity of product substitution. Suppose that the price of corn increased
relative to soybeans. The expected result would be a significant but not total shift by farmers
away from the production of soybeans and into the production of corn. The resources or
inputs used in the production of soybeans can be used to produce corn, although inputs are
not perfectly substitutable.

Now suppose that the two products are beef and hides. An increase in the price of hides
would not cause the production of hides to increase relative to the production of beef at all.
The technical relationship that requires each beef animal to have one and only one hide
governs the shape of the product transformation function. No matter how high the price of
hides, the farmer can still produce only one per animal. The elasticity of product substitution
is as near zero as can be found in the real world anywhere.

Now assume that the two products are wool and lamb meat and that the price of wool
relative to the price of lamb decreases. In a single production season, farmers with their
existing flocks could increase lamb meat production relative to wool very little. They may be
able to do so slightly by feeding out the lambs to larger weights. This suggests a single season
elasticity of product substitution very near but not exactly zero.

However, if these price relationships persisted over time, farmers would sell the sheep
capable of high wool production relative to lamb, and buy sheep capable of high lamb meat
production relative to wool. The elasticity of product substitution is probably greater over
several seasons than over a single production season.

Consider a situation where a farmer is producing two products y, and y,. The RPTyy, is
constant and the product transformation functions have a constant negative slope. Hence the
elasticity of product substitution is infinite. If the absolute value of p,/p, is greater than the
absolute value of the RPTy,y,, the farmer will produce all y, and no y,. If the absolute value of
Pp./p, is less than the absolute value of RPTyy,, the farmer will produce all y, and no y,. If the
absolute value of p,/p, is the same as the absolute value of RPTy,y,, output of each product will
be indeterminate. Ifthe farmer is initially producing all y, and no y,, an increase in the price
of (p,) relative to the price of y, (p,) may not at first cause production to shift totally to y,. As
p, continues to increase, such that the price ratio p,/p, exceeds the absolute value of RPTy,y,,
production will suddenly shift entirely out of y, and into y,.

16.5 Simple Mathematics of Constrained Revenue Maximization

The problem of maximizing revenue subject to a resource or input constraint illustrated
in Figure 16.2 can be cast as a constrained revenue maximization problem and be solved
mathematically via Lagrange's method.

The objective function is
(16.10) Maximize p,y; + paYs

The constraint is the availability of the input bundle X, which is the equation for the product
transformation function
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(16.11) X°=9(Yy, ¥»)

where X° is a fixed available amount of the input bundle x.
The Lagrangean is

(16.12) L=pyy; + Py, + Ox° - a(ys, V)]

The corresponding first order or necessary conditions are

(16.13) dL/dy, = p, - 63g/dy, =0

(16.14) dL/dy, = p, - 63g/dy, =0

(16.15) AL/A0 =x° - g(y,, ¥,) =0

By dividing equation (16.13) by equation (16.14), the result is
(16.16) p\/p, = (39/Ay,)/(9g/y,)

Since g is X,

(16.17) P,/p, = (1/MPPxy,)/(1/MPPxy,)

(16.18) ~MPPyy/MPPyy, = —p,/p,

(16.19) RPTyy, = p,/p,

Equation (16.19) represents the same conclusion reached in section 16.4. First-order
conditions find the point where the slope of the isorevenue line is the same as the slope of the
product transformation function. Both the isorevenue line and the product transformation
function will be downward sloping.

Equations (16.13)and (16.14) may be rearranged in other ways. Some possibilities are

(16.20) p,/(Og/dy,) =6

(16.21) p,/(3g/dy,) = O

(16.22) p,/(3g/3y,) = p,/(3g/dy,) = O
(16.23) p,MPPyy, = p,MPPy, = 0
(16.24) VMPy, = VMPyy, = 0

Equation (16.24) represents the equimarginal return principle from the output side. The farmer
should use the input bundle such that the last physical unit of the bundle returns the same
VMP for both enterprises. The analysis assumes that the resource or input bundle is already
owned by the farmer, and therefore the decision to produce will cost no more than the decision
not to produce.

The assumption that the input bundle is free or worth nothing if sold by the farmer seems
unrealistic. More likely, the input bundle has a price. Assume that the price for a unit of the
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bundle is v. The constrained revenue-maximization problem then becomes one of maximizing
revenue from the sale of the two products subject to the constraint imposed by the availability
of dollars for the purchase of the input bundle.

The restriction in the availability of funds might be in the form of both owned dollars
as well as the credit availability from the local bank, Production Credit Association, or other
lending agency. Any interest charges for borrowed funds might be subtracted from C° before
the problem is set up, so that C° represents funds actually available for the purchase of the
physical input bundle. This cost constraint can be written as
(16.25) C°=vx

The Lagrangean is reformulated with the same objective function

(16.26) maximize Pyt P,

The constraint is the availability dollars for the purchase of the input bundle X. Equation
(16.27) is the product transformation function multiplied by the price of the input bundle v

(16.27) Co=vx°=vg(y1, )
The Lagrangean is

(16.28) L=py, + Py, + GIC° = va(yy, Vs)]

The corresponding first order (necessary) conditions are

(16.29) dL/dy, =p, - $vg/dy, =0
(16.30) dL/dy, =p, - $vg/dy, =0
(16.31) OL/A¢ = C° - vg(y,.y,) =0

By dividing equation (16.29) by equation (16.30), the result is
(16.32) p./p, = (3g/dy,)/(3g/dy,)
(16.33) RPTyy. = p,/p,

Equation (16.33) is the same conclusion reached in equation (16.19). First-order
conditions find the point where the slope of the isorevenue line is the same as the slope of the
product transformation function. The price of the input bundle does not affect the point of
tangency between the product transformation function and the isorevenue line.

Equations (16.29)and (16.30) may also be rearranged in other ways. One possibility is
(16.34) p,/V(Og/dy,) =

(16.35) p,/V(3g/dy,) =
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(16.36) p,/N(3g/dy,) = p,N(3g/dy,) = P
(16.37) VMPy N = VMPxy, /v = ¢

Equation (16.37) is the first order condition for revenue maximization subject to a cost
constraint, assuming that the input bundle X has a price v. Equation (16.37) is the
equimarginal return relationship that holds if the input bundle has a cost to the farmer.
Equation (16.37) differs from equation (16.24) in that both sides of equation (16.37) has been
divided by the price of the input bundle v.

Since the price of the input bundle is the same in the production of both outputs, these
conditions suggest no change in the allocation of the input bundle between the production of
y, and Y, relative to the conclusions derived in the last example. Equation (16.37) states that
the farmer should allocate the input bundle in such a way that the last dollar spent on the input
bundle yields the same ratio of VMP to the cost of the bundle for both outputs.

This derivation does have an important advantage over the example in equation (16.24).
The values for the Lagrangean multiplier () that would result in maximum net revenue to
the farmer now become apparent. The farmer would not spend an extra dollar on the input
bundle x ifit did not return the extra dollar. Profit maximization on the output side thus occurs
when

(16.38) VMPyy, /v = VMPx /v = 1

Equation (16.38) is the global point of profit maximization on the output side, and can
occur only when ¢ equals 1. A value for ¢ of greater than 1 suggests that the farmer has
insufficient dollars for the purchase of enough X to globally maximize profits. Any point where
the equality holds is a point on the output expansion path. The point of global profit
maximization also lies on the output expansion path, and here the Lagrangean multiplier
assumes a value of 1. Notice also that ¢ equals O/v.

A pseudo scale line for each output can also be defined. An output pseudo scale line for
y, would be a line on the map of product transformation curves connecting points where
profits are maximum for Y,, but not necessarily for y,. In other words, VMPxy, /v equals 1, but
VMPyy,/V may not necessarily be 1.

Each pseudo scale line is derived from the profit maximization point on amember of the
family of the production functions transforming X into y,, assuming that a portion of the input
bundle X has been already allocated to the production ofy,. A similar derivation could be done
to generate an output pseudo scale line for y,. These output pseudo scale lines intersect at the
global point of profit maximization, where there is only one input, X, with price Vv.

(16.39) VMPyy, /v = VMPx /v = 1

16.6 Second-Order Conditions

In the product-product model, the point where the manager would prefer to be found is
a point of tangency between the product transformation function and the isorevenue line. In
factor-factor or input space, the point where the manager would prefer to be found is a point
of tangency between the isocost line and the isoquant.
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The point of tangency between the isorevenue line and the product transformation
function does not look the same as the point of tangency between the isocost line and an
isoquant. [soquants are normally bowed inward or convex to the origin of the graph. Product
transformation functions are normally bowed outward or concave to the origin of the graph.

The first-order conditions for revenue maximization subject to an input constraint are
repeated here

(16.40) L=pwy: +P2y> + 01x° - g(y;, y2)]
(16.41) oL/dy, =p, -09g/dy, =0
(16.42) oL/dy, =p, -09g/dy, =0
(16.43) AL/30 = x° - g(y,.y,) =0

Equations (16.41), (16.42) and (16.43) are each differentiated with respect to y,, y, and with
respect to 0.

d(16.41)/dy, = -003%g/dy,> = -Bg,,

d(16.41)/dy, = -03°g/dy,dy, = - Og,,

0(16.41)00 = -dg/dy, = —g,

0(16.42)/dy, = —03%g/dy,dy, = —0g,, = —0g,, (by Young's theorem)

(
(
(
9(16.42)/dy, = -03°g/dy,> = - Og,,
9(16.42)/00 = -dg/dy, = -g,
9(16.43)/dy, = —dg/dy, = -9,
9(16.43)/dy, = —3g/dy, = -9,
9(16.43)/00 = 0

The partial derivatives g, and g, are the marginal costs for the production of an
additional unit of'y, and y,, respectively, expressed in physical rather than dollar terms. Had
these second derivatives been found for the revenue-maximization problem constrained by
dollars available for the purchase of X rather than physical units of x, then g, and g, would
have been multiplied by the price of the input v. The term vg, is the marginal cost of an
additional unit of y,. The term vg, is the marginal cost of an additional unit of y,.

Marginal cost is negative in stage III, since MPP is negative in stage III but is never
negative in stages [ and II. In stages I and II, an incremental unit of output can never be
produced without any additional cost in terms of the input bundle. Lagrange's method would
not find a solution in stage Il where the Lagrangean multiplier is negative.

The partial derivative g,, can be interpreted as the slope of the marginal cost function
fory,. The derivative g,, has the same interpretation for y,. Marginal cost is again expressed
in terms of physical input requirements rather than in dollar terms. The slope of marginal cost
can be converted to dollars by multiplying by the input bundle price v, which would occur if
the constraint were expressed in dollar and not in physical terms. Marginal cost is normally
rising, except in stage III and perhaps in the early stages of stage I for the input bundle X.
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This means that additional units of either y, or y, cannot be produced without incurring more
and more additional cost or an increasing marginal cost. The cross partial derivatives (g, =
0,,) are needed to rule out production surfaces that appear as saddle points.

The Lagrangean multiplier O is again interpreted as a shadow price, or imputed value
of the input bundle x. The number 0 is the increase in revenue associated with an additional
unit of the input bundle. When MPP is positive (except for stage I1I for each input that is
beyond the point of maximum output), the Lagrangean multiplier O will also be positive.

Every component of the second-order conditions for constrained output and revenue
maximization has an economic meaning. This economic meaning will lead to conclusions with
regard to the probable sign on each component of the second order conditions.

The second-order conditions for a constrained revenue maximization require that
(16.44) 0(9,%9, + 9,20, ~29,,9,9;) > 0
Equation (16.44) is the determinant of the matrix
(16.45) -0g,, -0g, -9,

-0g9,, -0g» -0,

-0 -0 0
Since a negative value for O would not be found in the solution, then
(16.46) 9,205 + 9,01, — 291,0,9, > 0

Equation (16.46) ensures that the product transformation functions are concave or bowed
outward from the origin.

The first- and second-order conditions, taken together, are the necessary and sufficient
conditions for the maximization of revenue subject to the constraint imposed by the
availability of the input bundle X.

The price of the input bundle is positive. If the input prices are constant, the required
sign on the second-order condition is not altered if the constraint is constructed based on the
availability of funds for the purchase of X rather than the availability of X itself. The required
second-order conditions would then be based on the determinant of the matrix
(16.47) -Ovg,, -Ovg, -vog,

-Ovg,, -Ovg, -vo,

~vQ, ~V0Q, 0

16.7 An Additional Example

Starting with production functions for y, and y,, the product transformation function is
constructed. The first order conditions for revenue maximization subject to the constraint
imposed by the availability of X are solved to determine the optimal amounts of y, and y, to
be produced. The manager is then assumed to have the right amount of x needed to globally
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maximize profits in the production of both y, and y,. The same level is needed irrespective of
whether the problem is solved for the output or the input side.
The production functions for y, and y, are assumed to be
(16.48) y) =Xy
(16.49) Y, = X3

where Xy, and Xy, are assumed to be the quantities of X used in the production of y, and y,,
respectively.

The total availability of x is
(16.50) X = Xy, + Xy,
The inverse production functions are
(16.51) Xy, = Y,
(16.52) Xy, = Y,

Substituting equations (16.51)and (16.52) into equation (16.50), the equation for the product
transformation function is

(16.53) X=y3 +y,2
The constraint imposed by the availability of funds for the purchase of X is
(16.54) Co=vx=V(yS +Y,2)

The Lagrangean that maximizes revenue subject to the constraint imposed by the availability
of dollars for the purchase of X is

(16.55) L=py, + Py, + O[vX — V(Y + )]

The first-order conditions for the constrained maximization of equation (16.55) are
(16.56) p, - B3vy,2=0

(16.57) p, — 02vy, =0

(16.58) vx — V(Y +y,9) =0

Now solve equations (16.56)and (16.57) of the first order conditions for y, andy, respectively

(16.59) p, = 03vy,
(16.60) y, = (0.33)°5(Bv) 3p, 0
(16.61) p, = 02vy,

(16.62) v, =(0.5)(Ov) 'p,
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Production of y, and y, will decrease when the price of the input bundle v increases.
Production of y, and y, will increase when the price of the output increases. The change in
both cases will depend on the technical parameters of the underlying single input production
functions. The farmer's elasticity of supply with respect to input prices for y, is —0.5, and for
Yy, is— 1. The farmer's elasticity of supply with respect to output prices fory, is 0.5, and for

y,is 1.

Second order conditions for constrained revenue maximization will be met if the
underlying production functions for y, and y, are homogeneous of a degree less than 1.

Now substitute for y, and y, the corresponding values for Xy, and Xy,, and assume that the
manager has enough X available so that profits with respect to the production of both y, and
y, are maximum. This implies that the Lagrangean multiplier O will be 1. Therefore

(16.63) y, = X283 = (0.33)° v 95 p,°3
(16.64) Y, = %."% = (0.5 'p,
(16.65) Xy, = 0.3315y"15p, 15

(16.66) Xy, = .5V 7p,?

Insertion of prices for the input bundle v and the two output prices p, and p, into equations
(16.65) and (16.66) yields the amount of X to be applied to y, and Yy, in order to globally
maximize profits.

The own—price elasticity of demand by the farmer for the input bundle X in the
production of'y; is — 1.5 and in the production of'y, is —2. These are 1/(1 - €,), where €, is
the production elasticity associated with the input bundle X in the production of each output.

The product price elasticity of demand by the farmer for the input bundle X in the
production of y, is 1.5 and in the production of'y, is 2. These are obtained from the formula
—1/(1 - e,). Each of these elasticities can be interpreted as the percentage increase in the
demand for the input bundle X that accompanies a 1 percent increase in the output prices for
Yy, orY,. For both production functions, the input bundle own—price elasticity is the negative
of the input bundle output-price elasticity.

The quantity of X to be used in the production of'y, and y, could be obtained from a pair
of input-side profit-maximization equations as well, and the same results with respect to how
X should be allocated would be found.

Let
(16.67) Y, =Xy, 0F
(16.68) Y, = X0
(16.69) 1L, = pyy, - vy,

(16.70) ILy, = p, %, - vxy,
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(16.71) I, = p,y, - Vxy.
(16.72) IIy, = p x> - vy,

To find first-order conditions for maximum profits, set the first derivatives of both profit
equations with respect to Xy, or Xy, equal to zero

(16.73) AIL/Oxy, = 0.33p,Xy, " = v=0

(16.74) OI1/9xy, = 0.5p Xy, * = v=0

Solving equations (16.73) and (16.74) for Xy, and Xy, we obtain
(16.75) Xy, = 0.33'5v 15p, 1

(16.76) Xy, = 0.52 2,2

which is the same result as obtained as from equations (16.65) and (16.66) for the derived
demand elasticities with respect to input and product prices. The result again provides the

quantity of X, and X, needed to maximize profits at the point where the Lagrangean multiplier
equals 1.

16.8 Minimization of Input Use Subject to a Revenue Constraint

Any constrained maximization problem has a corresponding dual or constrained
minimization problem. This dual problem can also be solved via Lagrange's method. The
objective function in this case requires that input use be minimized for a specific amount of
total revenue R

(16.77) Minimize g(y,, Y,) or X

Subject to the constraint that

(16.78) R®=py, + Py,

The Lagrangean is

(16.79) L=9(1,¥2) + WR® = py, ~ Py2)
The corresponding first order conditions are
(16.80) g~ ¥p, =0

(16.81) g~ Yp,=0

(16.82) R® =Py, = Py, =0

By rearranging and dividing equation (16.80) by equation (16.81), the familiar point of
tangency is found where

(16.83) RPTyy, = dy,/dy, = p,/p,
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Solving equations (16.80) and (16.81) from the first-order conditions for  yields

(16.84) 9./p, =Y

(16.85) 0./p, =Y

(16.86) 9,/p; = 0,/p, = Y

or

(16.87) INVMPy, = 1/VMPyxy, =

Compared with the conclusions derived in equation (16.24), equation (16.87) appears
upside down. In fact, the Lagrangean multiplier s is 1/0 found in equation (16.24). If the
problem is set up to maximize revenue subject to the availability of the input bundle x, then
the Lagrangean multiplier (0) is interpreted as the increase in revenue associated with one
additional unit of the input bundle. (Or the Lagrangean multiplier could be expressed as the
decrease in revenue associated with a 1 —unit decrease in the size of the input bundle.)

If the problem is set up to minimize input use subject to a revenue constraint, the
Lagrangean multiplier { is the increase in input use needed to produce $1 of additional
revenue. (Or the Lagrangean multiplier could also be expressed as the decrease in the use of
the input bundle associated with $1 less revenue.)

The second-order conditions for input bundle minimization subject to a revenue
constraint require that

(16.88) 2piP,912 — 92P)° — 911P,” <0

Equation (16.88) is the determinant of the matrix formed by again differentiating each
equation in the first-order conditions with respect to y,, Y, and the Lagrangean multiplier {r

(16.89) O G912 P
U1 Un —P2
P Py O

Remembering Young's theorem, and multiplying both sides of the determinant by — 1, we have

(16.90) 0P+ 0911P,° — 2ppagi, >0

Now from the first order conditions (16.80) and <16.81>, substitute

(16.91) P, =09/Y
(16.92) P, =0,/
(16.93) (1/PH[9,°9,, + 0,°911 — 20,0,01,] > 0

Since Y is normally positive, these second order conditions impose the same
requirements on ¢;, 0,, U2, U2, and g,, as before.
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16.9 An Output-Restriction Application

The example presented here illustrates the application of the product-product model to
a problem in which the government restricts the quantity of a product that can be produced
and marketed by the farmer. The federal government might attempt establish a policy to
support the price of certain crops by limiting the amount of output produced by the farmer.
An output restriction is quite different from an acreage allotment. An acreage allotment
restricts the amount of the input land to be used in the production of a commodity. An output
restriction limits the quantity of the commodity that can be placed on the market.

The analysis presented here is an application similar to the acreage allotment application
presented in Chapter 8. Output restrictions have been used less often than acreage restrictions
by the government to control the production of commodities. The federal tobacco program
provides aunique example. The government previously controlled the production of tobacco
simply by limiting the acreage of tobacco that could be planted. Tobacco was treated by the
government just like wheat. Farmers readily adapted to the acreage restriction as the earlier
model would predict. Only the very best land was used for tobacco production. Farmers made
intensive use of chemical fertilizers and pesticides, and production per acre soared. However,
the tobacco program was changed, and in recent years, farmers were allowed to only place a
certain quantity of tobacco on the market. As of 1985, each farm now had a tobacco poundage
rather than acreage allotment.

The impacts of a tobacco poundage allotment can be illustrated by using a model in
product-product space. Let Y represent the commodity or commodities other than tobacco that
a farmer might grow, and T represent tobacco. A series of product transformation curves
between tobacco and other commodities are illustrated in Figure 16.3. In the absence of any
restrictions on output of tobacco, the farmer is operating on the output expansion path where

(16.94) VMPy/Vy = VMPy/Vy =

where VMP and VMPy are the respective VMP's of the input bundle X in the production of
tobacco and other commodities respectively. Let this point be represented by A in Figure 16.3.
Now suppose that the government imposes a poundage restriction. Let the poundage
restriction be represented by the horizontal line labeled T*. To comply with the restriction, the
farmer must move back along the output expansion path to point B, which lies at the
intersection of the output expansion path and the poundage constraint. Point B is represented
by a point where

(16.95) VMP,/Vy = VMP,/Vy =1

Both {r and 1 are probably greater than 1, but 1 is larger than . With the poundage
restriction, the farmer has additional dollars available for the purchase of the input bundle X,
but these dollars can only be used to produce commodities other than tobacco. The farmer will
again move to the right along the constraint T*. The farmer will probably not move to the
point where the last product transformation function intersects the constraint T*. If sufficient
revenue for the purchase of the input bundle is available, the farmer will move to the product
transformation function where

(16.96) VMP,,/Vy = 1



276 Agricultural Production Economics

Tobacco
Global

Output Pseudo Profit
Scale Line for MaximuN
Tobacco

O

utput ‘ Output Pseudo
£ ‘ \ Scale Line
xp%nast\hon\ —For Other Crops
(Y)
A

%

Va
93
/

Figure 16.3 An Output Quota

This point is not on the output expansion path, but is the point of global profit
maximization for the input bundle X used in the production of other commodities Y. Tobacco
production will remain constant at T*. This point is C and represents a point on the output
pseudo scale line for the production of the commodities represented by Y.

When the tobacco program was changed from an acreage allotment to a poundage
allotment, tobacco production per acre declined, as would have been predicted by the earlier
model. It is more difficult to determine if the production of other crops increased as a direct
result of the tobacco poundage allotment, since tobacco has not in the recent past been grown
in the absence of a government program.

The expected impact of the tobacco poundage program based on this model should be
to increase the output of those crops requiring a similar bundle of inputs to tobacco but not
affected by the quantity restrictions. The tobacco producing areas of Kentucky have recently
seen an increase in the production of labor intensive horticultural crops planted on small
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acreages in much the same manner as tobacco and requiring very similar inputs. This is the
expected impact of an output restriction based on the product-product model.

Tobacco farmers have also used the tobacco poundage allotment system as a method of
dealing with output uncertainty. Overproduction is good years can be stored and used to meet
the output quota in years when nature is uncooperative and production is low.

16.10 Concluding Comments

Farmers respond to changes in relative prices for commodities by adjusting production
levels toward the commodity that is experiencing the relative price increase and away from
the commodity for which the price is decreasing in relative terms. If there is but a single
input, or an input bundle already owned by the farmer, the optimal conditions for constrained
revenue maximization require that the farmer equate the respective VMP's for each output.

The shape of the product transformation function determines the extent to which a farmer
will adjust the output mix in the face of changing relative prices. If the elasticity of product
substitution is near zero, the product transformation function is nearly a right angle, and the
farmer will not adjust the mix of outputs in response to changing relative prices. However, to
the extent that the elasticity of product substitution is positive, the farmer will respond to
changing relative prices by adjusting the output mix.

The constrained maximization conditions on the product side look very similar to those
on the input side. In both instances, the equimarginal return principle still applies. Farmers
should allocate dollars in such a way that the last dollar used in the production of each product
produces the same return. The product-product model can be applied to problems when the
government implements policy to support prices by restricting the output of a particular
commodity.

Problems and Exercises

1. Suppose that y, and Yy, sold for the same price. Using the data contained in Problem 1,
Chapter 15, how much x would be applied to y, and y,?

2. What would happen to your results in question 1 if y, were three times as expensive as y,?
3. Show 10 possible combinations of output that could produce $1000 of revenue in y, sold
for $5 and y, sold for $10. On the basis of these data alone, should the production of'y, be
favored over the production of y,? Explain.
4. Suppose that the product transformation function is given by

x=2y,>+3y,’

The price ofy, is $5 and the price of'y, is $4. Ten units of X are available. How much X should
be applied to y, and y,?
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5. Compare the interpretations of the Lagrangean multipliers for the following problems in a
multiple-product setting.

a. Output maximization subject to an input availability constraint.

b. Revenue maximization subject to an input availability constraint.

c. Global profit maximization on the output side in product space.

d. Resource or input use minimization subject to a revenue constraint.

6. Suppose the government restricts the amount of a product that a farmer might sell. Will the
farmer always continue to produce at a point where RPTy,y, = p,/p,? Explain.

7. Will the output of other commodities always increase if the government restricts the amount
of a particular commodity that might be sold by the farmer? Explain.
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17

Two Outputs
and Two Inputs

This chapter illustrates how the factor-factor model and the product-product model can be
combined into a single model encompassing both the factor space and product space.
First-order conditions for global profit maximization and for revenue maximization subject
to the constraint imposed by the availability of dollars for the purchase of inputs are derived.
An example of an intermediate product model is used to illustrate a possible application within
agriculture.

Key terms and definitions:

Multiple-Input Multiple-Product Model

Equal Marginal Returns

Imputed Value

Intermediate Product Model

Quasi—general Equilibrium

Rate of Product Transformation Equals Marginal Rate of Substitution
Shutdown Condition
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17.1 Introduction

Until now, production has been presented with models in which one or two inputs were
used to produce a single output, or a single-input bundle was used to produce two outputs.
These models could easily be illustrated using graphics, because no more than three axes
were required (X;, X, and y or Y,, ¥,, and X), and the resultant graph contained no more than
three dimensions. However, most farmers use many different inputs in order to produce many
different outputs. Despite the fact that these models often cannot be illustrated using graphics,
the same rules for maximization and minimization found to exist in factor-product,
factor-factor, and product-product models still apply. Itis now appropriate to formulate some
general rules that would apply to farmers who use many inputs in the production of many
different outputs.

17.2 Two Inputs and Two Outputs: A Basic Presentation

Assume that the farmer uses two inputs, phosphate fertilizer (X,) and potash fertilizer
(X,), in the production of two outputs, corn (y,) and soybeans (y,). Corn sells for $4.00 per
bushel and soybeans sell for $8.00 per bushel. Units of phosphate fertilizer and potash
fertilizer each cost $10.00. Data contained in Table 17.1 describe the yields and VMP values
for each input in the production of each output.

The data presented in Table 17.1, although useful in illustrating the basic logic behind
the equimarginal return principle, oversimplify the problem. The marginal product of each
unit of 1 type of fertilizer is assumed to be independent of the availability of the other type of
fertilizer. Thus the underlying production function for each output exhibits no interaction
between the two inputs and therefore is additive rather than multiplicative.

Suppose that the farmer has available only $100, or enough to purchase a total of 10
units of fertilizer. Table 17.2 describes how each unit will be allocated. Units 1 and 2 produce
the same VMP as do units 3, 4, and 5, and units 8,9 and 10. So it does not matter which
allocation is done first within these groups.

The general equimarginal return rule requires that
<171) lePPx,y,/Vl = pzMPleyz/Vl = lePszy,/Vz = pzMPszyz/V2 =K

The VMP of each input in the production of each output will be the same and equal to some
number K . The number K is actually a Lagrangean multiplier or an imputed value of an
additional dollar available in the case for the purchase of fertilizer to be used in corn or
soybean production.

In this example, the price of both inputs, v, and v,, were the same at $10.00 per unit. The
last unit of fertilizer applied in this example produced $40.00, except for the last unit of
potash on soybeans, which produced $48.00. The correct allocation would have resulted in
the same ratio of VMP to the price of the input in the production of each output. However, this
is often not possible from a tabular data presentation. With this exception, K in our example
was $4.00. The last dollar spent on each input gave back $4.00 in the production of each
output.
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Table 17.1 Two Inputs in the Production of Two Outputs®
Units of Phosphate on Phosphate on Potash on Potash on
Fertilizer Corn  VMPxy, Soybeans VMPxy, Corn  VMPxy, Soybeans VMPxy,
0 70 30 80 20
80 40 60 80
1 90 35 95 30
60 40 60 64
2 105 40 110 38
40 24 40 48
3 115 43 120 44
20 16 20 24
4 120 45 125 47
8 16 12 8
5 122 47 128 48
0 16 8 0
6 122 49 130 48
-8 8 4 -8
7 120 50 131 47
-8 -8 0 -16
8 118 49 131 45
-16 -16 -4 -24
9 114 47 130 42
-20 -24 -8 -32
10 109 44 128 38

* The price of corn is $4.00, the price of soybeans is $8.00. Units of either phosphate or potash cost

$10.00.

Table 17.2 Allocation of Two Fertilizers to Two Crops

Unit Fertilizer Crop

1 Phosphate Corn
2 Potash Soybeans
3 Potash Soybeans
4 Phosphate Corn
5 Potash Corn
6 Potash Corn
7 Potash Soybeans
8 Phosphate Corn
9 Phosphate Soybeans

10 Phosphate Soybeans

The general profit-maximization relationship requires that

<172) lePPx,y,/Vl = pzMPleyz/Vl = lePszy,/Vz = pzMPszyz/V2 =

On the input side
(17.3) MRSxy, = V,/V,

in the production of each output. On the output side

1
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(17.4) RPTyy. = p/p,

for each input.
17.3 Some General Principles

Suppose that the production of two outputs is governed by two production functions,
each with two inputs. Let the production functions for y, and y, be

(17.5) ¥1 = h(X;1,%,1)
(17.6) Ya = §(Xi2 %)
wherey, and Y, denote outputs and h and j are production functions fory, and y,, respectively.
The first subscript on each X denotes the input, and the second subscript denotes the product
to which it is applied. For example, X,, is input X, that is applied to y,.
The total amount of X; and X, are used in the production of y, and y, are
(17.7) Xy =Xy + Xpo
(17.8) Xy =Xy + Xy
Total revenue from the sale of y, and y, is
(17.9) R=py, + Poys
(17.10) = p,0(X, 1, Xo1) + Pai(X12s Xo)

where p, and p, are prices of y, and y,, respectively. The total cost is the sum of the quantities
of X, and x, multiplied by their respective prices

(17.11) C = VX, + V,X,
(17.12) = V,(X;; + Xpp) + Vo(Xap + Xa)
Profit (II) is revenue minus cost
(17.13) II=R-C
=py; + Py, — ViXy — VX,

= Pih(X;1, Xa1) + P2 (Xi2, Xp0) = Vi(Xpp + X12) = Va(Xg; + Xp0)
Now let

17.14) h, = oh/ox,,

(
(17.15) h, = 9h/Ox,,

(17.16) ji = 0/,

(17.17) j, = 0j/0%»,

The first-order conditions for maximum profit entail setting the first derivative of the profit
function(17.13) equal to zero with respect to each input used in the production of each output
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(17.18) oIl/dx,, = p,h, - v, =0
(17.19) AIl/dx,, = p,h, — v, =0
(17.20) OIl/dx,, = pj; — v, =0
(17.21) OIl/A%,, = psj, — V, = 0

Equations (17.18)-(17.21) can be rearranged in a number of ways. One way is
(17.22) ph AV, = Paji V= PV, = Paju/Vs = 1
The partial derivative h, is the marginal product of X, in the production of y, or MPPxy,; J, is
the marginal product of X, in the production of y, or MPPxy,; h, is the marginal product of X,
in the production of y, or MPPxy, ; J, is the marginal product of X, in the production of'y, or
MPPxy,. So equation (17.22) can be rewritten as
<1723) lePPx,y,/Vl = pZMPleyZ/Vl = lePszy,/Vz = pZMPszyZ/V2 =1

The farmer should allocate inputs between outputs in such a way that the last dollar
invested in each input in the production of each output returns exactly a dollar. The
Lagrangean multiplier in the profit maximization example is 1.

Another way of writing equations (17.18)-(17.21) is
(17.24) ~h,/h, = dx,/dx, = V,/v, in the production of y,
(17.25) =Ji/J, = dx,/dx, = v,/v, in the production of'y,

The marginal rate of substitution of X; for x, must equal the inverse price ratio in the
production of both outputs.

Yet another way of rearranging equations (17.18)-(17.21) is

(17.26) (p,hy VAP V) = 1
(17.27) hy/i(P,/p,) = 1

(17.28) i/h, = p./p,

(17.29) dy,/dy, = p,/p, for input X,
(17.30) RPTyy, = p,/p, for input X,
Similarly

(17.31) i/h, = p./p,
(17.32) dy,/dy, = p,/p, for input X,
(17.33) RPTyy, = p,/p, for input X,

The rate of product transformation must be the same for both inputs in the production of the
two outputs and equal the inverse product-price ratio.
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Of course
1734) h] = MPPlel = Vl/pl

17.35 h, = MPPxy, = v,/p,

(
(17.35)

(17.36) ji =MPPyxy, =v,/p,
(17.37) j»=MPPyy, =v,/p,

In equations (17.34) - (17.37), the marginal product of each input in the production of each
output must be equal to the corresponding factor/product price ratio.

17.4 The Constrained Maximization Problem

The problem might also be set up in a constrained maximization framework. The
objective function is the maximization of revenue subject to the constraint imposed by the
availability of dollars for the purchase of X, and x,.

Revenue is
(17.38) R=pY; + Py = Pi(X, 1 Xo1) + Pai (X125 Xo2)
Cost is
(17.39) C° = V,X,; + ViXp + VoXo; + VX
All notation is the same as in the example in section 17.3. The Lagrangean is
(17.40) L =p,n(X,;, X51) + Pai (X125 Xp2)HA(CO = VX)) = ViXps = VoXy; = VoXy,)

The corresponding first-order conditions for a constrained revenue maximization are

17.41) oL/Ox,, = p;h, = Av, =0
OL/O%,; =p;h, — Av, =0

17.42)
17.43) OL/OX,, = Pj; = AV, =0
)

(
(
(
(17.44 OL/O%y, = Poji, = AV, =0

Equations (17.41)-(17.44) can also be rearranged in a number of ways. One way is

(17.45) 0V = Paji V= PihaiVs = Paju/V, = A

Again, the partial derivative h, is the marginal product of X, in the production of y;, or
MPPxy,; J, is the marginal product of X, in the production of y, or MPPxy.; h, is the marginal
product of X, in the production of y, or MPPyy,; j, is the marginal product of X, in the
production of'y, or MPPxy,. So equation (17.45) can be rewritten as

<1746) lePPx,y,/Vl pzMPleyz/Vl lePszy,/Vz pzMPszyz/V2 A

The Lagrangean multiplier A is the imputed value of an extra dollar available for inputs to be
used in the production of y, and Yy, and allocated in the correct manner. These first-order
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conditions define a point on both the input and output expansion path.

17.5 An Intermediate Product Model

The intermediate product model is not quite a multiple-input multiple-product model, but
it does have the key feature that factor and product space are brought together in a single
model. Suppose that a farmer uses available inputs for the production of two products, grain
or forage. The grain and the forage are in turn used in the production of beef. Grain and
forage can be thought of as two outputs in product space but as two inputs in factor space.
A product transformation function can be drawn that represents the farmer's possible
combinations of grain and forage that can be produced from the set of inputs or resources
available.

Superimposed on this product transformation function are a series of isoquants
representing alternative levels of beef production, and each isoquant might represent a steer
of a different weight (800, 900, 1000, 1100 pounds, and so on). The simple solution to the
problem of maximizing beef production subject to the availability of inputs for the production
of grain and forage is to find the point where the isoquant for beef production comes just
tangent to the product transformation function. Here the output of beef is maximum, and the
marginal rate of substitution of grain for forage in beef production equals the rate of product
transformation of grain for forage production (Figure 17.1).

The solution illustrated in Figure 17.1 can be derived using Lagrange's method. Since
grain and forage are inputs in one context but outputs in another context, call grain z, and
forage z,. The product transformation function for grain and forage is

(17.47) X° = 9(2,, 2,)

where X° is the bundle of inputs available for grain or forage production, g represents the
product transformation function, z, is grain, and z, is forage.

The production function describing the transformation of grain and forage into beef is
(17.48) b=1(z,, z,)

where b is the quantity of beef produced and f is the specific production function that
describes the transformation of grain and forage into beef.The Lagrangean can be set up as
a constrained maximization problem. Beef production is maximized subject to the constraint
imposed by the availability of the input bundle X used in the production of grain and forage.
The Lagrangean is

(17.49) L =f(z,, 2,) + V[X° — §(Z, 2,)]
Define

f,= 0f/0z,

g; = 0f/0z;

fori=1,2
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Figure 17.1 An Intermediate Product Model
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Then the corresponding first order conditions for a maximum are
(17.50) oL/dz, =f, - vg, =0

(17.51) dL/dz,=f, - vg,=0

(17.52) X - 0(z,,2,)=0
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The first order or necessary conditions for the maximization of beef production subject to the
constraint imposed by the availability of the input bundle have economic interpretation.

For example, the Lagrangean multiplier (V) is the imputed value of an additional unit of
the input bundle X in the production of beef b. The units on the Lagrangean multiplier are in
pounds of beef resulting from the incremental or last unit of the input bundle used. The
Lagrangean multiplier represents the shadow price or implicit worth of an additional unit of
the input bundle X to be used in beef production. The Lagrangean multiplier tells how much
additional beef would be produced from an additional unit of the input bundle Xx.

The partial derivatives f, and f, are the familiar marginal products of grain and forage
to be used as inputs in the production of beef. The negative ratio of f,/f,is also the familiar
marginal rate of substitution of grain for forage (dz,/dz,).

The partial derivatives g, and g, are marginal factor costs of grain and forage expressed
in terms of physical units of the input or resource bundle X used in their production. The
negative ratio of ¢,/g, is the familiar rate of product transformation of grain for forage
(dz,/dz)).

The entire problem is solved relying only on physical or technical relationships governing
the transformation of the input bundle into grain and forage and grain and forage into beef.
Product and factor prices have not yet entered. The first-order conditions can be rearranged.
By dividing the equation (17.50) by equation (17.51), we have

<17.53) _fl/f2 = dZ2/d21 = I\ARSZ]Z2 = _gl/QZ = de/dZ] = RPTZ,Z2

Equation (17.53) represents a point of tangency between the isoquant and the product
transformation function, as illustrated in figure 17.1. The marginal rate of substitution of
grain for forage in beef production must equal the rate of product transformation of grain for
forage.

Another possible statement of the first-order conditions is
(17.54) f/g, =f,/g, =V

The marginal product of grain in the production of beef (f,) divided by its marginal cost in
terms of the input bundle X (g,) must equal the marginal product of forage in the production
ofbeef (f,) divided by its marginal cost in terms of the input bundle X (g,). These ratios should
all be equal to the Lagrangean multiplier V.

Suppose that all farmers faced the same product transformation function for grain and
forage, the same isoquant map for beef production from grain and forage, and that grain and
forage could only be used in the production of beef. Then the relative prices for grain that
would prevail would be the prices defined by the ratio p,,/p,,, which would be equal to the
marginal rate of substitution of grain for forage in factor space and the rate of product
transformation of grain for forage in product space. If the technical parameters governing
production by one farmer also apply to all farmers, the firm level marginal conditions will lead
to a market level determination of relative prices for each input or intermediate product.

In such a quasi—general equilibrium setting, all factor prices except one would be
determined inside the model. The one price not so determined would become the price to which
every other factor price would be compared. The relative prices of grain and forage could
thus be determined internal to or endogenous to the model rather than as information coming
from the marketplace determined outside the model.
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The farmer has options not always recognized by the algebra of the marginal conditions.
The market price for beef (p) will be determined not only by the technical parameters
governing its production, but by other factors as well. Consumer utility functions for beef
relative to other goods must enter. Eventually, consumer utility functions for beef will have
an effect on prices in the marketplace, which, in turn, will effect the prices that farmers are
able to pay for grain and forage in the production of beef. As a result, grain and forage prices
will increase or decrease, since the demand for an input is a function of the product price.

However, in the short run, the price of beef may either exceed or be below its cost of
production. Because all farmers may not have the same technical parameters governing grain,
forage and beef production, and because grain and forage can be put into uses other than beef
production, there is no particular reason to believe that the market will at any particular point
in time have found its long run equilibrium as defined by the technical parameters governing
the production of beef by each farmer, with input prices governed by the prices for beefin the
marketplace.

One option the farmer has is to forget about beef production and sell the forage and
grain. Total revenue from the sale of beef is

(17.55) TR=pb

where p is the price of beef and b is the quantity produced. The input bundle required to
produce beef (x,) can be broken into several cost components

(17.56) TC = VX, = P,iZy + Py + B VX + B VX,

forallj=1,..,m

k=m+1,..,n
where z, is grain and z, is forage. The subscript j represents each of m variable inputs used
in the production of beef excluding the cost of the grain and forage, and k represents each of
n — m - 1 fixed inputs used in beef production. The first set of inputs represents costs
incurred only if beef'is produced, while the second set of inputs represents those costs incurred

regardless of whether or not beef is produced.

The farmer will produce grain and forage and use that to produce beef in the short run

if
(17.57) TR >, 1z, + Pz, + B VX,
where Z, = grain

z, = forage

p,; = price of grain

p,, = price of forage

Z}ijj = all other variable costs except grain and forage

In other words, the farmer will produce beef'in the short run only if variable costs are covered.
In the long run, all costs are variable and therefore must be covered if production is to occur.



Two Outputs and Two Inputs 289

The farmer also faces a decision with respect to whether to produce grain and forage and
sell them as commodities or to shut down entirely. For the farmer to shut down, the total
revenue from the sale of beef must be less than the variable costs of production including the
market value of the grain and forage. Production of beef is then ruled out.

Costs incurred in the production of grain and forage can again be categorized as fixed or
variable depending on whether each cost item would be incurred regardless of production.
The farmer would shut down entirely if the total revenue from the sale of the grain and forage
in the marketplace did not exceed the costs for variable inputs used in their production. In the
long run, all costs are variable, and all must be covered for production to take place.

The farmer faces another option not recognized by the marginal conditions presented so
far. Suppose that in the short run, the product transformation function for an individual farmer
favors forage production relative to grain production. Market conditions also result in a higher
relative price for forage than for grain. The farmer will be able to produce at the level
indicated by the point of tangency between the product transformation function and the
isorevenue line. The forage is sold on the market and the money is used to purchase grain.

The farmer can reach any point on the isorevenue line for grain and forage as long as the
isorevenue comes tangent to a single point on the product transformation function. Any point
can be reached by buying one of the products and selling the other, in this case, selling forage
and buying grain. By definition, any point on an isorevenue line produces the same total
revenue. By selling forage and buying grain, the farmer may be able to produce more beef
than would have been the case if he or she had relied solely on the point of tangency between
the product transformation function and the isoquant (Figure 17.1). The isorevenue line for
grain and forage production is the isocost line for beef production.

17.6 Concluding Comments

This chapter has derived the necessary marginal conditions for global profit maximization
and for constrained revenue maximization in a two-factor two-product setting. The value of
the marginal product of both inputs in the production of both outputs divided by the respective
prices of each input must be the same for both inputs in the production of both outputs in the
constrained maximization solution. In addition, global profit maximization (maximization of
the difference between revenues and costs) requires that the equality be equal to 1.

The intermediate product model illustrates a situation in which prices for inputs and
products might be determined by equating the rates of product substitution between products
and the marginal rates of substitution between factors. Prices in such a model are determined
within the model rather than taken as givens. If prices are assumed to be determined outside
the model, a farmer may be able to take advantage of market conditions and produce a greater
amount of output than would
otherwise be the case.
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Problems and Exercises

1. Assume that the following conditions exist. What should the farmer do in each instance?

Case VMPx,y,/V] VMPx,yz/V] VMPny]/V2 VMszyz/Vz

—_ O = = O N W W W

NOO—RONN—WW

N OO~ WWN

e 508 O MO O
—F OO ON =W

2. In a multiple-input, multiple-output setting, how does the solution differ if the farmer is
interested in global profit maximization versus constrained revenue maximization? In Problem
1, which conditions represent points of global profit maximization? Which conditions
represent solutions to the constrained revenue maximization problem?

3. Explain what is meant by the term intermediate product.

4. In what instances might a farmer be able to produce a greater amount of beef than would
be suggested by the amount of feed that the farmer could produce. Ifit is technically possible
to produce beef from farm grown feed, should a farmer always do so? Explain. What role
does the distinction between fixed and variable costs play in determining whether or not a
farmer should sell grain and forage in the market or produce beef?
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18

General Multiple-Product
and Multiple-Input
Conditions

The necessary and sufficient conditions for maximization and minimization developed for the
factor-factor model in Chapter 8 and for the product-product model in Chapter 16, can be
extended to accommodate any number of inputs and outputs. This chapter illustrates three
models. The first model extends the two-input factor-factor model to more than two inputs.
The second model extends the two-output product-product model to more than two outputs.
The third model combines the factor-factor and product-product models using many different
inputs and outputs to derive a general set of conditions for constrained revenue maximization
and global profit maximization.

Key terms and definitions:

Categorization of Inputs

First-Order Conditions

Second-Order Conditions

Necessary— Conditions
Sufficient-Conditions

Bordered Principal Minor

Resource Endowment

Input Requirements Function

Implicit Production Function

General Equimarginal Return Principle
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18.1 Introduction

The models that have been developed can be extended to accommodate any number of
inputs and outputs. Farmers usually operate in a situation where many inputs are used to
produce many different outputs. A general set of rules for allocation of inputs and outputs
is needed. In this chapter the factor-factor and product-product models are extended to
accommodate more than two inputs and outputs. A general set of rules are developed that
would apply in a multiple-product, multiple-input setting.

18.2 Multiple Inputs and a Single Output

Production economists frequently rely on models in which only two factors of
production are used. However, there are few if any production processes within agriculture
that use only two inputs. The inputs to a production process within agriculture are usually
quite diverse.

For example, a production function for a particular crop might include inputs such as
land, the farmer's labor, hired labor, fertilizer, seed, chemicals (insecticides and herbicides),
tractors, other farm machinery, and irrigation water. A production function for a particular
livestock enterprise might include as inputs such as land, the farmer's labor, hired labor, feeds
such as grain and forage, buildings, veterinary services and supplies, and specialized
machinery and equipment.

Ifthe production economist were to rely on the two-input factor-factor model, the inputs
used for the production of either crops or livestock would need to be combined into only two
aggregate measures. Here problems arise, for the inputs listed above are very different from
each other. A production function calls for inputs measured in physical terms. If such inputs
as tractors and fertilizer are to be aggregated, they would have to be measured in dollar terms.
Moreover, the tractor provides a stream of services over a number of years, while a high
percentage of applied fertilizer is used up during the crop year and a question arises as to how
the aggregation for the production function for a single cropping season should take place.

A better approach might be to categorize inputs as fixed or variable and then to extend
the theory such that more than two variable inputs could be included in the production
function. In such an approach, production and variable cost functions include only those
inputs that the farmer would normally treat as variable within the production season. For
crops, seed, fertilizer, part time hired labor paid an hourly wage, herbicides and insecticides
would be included, but inputs such as tractors and machinery, full time salaried labor, and
land would be treated as fixed within the production function and would not be included in the
production function and variable-cost equation.

The categorization of inputs as fixed or variable depends on the use which the farmer
might make of the marginal conditions proposed by the theory. For example, if the farmer
wishes to make use of the marginal conditions only to determine the proper quantity of
fertilizer, pesticides, herbicides and part-time hired labor to use in the production of a
particular crop, the remaining inputs should be treated as fixed and not as part of the
maximization process.

However, such amodel would not provide the farmer with any information with respect
to questions such as whether or not the renting of additional land would be profitable. If the
farmer wanted the model to provide information with regard to the amount of land that could
be rented at a profit, the acres of land could be treated as variable with a cash rent charge per
acre as the price in the cost function.
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Assume that a decision has been made with respect to which inputs are to be treated as
variable such that the farmer can make an allocation decision, and the n different inputs in
the production function represent only those categorized as variable. A production function
using n different variable inputs can be written as
(18.1) y =f(x, ..., X,)
where n is the inputs to the production process to be treated as variable and under the control
of the farmer. Each X represents one of the specific inputs used in the production process,
whereas Yy may be the output from either a specific crop or livestock enterprise.

The cost equation for n inputs treated as variable by the farmer in a purely competitive
environment is

(18.2) C=vVX +..+VvXx,=2vx fori=1,.,n

A general Lagrangean formulation for revenue maximization allowing for multiple inputs
is

(18.3) L = pf(X,,....x,) + A(C° - Zvx)
where p is the output price.

n different inputs can be varied, and the farmer can control the amount to be used of
each. Let

f, denote the MPP of x, holding all other inputs constant
f, denote the MPP of x; holding all other inputs constant
f, denote the MPP of x,, holding all other inputs constant

Then the first-order conditions for constrained revenue maximization in a many input setting
requires that

(18.4) pf v, = .. =pfiv,=...=pf v, = A
(18.5) PMPPy/V, = ... = pMPPy/V, = ... = pMPPx /v, = A
(18.6) VMP/V, = ... = VMPx/V, = ... = VMPy/V, = A

First-order conditions for constrained revenue maximization in a many—input setting
require that all ratios of VMP for each variable input to the respective variable input price
be equal and equal A, the imputed value of an additional dollar available for the purchase of
x. If the Lagrangean multiplier A is 1, a point of global profit maximization on the input side
has been achieved. Conditions presented in equations (18.4)-(18.6) represent the general
equimarginal return principle in the n— factor case and are consistent with those developed
in the two factor case.

For every pair of inputs i and j,
(18.7) dxy/dx; = Vv,

(18.8) MRSxx = Vv,
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The slope of the isocost line must be equal to the slope of the isoquant for every pair of inputs.
Equations (18.7) and (18.8) define a point of least-cost combination on the expansion path.
These conditions are also consistent with those obtained in the two factor setting.

The second-order conditions for a constrained maximization in the n—factor case differ
somewhat from those derived in the two-factor setting. In the two-factor setting the
determinant of the matrix of partial derivatives obtained by differentiating each of the
first-order conditions with respect to X,, X,, and the Lagrangean multiplier was always
positive. In the n—factor case, the second-order conditions require that determinant of the
following matrix have the sign associated with (—1)", where n is the number of inputs

(18.9) fll .o fli .o fln _Vl

In the two-input setting, the determinant of this matrix must be positive, but negative
for three inputs, positive for four inputs, and so on. If the number of inputs is even, the
determinant will be positive. If the number of inputs is odd, the determinant will be negative.'
Moreover, the bordered principal minors in the N—input case alternate in sign. To illustrate,
the bordered principal minors for the three-input case and the required signs for the
determinants are

(18.10) fll _Vl fll flz _Vl fll flz f13 _Vl
<0
-v; 0 fy £ —v, >0 fy T3 —v, <0
-V; =V, 0 fy o f5 —vs

_Vl _Vz _V3 O

The first-order conditions represent the necessary conditions for constrained revenue
maximization in the many—input setting. If the first order conditions hold, the second-order
conditions as specified by the required signs on the determinants above are necessary and
sufficient for constrained revenue maximization in a many input setting. Second-order
conditions rule out points of revenue minimization as well as saddle-point solutions. Ifthe
first- and second-order conditions hold and the Lagrangean multiplier is equal to 1, the global
point of profit maximization on the input side has been found.
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18.3 Many Outputs and a Single Input

Most farmers do not restrict production to a single output, but are involved in the
production of several different outputs. The endowment of resources or inputs available to a
farmer may differ markedly from one farm to another. Usually, it is not the physical
quantities of inputs that are restricted, but rather the dollars available for the purchase of
inputs contained within the bundle.

An input requirements function using a single-input bundle to produce many different
outputs can be written as

(1811> X:g(yla (] yia s ym)
where m is the number of outputs of the the production process.
Multiplying by the weighted price of the input bundle v yields

(1812) VX = Vg(yla eeey yi: [ET) ym)

where vx = C°, the total dollars available for the purchase of inputs used in the production of
each output.

A general revenue equation for m different outputs produced in a purely competitive
environment is

(18.13) R=py, +..+pY,=2py; fori=1,..m

A general Lagrangean formulation for revenue maximization allowing for multiple
outputs is

(18.14) L=pYi + oo # DYt oo+ Puin T WIVXC = VOV, wors Vis ceesYi)]

where vX° = C°, the money available for the purchase of the input bundle x.

Let g; denote one over the MPP of X in the production of y; holding all other outputs
constant. Then the first order conditions for constrained revenue maximization in a many
output setting require that

(18.15) P/OV =...=p/gV = ... = P, /g, V=
(18.16) D,MPPy v =... = pMPPy/V = ... = p, MPPx,/v = |
(18.17) VMPy, /v = ... = VMPy/V = ... = VMPx,/V = |

where V is the price of the input.

First-order conditions for constrained revenue maximization in a many output setting
require that all ratios of the VMP of X to the price of the input bundle (v) be equal, and equal
P, the imputed value of an additional dollar available for the purchase of x. If the Lagrangean
multiplier Y is 1, a point of global profit maximization on the output side has been achieved.

Dollars available to the farmer and used for the purchase of the input bundle must be
allocated in such a way that the last dollar spent in the production of each output returns the
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same amount for all the possible different outputs. In other words, if the farmer has found the
optimal solution in the constrained case, then the last dollar spent in the production of each
output will generate the same return, whether the output is corn, beef, soybeans wheat or milk.

For every pair of outputs i and j,
(18.18) dy,/dy; = p/p;
(18.19) RPTyy, = p/p;

The slope of the isorevenue line must be equal to the slope of the product transformation
function for every pair of outputs. This equation defines a point on the output expansion path.

Second-order conditions require that determinant of the following matrix have the sign
associated with (- 1)", where m is the number of outputs

(18.20) -yvg,, ... —Pvg,; ... ~Pvg,, Vg,

=g, ... —Pvg; ... ~Pvg;, Ak

_IIJng] _ll'Ingl _lpngm _ng
-Vg; ... =Vg; .. —VO, 0

In the two-output setting, the determinant of this matrix must be positive, but negative
for three outputs, positive for four outputs, and so on. This second-order condition rules out
points of revenue minimization as well as saddle-point solutions. Again, the bordered principal
minors must alternate in sign.

The first-order conditions comprise the necessary conditions for constrained revenue
maximization in a many input setting. If the required signs for the determinant of equation
(18.20) and the bordered principal minors also hold, the conditions are sufficient. If the
Lagrangean multiplier is equal to 1 and these sufficient conditions have been met, the global
point of profit maximization on the input side has been found. The farmer is globally
maximizing profits if the last dollar spent for the input bundle returns exactly a dollar in each
farm enterprise.

18.4 Many Inputs and Many Outputs

The most realistic setting is one in which the farmer uses many different inputs to be
treated as variable in the production of many different products. The farmer faces a series of
decisions. Normally, he or she is constrained by limitations in the availability of dollars that
can be used for the purchase of inputs, so the total dollars used for the purchase of inputs
must not exceed some predetermined fixed level. The farmer must decide how the available
dollars are to be used in the production of various commodities such as corn, soybeans, wheat,



General Multiple-Product and Multiple-Input Conditions 297

beef, or milk. The mix of commodities to be produced must be determined. The farmer must
also decide the allocation of dollars with respect to the quantities of variable inputs to be used
in each crop or livestock enterprise. Therefore, the mix of inputs to be used in the production
of each of the many enterprises must be determined.

Marginal analysis employing Lagrange's method can be used to solve the problem under
conditions in which many different factors or inputs to the production process are used in the
production of many different commodities. The rules developed in the many-input,
many — output case are the same as those derived in the two-factor, two-product case presented
in Chapter 17. However, the mathematical presentation becomes somewhat more
complicated.

In the problem with two inputs and two products, the equality that must hold contained
four expressions, each representing a ratio of VMP for an input used in the production of a
product relative to the price of an input. In a general setting allowing for many more inputs
and outputs, there will be many more expressions in the equality. If there are m different
outputs produced and every possible output uses some of each of the n different inputs, there
will be n times m expressions in the equality representing the first-order conditions. For
example, if a farmer uses six inputs in the production of four different outputs, the 24 ratios
of VMP's to input prices must be equated.

Suppose that the farmer uses n different inputs in the production of m different outputs.
The farmer wishes to maximize revenue subject to the constraints imposed by the technical

parameters of the production function, as well as the constraints imposed by the availability
of dollars for the purchase of inputs. The revenue function is

(18.21) R=pY, + .o+ Py
The production function linking inputs to outputs is written in its implicit form?
(18.22) HY s oo Yo Xps ooy X)) =0

In the implicit form, a function of both inputs and outputs (H) is set equal to zero. The inputs
are treated as negative outputs, so each x has a negative sign associated with it.

The Lagrangean maximizes revenue subject to the constraint imposed by the technical

parameters of the production function, and the availability of dollars for the purchase of
inputs. The Lagrangean function is

(18.23) L=PYy + e FPuYon + WO = HY 1y ooy Yoo X5 oeer X,)]
+A[CO+ VX, + ..+ VX ]

Since each input has a negative sign associated with it, it is appropriate that the second
constraint be written as C° + 2v,x, rather than as C° — 2vx,.
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Differentiating first with respect to outputs, the first order or necessary conditions are

(18.24) dL/dy, = p, - YOH/dy, =0

dL/dy, = p;, - PoH/oy;

Il
o

oL/oy,, = p,, — WoH/dy,, =0
For every pair of outputs, i not equal to j
(18.25) dy,/dy; = p/p;

The slope of the product transformation function or rate of product transformation must equal
the slope of the isorevenue line or inverse output price ratio. Moreover

(18.26) (OH/3Y,)/p, = ... = (OH/BY)/p; = ... = (OH/BY,)/py = 1/
Differentiating with respect to inputs, the first order conditions are
(18.27) OL/Ox, = ~PAH/OX, + Av, =0

oL/Ox, = —POH/Ox; + Av, =0

OL/Ox, = —YOH/Ox, + Av, =0

For every pair of inputs, i not equal to |
(18.28) dxy/dx; = vy,

The marginal rate of substitution must be equal to the corresponding inverse price ratio.
Furthermore

(18.29) YOH/OX )N, = ... = P(OH/OX)N, = ... = P(OH/OX, )V, = A

But
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(18.30) Y = p,/(OH/AY,) = ... = p/(OH/dy,) = ... = p,,/(OH/dy,,)

The m different expressions for | from equation (18.30) can be substituted each time s
appears in equation (18.29). The multiplier { appears in equation (18.29) n different times,
so the required m times n expressions are possible.

(18.31) P(OH/OX)/(v; OH/AY,) = (p; Oy/Ox)V, = PMPPxy/v;

or

(18.32) P,MPPuy/V, =... = PMPPyy/v, = ... = p, MPPxy./v,
= lePPx‘y,/Vj == piMPPxiyi/Vj =.. = pmMPPxiym/Vj
=p,MPPxy /v, =...= PMPPxy/v, = ... = p,MPPxy /v, = A

The ratios of the values of the marginal products to the respective input prices must be
the same for each input in the production of each output and equal to the Lagrangean
multiplier A. The Lagrangean multiplier A is the imputed value of an additional dollar
available for the purchase of inputs, allocated according to these conditions. A value for the
Lagrangean multiplier A of 1 would imply global profit maximization in this setting.

Second-order conditions for the multiple-input, multiple-product case are not presented
here, but would not be at variance with the second-order conditions presented earlier in the
chapter. The final conclusion in the multiple-input, multiple-product setting is entirely
consistent with each of the marginal conditions developed earlier in the text. The rules with
respect to input allocation across various outputs can be looked upon as extensions to the
simpler models rather than as something different.

18.5 Concluding Comments

This chapter has developed a general equimarginal return principle or rule that applies
in a situation where a farmer uses many different inputs in the production of many different
outputs. While the underlying conclusions in the case in which many factors are used to
produce many different products do not differ from the conclusions reached in Chapter 17 for
the two- input, two-output case, the derivation of these conclusions becomes somewhat more
complicated. If n inputs are each used in the production of m different outputs, then n times
m different terms will appear in the equimarginal return equation.

Since farmers usually use several different inputs in the production of a number of
different outputs, the equimarginal return expressions developed in this chapter perhaps come
closest to applying to the actual situation under which most farmers operate. A farmer will
have found a constrained maximization solution if the ratio of VMP to input price is the same
for every input in the production of every output. Global profit maximization occurs when this
ratio is 1 for all inputs and all outputs.
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Notes

" The slope of MPP or f,, is negative in stage II of the production function. If there are
two inputs, f,, is also negative in stage II. If there are three inputs, f,; is also negative in stage
II. Thus

f,, <0
fiif>0
fifufss <0

and so on. The fact that the required sign on the determinant changes as the number of inputs
increases is a direct result of the fact that MPP is declining within stage II of the production
function, where the optimal solutions would be found that meet both necessary and sufficient
conditions for a maximum.

% A function may be written in its implicit form. For example, the production function y =f(x,)
can be written in its implicit form as h(x,, y) = 0. However, if the implicit function h(x,, y) =
0isto be written as an explicit production functiony =1(X,), or as the explicit cost function
in physical terms X, = f'(y), then the partial derivatives oh/0x, and dh/dy must exist and be
nonzero.

Problems and Exercises

1. Are the necessary and sufficient conditions for finding a point representing a solution to
the constrained revenue maximization problem the same in an n—input, one-output setting,
as in a two-input, one-output setting? Explain.

2. Are the necessary and sufficient conditions for finding a point representing a solution to the
constrained revenue maximization problem the same in a one-input, n—output setting as in
a one-input, two-output setting? Explain.

3. What do the necessary conditions for constrained revenue maximization require in an
n-output, N—input setting? What are the required sufficient conditions?

4. Suppose that in an n—input, n—output problem, the Lagrangean multiplier was found to be
3 for all inputs used in the production of all outputs. Interpret this Lagrangean multiplier.
What if the Lagrangean multiplier were instead found to be 1? What would be the
interpretation of a Lagrangean multiplier of zero. Could the Lagrangean multiplier be
negative? Explain.
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19

Enterprise Budgeting
And Marginal Analysis

The development of budgets for individual crop and livestock enterprises may at first seem
rather unrelated to the marginal principles developed in earlier chapters of this text, but these
economic principles play an important role in determining how budgets for farm enterprises
should be constructed. A number of questions arise. (1) What level of output should be
chosen? (2) Upon what level of input use should the farm budget be based? (3) How should
inputs that last for more than one season be handled? (4) What about potential economies and
diseconomies of size for the enterprise? (5) what about uncertainty with respect to prices and
output levels? Answers to these questions form the basis for this chapter.

Key terms and definitions:

Enterprise Budget

Decision Rule

Pecuniary Economies of Size
Non-pecuniary Economies of Size
Fixed Input Allocation
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19.1 The Development of an Enterprise Budget

Budgets for individual farm enterprises are widely used by farmers and others as
planning devices for determining both what crops should be grown and livestock should be
raised, and for determining how inputs should be allocated between enterprises. A farmer who
does little other planning might devote considerable time to the development of individual
enterprise budgets for each of the crop and livestock activities being considered.

Table 19.1 provides an example of a commonly used format for an enterprise budget.
The example used here is corn. The enterprise budget is constructed on the basis of an acre.
Output is listed first. A price for the output is assumed. The variable costs are listed. An
assumption is made with regard to the amount to be used of each variable input. In the case
of corn, the list includes inputs such as insecticides and herbicides, nitrogen, phosphate and
potash fertilizer, and seed. Assumptions are made with regard to the price of each variable
input item, and the corresponding cost of that item per acre is calculated. Labor to be used per
acre is calculated, and a wage rate for that labor specified. Costs for fuel and repairs required
to run the machinery needed to produce the crop are listed. Estimates of the amount of fuel
to be used are made as well as its price per gallon.

Repair costs are frequently very difficult to estimate. It is difficult to know how much
will need to be spent for the repair of a machine on a per acre basis before it is used, and
implicit assumptions need to be made about the price of machinery repairs. These numbers
are usually nothing more than guesses based on the farmer's past experiences with the
machines used in conjunction with the enterprise. Engineering data may also be available for
estimating repair costs.

The fixed costs are listed. A major fixed cost item is the depreciation on the machinery,
buildings, and equipment. Fixed costs should represent the costs associated with the wearing
out of the inputs that are used in the enterprise for more than one season, but tax laws enter.
Farmers are probably more aware of the concept of depreciation as defined by what is allowed
as an expense under current federal tax law than they are of the true costs associated with the
wearing out of the machine over a number of years of operation. Farmers are concerned with
maximizing profit after taxes, so the number to be entered for depreciation becomes unclear.
Taxes are also included here, and are usually relatively easy to determine on a per acre basis
for the budget.

Another major fixed-cost item is the interest charge on borrowed money, or the
opportunity cost of the farmer's own money invested in the farm. If the farmer uses entirely
borrowed funds, the cost to be listed here is easy to determine, but if the farmer uses some
of his or her own money, the money that is used should have an imputed value or shadow
price attached to it based on the returns available in a risk— free alternative. For example, if
the farmer could have earned 8 percent interest at the local bank, that represents a shadow
price for the farmer's own money used in the corn enterprise. Another alternative for tenants
is to show the cash, or cash equivalent rent.
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Table 19.1. An Enterprise Budget for an Acre of Corn.

Gross returns:
Sale of grain $3.00x 110 bu  $330.00
Total returns 330.00

Variable costs of production:

Nitrogen $025x125.001b  31.25
Phosphate 0.23 x 60.00 1b 13.80
Potash 0.13x 60.001b 7.80
Lime 8.50 x .50 tons 4.25
Seed 1.00x 16.00 1b 16.00
Chemicals 17.00 x 1.00 acres 17.00
Insurance .015 x 600.00 dollars 9.00
Repairs .015 x 600.00 dollars ~ 9.00
Machinery Operation 5.00 x 5.00 hr 25.00
Hauling 0.18 x 110.00 bu 19.80
Labor 3.50 x 5.00 hr 17.50
Total variable costs 170.40

Fixed costs of production

Machinery depreciation 10.0% x $ 300 30.00
Building depreciation 5.0% x 300 15.00
Interest on machinery 8.0% x 300 24.00
Interest on buildings 8.0% x 300 24.00
Interest on land 8.0% x 1500 120.00
Taxes 0.6% x 1800 10.80
Total fixed costs 223.80
Total fixed and variable costs 394.20
Net returns over all costs -64.20

(Return to management)

Farmers usually respond by saying that their money invested in farmland, due to an
appreciation in farmland values, in most years yields a return greater than what would have
been received by putting the money in a bank account. This return would have occurred
whether or not the farmer produced corn, but would not have occurred if the farmer had sold
the farmland and exited from farming.

Fixed- and variable-cost items are summed and subtracted from gross returns obtained
from the sale of the crop to determine profit on a per acre basis. Even here there are
difficulties. Ideally, the profit should be representative of what is left over after every factor
of production other than management has been paid, but problems occur. Farmers usually do
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not deduct an opportunity cost for their own money invested in the enterprise. Moreover, they
usually do not charge on the budget for their own or family labor that is not a cash expense.
The profit figure that often appears on an enterprise budget is actually a return to management
and entrepreneurial skill as well as a return to the farmer's own money invested and to
nonwage farm family labor.

The farm enterprise budget is a document based on a very comprehensive and
complicated series of economic assumptions. The marginal principles outlined in earlier
chapters can play a role in dealing with some of the issues associated with the development
of a budget for a farm enterprise.

19.2 The Level of Output to Be Produced

One of the first questions a farmer must face is to determine the level of output to be
produced and represented in the budget. The farm enterprise budget is usually developed on
aper acre or per animal basis. However, a salient theme running through much of this text is
that the cost per unit of output produced is not constant, but varies depending on the output
level chosen. An enterprise budget, even if constructed on a per acre or per animal basis, must
be based on a specific assumption with regard to the amount of the output that is to be
produced. The basic problem here is that the level of output of a particular enterprise is one
of the key pieces of information that the farmer desires as an outcome of the budgeting
process. However, to develop the budget, the farmer must make an assumption about the level
of output to be produced, particularly if fixed costs are to be determined on a per acre basis.

A production economist would argue that if the entrepreneur is interested in maximizing
profits, the level of output to be chosen is that output level where

marginal cost = marginal revenue = product price

Figure 19.1 illustrates a set of cost functions on the output side for corn production. The
enterprise budget can at best represent only a single point in this series of cost functions. If
the farmer produced but one commodity, the level of output for the enterprise budget should
be equal to the profit-maximizing level where marginal cost and marginal revenue are the
same.

However, farmers usually produce more than one product and have limitations on the
availability of funds to purchase inputs for each enterprise. The equation marginal cost equals
marginal revenue implies that no limitations exist in the availability of money needed to
purchase inputs. Under this assumption, the farmer would produce at a level that maximizes
profits in each enterprise. It is unlikely that a farmer would have all the money needed for
the purchase of inputs, and will globally maximize profits.

The product-product model provides a better set of decision—making rules for
determining the allocation of dollars for the purchase of inputs when the farmer produces

many different outputs and faces constraints. The basic decision rule for the product-product
model is

(19.1) VMPy Vv = ... = VMPy/V = ... = VMPx, /v = |

where the notation is the same as defined in Chapter 16.
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Equation (19.1)is the familiar equimarginal return principle on the output side. The rule
implies that the farmer would attempt to make equal the ratio of returns to costs for all
enterprises. Equation (19.1)also implies that the output level to appear on the farm budget for
each enterprise would probably be less than that associated with the point where marginal
revenue and marginal cost are the same.

19.3 The Variable-Input Levels

A second decision the farmer must make is to determine the level of the variable inputs
to be used. The marginal cost equals marginal revenue rule generates an output level that
maximizes profits. The output level that maximizes profits uses the amounts and combinations
of inputs defined by the intersection of the pseudo scale lines.

The farmer interested in maximizing profits can either equate marginal cost to marginal
revenue or can determine where the VMP for each input divided by its respective price equals
1. The first approach gives the solution in terms of output, while the second provides the
solution in terms of the optimal quantities of each input to be used, but the two solutions are
consistent. If each input is used at its profit maximizing level by the (VMP = MFC) decision
rule on the input side, the profit maximizing level of output will be produced by the (MR =
MC) decision rule on the output side.
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If there are constraints or limitations in the availability of funds for the purchase of
inputs, marginal analysis also provides a clear set of rules both with regard to how dollars
should be allocated for the purchase of inputs as well as how the inputs should be allocated
among enterprises:

(19.2)  pMPPxy/V, =...= PMPPxy/V, = ... =p,MPPxy./V,
= lePPny,/Vj == piMPijy,/Vj =. = pmMPijym/Vj
=p,MPPxy /v, =...= pMPPxy/v,=... = p,MPPxy./Vv, = A

Constrained maximization indicates that inputs should be allocated to each output in
such a way that the last dollar spent for each input returns the same amount for every farm
enterprise. The input levels selected should be consistent both with this rule and with the
output level specified for each enterprise budget.

However, farmers often have but partial knowledge of the VMP's associated with each
input to be used in the production of each output. Information is frequently obtained on a
trial—and- error basis, which can be both expensive and time consuming for the farmer. There
is little question as to the proper amount and allocation of each input, but the information
needed to do this is often unavailable.

19.4 The Fixed-Input Allocation

A farmbudget is frequently used as a planning device for the coming production season.
Fixed inputs would thus include only those factors of production the farmer did not intend to
change or control over the coming season. Conversely, variable inputs are factors of
production which the farmer planned to control or alter during the upcoming season. Variable
inputs are usually readily allocable to specific enterprises. In many instances, fixed inputs
cannot readily be allocated to an enterprise.

Inputs not allocable to a specific enterprise have very little to do with marginal analysis.
If fixed inputs cannot easily be allocated to a particular enterprise, they should not play arole
in determining whether or not that enterprise should be pursued. If the ultimate goal of
enterprise budgeting is to determine the output levels for each enterprise, perhaps those inputs
that cannot easily be allocated to a particular enterprise should better be left out of the
enterprise budget entirely.

The cost of fixed inputs does become important when the farmer determines the net farm
income at the end of the growing season. In the long run, the farmer must cover all costs, fixed
and variable, in order to survive, but in the long run, all costs are variable. The budget for an
enterprise should not be looked upon as a document for determining the net farm income from
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that enterprise, but rather as a planning tool useful in managing the farm. Fixed inputs enter
in only if the farmer is considering the purchase or the sale of the item at the time the
enterprise budget is made, and then the input is more properly treated as a variable cost
allocable to the enterprise.

For the purpose of enterprise budgeting, inputs allocable to the specific enterprise might
better be categorized as durable or nondurable. Durable inputs are those that normally last
more than one production season. Nondurable inputs are used up during the production
season. The process of determining the cost per year of a specific durable input to appear in
the enterprise budget is much easier once the farmer has determined that the durable input
should be allocated to a specific enterprise.

19.5 The Economies of Size and Farm Budgets

As noted earlier, a farm budget assumes a specific level of output to be produced.
However, costs per unit of output can vary substantially depending on the size of the
operation. The assumed size of the operation can have a great deal to do with the specific
numbers that appear in the budget.

As indicated in Chapter 9, economies of size usually arise from two sources. Pecuniary
economies of size occur because the farm manager is able to purchase an input at a lower
price per unit in large quantities than in small quantities.

Non pecuniary economies of size occur because by expanding the level of output, the
farmer can spread fixed costs and thus reduce average fixed costs per unit of output. But if
fixed costs cannot be allocated to specific enterprises, the pecuniary economies of size issue
is more properly dealt with as part of the total plan for the farm, outside the budget for a
specific enterprise. Moreover, in the long run there are no fixed costs.

Nonpecuniary economies of size can also occur due to the possible specialization of
inputs. As the size of the enterprise increases, the farmer can purchase input that are better
suited to low—cost production.

Enterprise budgets can reflect pecuniary economies of size. Prices for variable inputs
might be based on approximations of how much of each input will be purchased by the farm
in total. In providing quantity discounts to the farmer, the fertilizer dealer does not care how
much of the fertilizer is to be allocated specifically to the wheat, corn, and soybean enterprise.

19.6 Price and Output Uncertainty

To develop an enterprise budget, specific assumptions need to be made with respect to
prices and outputs. If an enterprise budget is developed as a planning document, neither prices
nor outputs will be known with certainty. If the farmer makes budgets at the start of the
season, the farmer will be nearly certain of the prices for inputs needed and purchased at the
start of the production season. For inputs purchased during the production season, there may
be a degree of variability relative to budgeted amounts.

A decision must be made with regard to the price of the output or outputs produced by
the enterprise. There will normally be a good deal of variability in output prices during the
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production season, but the farmer has tools available for dealing with this source of
variability. For example, the futures market might be used to determine a specific price for
the output at the end of the production season. If the output or commodity is affected by a
government program, the price of the commodity may be supported at some specific level.
Therefore, the problem of attaching a specific price to an output in an enterprise budget may
not be as difficult as it initially seems.

Output uncertainty presents other problems. Despite a farmer's keen awareness of the
VMP's associated with each input in the production of each output in a normal production
season, because of nature, the outcomes suggested by the enterprise budget may not become
reality. Farmers usually make output predictions based on past experience with the enterprise
in an average year, adjusted for any changes in the use of inputs as proposed in the budget.
Ideally, this is the output level where marginal revenue and marginal cost are equal, or as an
alternative, an output level such that the rates of product transformation for the output from
each pair of enterprises equals the corresponding output price ratio.

19.7 Concluding Comments

Enterprise budgets are the planning tools perhaps most commonly used by farmers.
Marginal analysis can provide a useful basis for the development of the appropriate numbers
for an enterprise budget. Marginal analysis can be used to determine (1) the proper output
level, (2) the amounts and combinations of inputs that will produce at greatest profit or least
cost for a given output level, and (3) the proper size of the operation.

An enterprise budget is a planning document that specifies what might happen and also
what almost surely will not always take place. It is not an accounting document designed to

determine the overall profitability of the farm. The marginal rules developed in this text can
play a key role in making the enterprise budget a more effective aid to farm planning.

Problems and Exercises
1. In an enterprise budget, how are variable costs distinguished from fixed costs?

2. Upon what basis might a farmer determine potential selling prices for the commodity or
commodities produced by the enterprise?

3. In determining costs, what level of output should be chosen as the basis for making the
enterprise budget?

4. Suppose that the farmer has available quantity discounts in the purchase of fertilizer and
chemicals. How should such discounts be handled within the enterprise budget framework?
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20

Decision Making in an
Environment of Risk
And Uncertainty

This chapter provides a very basic introduction to how risk and uncertainty can be
incorporated into farm planning, with an emphasis on the marginal analysis developed in
Chapters 2 to 18. Risk and uncertainty are defined. The role of farmer attitudes and objectives
in determining particular strategies for dealing with risk and uncertainty is discussed.
Expected prices and yields might be used to replace actual prices and yields in marginal
analysis models. A simple marginal analysis model incorporating income variability is
developed. Alternative strategies for dealing with risk and uncertainty at the farm level are
compared.

Key terms and definitions:

Risk

Uncertainty

Risk Uncertainty Continuum
Probability

Expected Income

States of Nature

Action

Consequences

Utility

Utility Function

Variance

Expected Price

Expected Yield

Income Variability
Insurance

Contract

Flexible Facilities and Equipment
Diversification

Government Program
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20.1 Risk and Uncertainty Defined

Farmers face situations nearly every day in which the outcomes are uncertain. Nature
has a significant impact on farming. For example, it may not rain or it may rain too much.
Crops can get hailed out or insects and disease can destroy a crop. An apple or orange crop
may get frost, and animals develop diseases and die. Thus farming is inherently linked to the
path of nature.

The markets affect farmers to a great degree as well. Farmers complain that prices are
high when they have nothing to sell and that prices are low when crop yields are high. Prices
for agricultural commodities are largely determined by forces outside the control of the
individual farmer. Farming takes place in an environment characterized by risk and
uncertainty.

Frank Knight was the one initially responsible for making a distinction between the term
risk and the term uncertainty. He argued that in an uncertain environment, possible outcomes
and their respective probabilities of occurrence were not known. In arisky environment, both
the outcomes and the probabilities of occurrence are known.

Some economists have suggested that to deal with risk, all that is needed is an insurance
policy. The insurer can discover the outcomes and the probabilities of their occurrence and
write a policy with a premium sufficient to cover the risk and net a profit to the insurer.

Uncertainty cannot be dealt with as easily. If the outcomes and the probabilities
associated with each outcome are not known, the insurer would not be able to write a policy
with a premium sufficient to cover the risk. Recently, some insurance companies have written
policies designed to pay for losses resulting from the occurrence of very unusual events. It is
difficult to believe that insurance companies have complete knowledge of the probabilities
associated with these events, so distinguishing between risk and uncertainty on the basis of
insurability is not the final answer.

Rather than to think of risk and uncertainty as dichotomous terms, it may be more
appropriate to think of a risk uncertainty continuum (Figure 20.1). At one end of the
continuum lie risky events, in which the outcomes and the probabilities attached to each
outcome are known. At the other end of the continuum lie uncertain events, in which neither
outcomes nor probabilities of their occurrence are known. Many events taking place in
farming lie between the polar extremes of risk and uncertainty. Usually, some but not all of
the possible outcomes are known, and some but not all outcomes have probabilities attached
to them. Much of farming lies midway on the risk uncertainty continuum.

20.2 Farmer Attitudes Toward Risk and Uncertainty

One of the problems in dealing with risk and uncertainty is that individuals, including
farmers, vary markedly in their willingness to take on, and preferences for, risk and
uncertainty. No one would normally enter an environment characterized by risk and
uncertainty without expectations of gains greater than would be the case in the absence ofrisk
and uncertainty.
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Figure 20.1. A Risk and Uncertainty Continuum

That individuals vary markedly in their willingness to take on risk and uncertainty can
be illustrated with a simple class game. Suppose that a person is confronted with four
different strategies. Each strategy will produce varying levels of income and have probabilities
attached to each income level. The four strategies are outlined in Table 20.1. The outcomes
and the probability of each outcome are known with certainty. The probability assigned to
each strategy represents the expected proportion of times the specified income is expected to
occur, relative to the total t times the particular strategy (A, B, C, or D) is pursued. For each
strategy, the probabilities sum to 1, indicating that for each strategy, only the three income
levels are possible. Each member of the class might vote on the strategy that he or she would
pursue.

One way to determine which strategy to pursue would be to calculate the expected
income occurring as the result of each strategy. The expected income is the income resulting
from the strategy weighted by its probability of occurrence. For strategy A, the expected
income is (0.3 x 1,000,000) + (0.2 x —500,000) + (0.5 x 0)=$200,000. For strategy B, the
expected income is (0.3 x 100,000) + (0.4 x 50,000) + (0.2 x 0) + (0.1 x —20,000) = $48,000.
For strategy C, the expected income is (0.7 x 50,000) + (0.2 x 30,000) + (0.1 x 0) = $41,000.
For strategy D, the expected income is (0.4 x 30,000) + (0.4 x 25,000) + (0.2 x 15,000) =
$25,000. So based on expected income, strategy A would always be pursued, despite the fact
that strategy A also allows for the greatest potential losses.

The strategy that is pursued depends in part on the person's particular financial situation.
Suppose that if a positive income was not achieved, the person would lack funds necessary
to meet the basic needs of life, and would starve. Such a person would be reluctant to pursue
any strategy other than D, but a person with a $1 million already in the bank would probably
choose strategy A. The worst that person could do is lose half of what he or she already had.

The strategy each person chooses is largely unrelated to intelligence or education. There
is probably no relationship between the strategy that each person selects and his or her score
on the last hour exam in agricultural production economics. College graduates would not
necessarily tend to choose strategies different from high school graduates. All millionaires are
not college graduates. Those in bankruptcy are not all high school dropouts.
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Table 20.1 Alternative Income-Generating Strategies

Strategy Income Probability
A $1,000,000 0.3
-500,000 0.2
0 0.5
B 100,000 0.3
50,000 0.4
0 0.2
-20,000 0.1
C 50,000 0.7
30,000 0.2
0 0.1
D 30,000 0.4
25,000 0.4
15,000 0.2

Each person thus has a different preference for risk and uncertainty versus certainty that
is very much intertwined with his or her own psychic makeup. So also it is with farmers.
Anyone can cite examples of farmers who pursued high—risk strategies that paid off.
Examples of farmers who pursued high risk strategies and went bankrupt are also
commonplace, and there are numerous examples of farmers who pursued secure strategies,
made a living at farming, but never became wealthy. Self—made millionaires vary widely in
intelligence and education, but share a common characteristic in that they are willing to
assume large amounts of risk with little, if any, fear if things should not go their way.

Professions vary in the amount of risk. The race car driver assumes enormous amounts
of risk in the pursuit of a potentially high payoff. College professors and others in secure,
stable occupations are frequently quite risk averse.

Farmers as a group probably prefer to take on more risk than college professors as a
group. Nearly every extension agricultural economist has had the opportunity to work with
farmers whose incomes exceed the income of the extension agricultural economist several
times over. If farmers were not willing to assume some risk, they would have long ago chosen
an occupation with a steady income with little variability from year to year. Rather, they let
the whims of nature and the marketplace in large measure determine their annual incomes.
Students from farm backgrounds sometimes attend an agricultural college in hopes of securing
a job that has less income variability than was present on the farm back home.

20.3 Actions, States of Nature, Probabilities, and Consequences
A farmer must have alternatives open in order to make a decision. If two or more

alternatives are not available, a decision cannot be made. The alternatives available to a
farmer represent the actions or strategies open to the farmer. The set of actions should
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encompass the full range of alternatives open to the farmer. In the game in Section 20.2, the
actions were represented by the alternative strategies. There are usually a finite number of
actions or strategies open to the manager.

The states of nature represent the best guess by the decision maker with regard to the
possible events that might occur. States of nature are assumed to be outside the control of the
decision maker, and in combination with the decision maker's actions determine the outcomes
for the decision maker.

Probabilities can be attached to each outcome. They represent the manager's guess as
to the number of occurrences of a particular outcome relative to the total number of possible
outcomes resulting from a particular strategy. For example, if a particular outcome is
expected to occur 3 times out of 10, a probability of 0.3 will be assigned. If all outcomes for
each strategy are delineated, then the sum of the probabilities associated with each strategy
will be 1. This was the case in the game in Section 20.2.

Consequences represent outcomes that are produced by the interaction of the manager's
actions and the states of nature. Consequences represent what could happen to the manager.
The various income levels represented the outcomes or consequences associated with each
strategy in the game.

These terms can be further illustrated with another game. Suppose that the farmer is
faced with two options, to grow wheat or soybeans. Assume that nature also has two states,
one producing high yields and the other producing low yields. The income resulting from each
combination of decision—maker strategies and states of nature, and the corresponding
subjective probabilities attached to each state of nature. The resultant matrix is:

State of Nature and Probabilities

Action High Yields:  Low Yields:

0.6 0.4
Grow Soybeans $20,000 $ 3,000
Grow Wheat $15,000 $10,000

The expected income if the farmer grows soybeans is
(0.6)($20,000) + (0.4)($3000) = $13,200
The expected income if the farmer grows wheat is
(0.6)($15,000) + (0.4)($10,000) = $13,000
If the farmer is interested in maximizing expected income, he or she would be better off to

grow soybeans than wheat. However, the farmer might also be concerned with income
variability.
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20.4 Risk Preference and Utility

The farmer's willingness to take on risk is in large measure linked to his or her psychic
makeup. The satisfaction or utility that a farmer receives from each outcome in large measure
determines the strategy that he or she will pursue. The maximization of utility subject to
constraints imposed by the availability of income is the ultimate goal of a farmer, or for that
matter, anyone.

A utility function links utility or satisfaction to the amount of one or more goods that are
available. Utility maximization becomes the criterion by which choices are made by the
manager. A farmer's utility or satisfaction is not unrelated to his or her expected income, but
it is not the same thing as his or her expected income either. If utility and expected income
were the same thing, the farmer interested in utility maximization would always choose the
strategy that yielded the highest expected income.

In the game outlined in section 20.2, consider a possible strategy E that yielded $300,000
with a 0.5 probability, and $100,000 with a 0.5 probability. If expected income and utility
were the same, everyone would be indifferent between this strategy and strategy A presented
in Table 20.1. Most people probably would strongly prefer strategy E to strategy A, despite
the fact that both strategies yield the same expected income of $200,000. Clearly, there is
more to maximizing utility than maximizing expected income.

A good deal of effort by economists has been devoted to proofs that utility functions exist
forindividuals and, in particular, for farm managers. Figure 20.2 illustrates three possibilities
with respect to possible functions linking utility to income. Assuming that the farmer can
achieve greater income only at the expense of taking on greater risk or uncertainty, the risk
averter will have a utility function that increases at a decreasing rate as income rises. The
utility function for the risk neutral person will have a constant slope. The utility function for
the risk preferrer will increase at an increasing rate.

One utility function that is sometimes assumed is the quadratic utility function
(20.1) U=z+bZ
where 7 is some variable of concern that generates utility for the manager, such as income.
Suppose that there exists uncertainty with regard to the income level, so that z is replaced by
an expected z or E(z). Therefore, expected utility is
(20.2) E(U) = E(z) + bE(Z?)
The expected value of a squared variable is equal to the variance of the variable plus the
square of the expected value. Therefore,
(20.3) E(z%) = 0 + [EQ2)
Hence

(20.4) E(U) = E(z) + b[E(z)]? + bo?
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Figure 20.2 Three Possible Functions Linking Utility to Income

Thus utility is a function not only of expected income, but also its variance. Indifference
curves that show possible combinations of income and its variance that yield the same amount
of utility for the manager might be obtained by assuming that U equals U° and taking the total
differential of the utility function

(20.5) du° =0 = (1 + 2b) dE(z) + b d(0?)
Therefore,
(20.6) dE/do?= - b/[1 + 2bE(z)]

The denominator [1 + 2bE(z)] will always be positive. The shape of the indifference
curves will depend on the value of b. If b is zero, the farmer neither desires nor dislikes risk.
The farmer is risk neutral. If b is positive, the farmer loves risk, and indifference curves will
have a negative slope. If b is negative, the farmer is risk averse and will have indifference
curves sloping upward to the right. Figure 20.3 illustrates some possible relationships
suggested by this utility function.
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Figure 20.3 Indifference Curves Linking the Variance of
Expected Income with Expected Income

20.5 Risk, Uncertainty and Marginal Analysis

The models in this text that used marginal analysis all assumed that input prices, output
prices, and outputs were known with certainty. There exist several ways of incorporating risk
and uncertainty into these models, while relying on marginal analysis as the basic tool for
decision—making information.

One of the simplest ways of incorporating risk and uncertainty into a model might be to
use expected prices or yields rather than actual prices or yields within the model. Just how
yield and price expectations are formulated by farmers has been a topic of great concern to
some agricultural economists.

An agricultural economist interested in the futures market might argue that one way a
farmer formulates price expectations is by studying the prices on futures contracts for the
month in which the crops or livestock are expected to be marketed. The futures market does
not necessarily predict with a high degree of accuracy what the cash price will be some time
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in the future. However, the prices for futures contracts are an additional piece of information
that the farmer might be able to use at least as a partial basis for developing expectations with
regard to prices at marketing time. The farmer might also take advantage of the futures market
to determine specific prices at the time of delivery, and these prices could be treated the same
as a certain price within the model.

Farmers have many other sources of information with regard to expected prices. The
news media, farm magazines, the agricultural extension service, the federal government, and
private price forecasting agencies all devote considerable effort to providing price and general
outlook information for farmers. One problem with this information is that the quality can
vary widely. The farmer must not only study the forecasts obtained from each source, but also
attach subjective probabilities with respect to its accuracy.

Farmers rely heavily on current and recent past prices as a means of formulating price
expectations. If the cash price of corn at the start of the production season is high relative to
soybeans, almost certainly there will be an increase in corn acreages irrespective of what
prices are forecasted to prevail at the time the crop is marketed. Current and recent past cash
prices may not accurately represent the prices that should be included in a profit maximization
model.

Yield or output expectations are usually largely based on past experience with the
particular commodity. Suppose that a farmer experienced corn yields of 130 bushels per acre
last year, 114 bushels per acre the year before, and 122 bushels per acre the year before that.
A simple way of formulating a yield expectation might be to average the yield over the past
three years. This would treat each of the past three years as equally important in the
formulation of the yield expectation. In this example, the expected yield would be 122 bushels
per acre.

Another way would be to weight more heavily data from the recent past relative to earlier
data. Expected output becomes a distributed lag of past output levels. For example, a farmer
might place a weight of 0.6 on last year's data, 0.3 on the year before, but 0.1 on the year
previous to that. The weights representing the relative importance of each year's data are
highly subjective but should sum to 1. The expected yield in this example is

(20.7) y=0.6(130) + 0.3(114) + 0.1(122) = 124.4 bushels per acre.

Once price and output expectations have been formulated, they could be inserted directly
into the model. The marginal conditions would then be interpreted based on expected rather
than actual prices.

The major disadvantage of using expected price and output levels as the basis for
formulating economic models is that the approach fails to recognize that price and output
variability leads to income variability for the farmer. Only if the farmer is risk neutral is the
expected profit maximum optimal for the farmer. Despite the fact that a model using expected
prices and output levels leads to maximum profits when expected prices and outputs are
realized, income variability when expected prices and yields are not realized may lead to
severe financial problems for the farmer. Even if expected prices and outputs are accurate
over a planning horizon of several years, the farmer must survive the short run variability in
order to make the long run relevant.
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One way of incorporating such variability into a model would be to add additional
constraints. Suppose that the farmer used an input bundle to produce two outputs, ¥, and y,.
Due to price and output instability, there is income variability associated with both y, and y,.
The income variability associated withy, is y,0,% and the income variability associated with
Y, is y,0,%. The income variability associated with the first commodity may partially offset
or add to the income variability from the second commaodity. An interaction term or covariance
term is needed. This term that adjusts for income variability interaction is 2y,Y,0,.

The total income variability () is
(20.8) 0 =y,0+ ¥,0,"+2y,,0),
The farmer is interested in maximizing revenue subject to the constraint that income

variability not exceed a specified level °, and the constraint imposed by the availability of
dollars for the purchase of the input bundle x. So the Lagrangean is

(20.9) L=py; tpy, + q’(ao - Y10’ ¥,0,7 = 2y,Y,0),)
+MN[vx® = va(y,, ¥»)]

The corresponding first order conditions are

(20.10) AL/Ay, =p, - P(O,>+2y,0,,) - Mvg, =0
(20.11) AL/AY, = p, - P(O2+2y,0,,) — VG, =0
(20.12) OL/OY = 8° - y,0,> - y,0,2 - 2y,y,012=0
(20.13) AL/ON =vx® - vg(Yy,, ¥2) =0

If there were no income variability, the first-order conditions would be the same as the
standard first-order conditions in the product-product model. Income variability could reduce
or increase the output of y, relative to y,. The signs on the income variance covariance terms
are indeterminate. Income variability can be incorporated into a standard model, but the key
problem with this is that the farmer would need to be able to provide an indication of the
variances and covariances associated with the incomes obtained from the commodities being
produced.

20.6 Strategies for Dealing with Risk and Uncertainty

A farmer has a number of strategies available for ameliorating the impacts of risk and
uncertainty. Each of these strategies reduces losses when nature is unfavorable or the markets
turn against the farmer, but also reduce potential profits when nature and the markets are
favorable.

20.6.1 Insure Against Risk

If an insurance policy is available, income variability due to that source of risk can be
reduced by purchasing the policy. People purchase fire insurance not because they expect their
house to burn down, but because the cost of the insurance is low relative to the potential loss
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that could occur should the house burn. Insurance policies work best when the probability
attached to the occurrence of the event is low, but if the event occurs, the result would be
catastrophic. In other words, insurance should be used in situations where there is a low
probability of a large loss.

Crop insurance plans have the effect of making the farmer's income from one year to the
next more even, despite the fact that the farmer may pay in the form of premiums somewhat
more than is returned in the form of claims over a 10 year period. The premium cost reduces
potential profits in years without a crop loss. Only if the risk of crop failure on a particular
farm substantially exceeds the risks on which the premiums were based will returns from the
insurance policy more than offset premium costs.

20.6.2 Contracts

The futures market can be thought of as a device which allows farmers to contract for
the sale of a specified commodity ata specified price for delivery at some future point in time.
Thus the futures market is a mechanism to reduce or eliminate price uncertainty by
determining prices to be paid after harvest, or at the point when the commodity is ready for
market. Although price and income variability will be reduced, in a rising market, the farmer
will limit potential gains if prices are determined at the start of the production season.

The futures market is but one contractual arrangement for eliminating price uncertainty.
Any contractual arrangement that at the start of the production season specifies a price to be
received at the end of the production season will eliminate price uncertainty. Contractual
arrangements are commonly used for commodities such as broilers, horticultural crops, and
sunflowers. Any contractual price would work well in a marginal analysis model, since it
represents price certainty.

20.6.3 Flexible Facilities and Equipment

If a farmer is to adjust to changing relative product and input prices, it must be possible
to adapt buildings and equipment lasting more than one production season to alternative uses
as input and output price ratios change. Figure 20.4 illustrates some possibilities. The
long—run product transformation function represents the possibilities open to the farmer
before buildings are built and equipment is purchased (curve A). Once the durable items have
been built and capital committed, two possibilities exist.

Specialized facilities will allow production to take place on the long run planning curve
if relative price ratios turn out to be as expected over the long term. But production drops off
dramatically if the use of the buildings and equipment is changed to produce another mix of
outputs in response to changing relative prices (curve B). A milking parlor is an example of
alivestock facility ill adapted to other uses. Specialized harvesting equipment for anew crop
not previously grown by the farmer (such as sunflowers in a farming area devoted to wheat
and other small grains) is another example.

If a good deal of price variability is expected, a better strategy might be to construct
buildings and to purchase machinery and equipment adapted to a wide variety of uses with
little additional cost (curve C). A point on the long—run planning curve is never achieved
under any conceivable output price ratio. A barn suited for the production of many different
classes of livestock is an example of a flexible facility. In grain production, planting tillage



320 Agricultural Production Economics

Curve B

Figure 20.4 Long Run Planning: Specialized and Nonspecialized Facilities

and harvest equipment adapted to an array of different crops represents flexible equipment.
The farmer is better off under extreme price variability with flexible facilities and equipment.
The farmer is better off with the specialized facilities if price variability is not extreme.

A farmer who attempts to deal with price uncertainty by choosing to build or purchase
machinery and facilities adaptable to a diverse array of uses is, in effect, choosing facilities
allowing for a greater elasticity of substitution on the product side. A facility suitable only for
the production of one commodity, or two commodities in an exact fixed proportion to each
other, would lead to a zero elasticity of substitution on the product side.

20.6.4 Diversification

Diversification is a strategy long used by farmers for dealing with both price and output
uncertainty. The idea behind a diversification strategy is to let profits from one type of
livestock or crop enterprise more than offset losses in another enterprise. Diversification may
also make more effective use of labor and other inputs throughout the year, thus increasing
income in both good years and bad. To deal most effectively with price and income
variability, the enterprises on the diversified farm must have prices and outputs that move
opposite to each other.

It does little good to attempt to reduce output variability by both growing wheat and
raising beef cattle, if wheat yields are low when rainfall is inadequate, and at the same time,
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beef cattle cannot be adequately fed on pastures with inadequate rainfall. To guard against
uncertainty associated with drought, the farmer would need to find an enterprise in which the
output is not as rainfall dependent, and this may be difficult.

The strategy may be more effective for dealing with price uncertainty. Beef and grain
prices sometimes move together, but not always, nor do beef and pork prices always move in
tandem. The ideal strategy would involve locating commodities whose prices always move in
opposite directions. While a farmer who diversifies may substantially reduce income
variability and make more effective use of certain inputs, income could also be reduced
relative to what would have occurred had production of only the high—priced commodity
taken place. The diversified farmer also bears a cost in not as effectively being able to take
advantage of pecuniary and other internal economies open to the specialized counterpart.

20.6.5 Government Programs

The federal government long has been heavily involved in programs that provide price
and income support for farmers. Agricultural policy during the 1970s moved away from
mandatory programs and toward programs that allow the farmer to decide for himself or
herself whether or not to participate. Most government programs have been directed toward
the reduction of price, rather than output uncertainty, but the wheat and feed grain disaster
programs of the 1970s are examples of programs designed to support farm incomes when
output levels are low.

Net farm income for the United States is rather unrelated to output in a particular year.
The 1983 drought throughout much of the Midwestern grain producing areas dramatically
reduced output of key crops such as corn, although net farm income was higher in 1983 than
in 1982, when drought was not widespread but prices were lower. A farmer's income increases
when success is achieved at growing a crop in which other farmers had widespread failures.

Government price support programs that place floors under which commodity prices are
supported are usually thinly disguised mechanisms for supporting farm incomes. Such
programs increase incomes and support the welfare of every farmer who participates, large
and small. Participation in a program will normally reduce income variability, and to the
extent that tax revenues for supporting prices come from non-farm consumers, long—term
income may also be larger than would have been the case if the program had not been in place.

When given a choice, occasionally farmers will find it to their advantage not to
participate in a government program. The decision can be made by first calculating net
revenue when the farmer participates. This usually means a restricted output (y) at a high
price. Net revenue based on nonparticipation is then calculated assuming more output but a
lower price. However, the decision by the farmer to participate or not participate will be based
both on the extent to which participation in the program will reduce income variability as well
as increase net income.

Recently, the federal government has been making attempts to move away from federal
price support programs. For programs that remain, increasingly farmers are being asked to
pay for the full cost of government price support programs, including the cost of storage of
commodities in excess supply. The recent move toward a no net cost tobacco program could
be an indication of potential programs for other commodities.
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When government support prices exceed levels at which supply and demand are in
equilibrium, surpluses of the price-supported commodities occur. Most commodities cannot
be stored indefinitely, and storage costs can quickly become rather high. In the past, the
government has used the school lunch program to dispose of surplus, government owned
commodities. Recently the government has distributed surplus dairy products occurring as a
result of the price support program to low income and elderly residents. Unfortunately, the
federal government does not have the option of giving away cigarettes to low—income or
elderly people, or making chewing tobacco an approved vegetable on the school lunch menu.

In the past, government programs have both reduced income variability and raised net
farm incomes. Utility is increased because incomes rise and variability in incomes is reduced.
A no-net-cost program would only reduce income variability. Therefore, a no-net-cost
government program could increase utility if farmers were not risk neutral. However, incomes
to farmers (and utility) over the long term would be reduced because of the cost to farmers of
operating the government program.

20.7 Concluding Comments

This chapter has provided a very basic introduction to the problem of taking into account
risk and uncertainty in economic analysis. Specific models incorporating risk and uncertainty
could easily fill an entire textbook. The simplest approaches for including risk and uncertainty
involve replacing actual prices and yields with the respective expected values. However, price
and income variability leads to income variability, which in turn, affects the farmer's utility
or satisfaction.

While marginal analysis can form the basis for some models that include risk and
uncertainty, other models are based on approaches that do not require the traditional
framework. Included in the latter category are approaches involving games such as those
outlined in Section 20.3. The reading list at the end of this text includes a number of articles
dealing with risk and uncertainty using a variety of modeling approaches.

Problems and Exercises

1. Calculate the expected income on the basis of the following data:

Income Probability
$100,000 0.2
20,000 0.5
-50,000 0.3

2. Why are expected income and utility not the same thing?

3. Why do farmers not always choose to pursue the strategy with the greatest expected
income?
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4. Discuss possible states that nature might assume in farming, and possible actions a farmer
might take in dealing with these states of nature.

5. Suppose that an enterprise with a greater expected income also resulted in a greater input
variability than that for another enterprise. How could this situation be considered within a

marginal analysis framework?

6. Suggest strategies that a farmer might use to deal with risk and uncertainty.

Reference
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Time and
Agricultural
Production Processes

Chapters 2 — 18 treated production processes in a comparative statics framework, and the
time element was largely ignored. This chapter introduces time as an explicit component of
marginal analysis. Goals for farmers other than profit maximization over a single production
period are introduced. Time is introduced as an explicit variable within a single period
planning model. Basic procedures for discounting or compounding revenues and costs over
several production periods are outlined, and a profit maximization model in which revenues
and costs occur over several production seasons is presented.

Key terms and definitions:

Alternative Goals

Long Run Profit Maximization
Accumulation of Wealth
Time as an Input
Macroeconomic Policy
Inflation

Real Interest Rate

Net Worth

Discounting

Compounding

Present Value

Multiple Period Production



Further Topics in Constrained Maximization and Minimization 325

21.1 Introduction

Throughout much of this text, the implicit assumption has been that farmers during a
single production season are interested in maximizing profits, or in maximizing revenue
subject to constraints. While these may be valid goals for a farmer within a single production
season, farmers do not normally enter farming, produce for one season and then exit. Farmers
look at the occupation over a time period of 20 years or more. They normally do not expect
to exit from farming within a short time period. As a result, most farmers have goals and
objectives that go beyond single season profit or constrained revenue maximization. These
goals and objectives may not be totally inconsistent with short run profit or constrained
revenue maximization, but they may not be entirely consistent either.

In addition to having an impact on the goals of the decision maker, time influences
agricultural production in other ways. Time can be thought of as a scarce resource or input
that must be allocated in a manner consistent with the goals of the farm manager. A dollar
earned some time into the future cannot be treated the same way as a dollar earned today.
Revenues and costs must be discounted or compounded. Time is an inherent part of virtually
all agricultural finance issues. Marginal analysis can be used as a basis for making decisions
within a time frame encompassing several production periods.

21.2 Alternative Goals of a Farm Manager Over Many Seasons

21.2.1 Long-Run Profit Maximization

Just as a farmer is interested in maximizing profits in a single production season, a
farmer might also be interested in maximizing expected long run profit. The maximization of
profit over a twenty year period may not entail making the same set of choices that would be
made if the farmer were interested in maximizing profit in each of 20 successive single season
production periods.

Long run profit maximization may require making larger expenditures on durable inputs
such as land and machinery, for example, early within the 20 year period. A farmer interested
in long run profit maximization over a number of years has a long run planning horizon and
will make investment decisions with expected payoffs some years away consistent with the
long run goal. The decisions made by farmers are not unrelated to the length of the planning
horizon.

There are many examples of farm enterprises that must inherently involve a planning
horizon of more than one year. The farmer who starts a pick—your-own strawberry enterprise
is a year and a half or more away from revenue from the sale of the strawberries. An
individual planning to grow apples or Christmas trees on land not previously used for that
purpose must be interested in long run rather than short run profit maximization. If farmers
all were only interested in single season profit or constrained revenue maximization, they
would never go into such enterprises.

A goal of long run profit maximization will frequently require short run profit and
income sacrifices during the early years of the planning horizon, with the hope or expectation
of making greater profits during the latter years. However, a dollar today is worth more than
a dollar obtained a year or more from now. A dollar today could earn interest in a bank. This
is foregone income until the dollar is earned. Inflation makes a dollar earned today more
valuable than the same dollar earned a year from now. These elements must enter if a farmer
is interested in finding a decision path that maximizes profits over a long term planning
horizon.
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Moreover, season to season variability in profits or farm income is often greater if long
run rather than short run profit maximization is the goal. The variability is of importance to
the extent that it influences the survival of the farm firm at some point during the planning
horizon. Short run survival is essential to long run profitability, and hence long run profits are
subject to the constraint that the firm survive in the short run.

21.2.2 Accumulation of Wealth

Farmers sometimes seem less interested in their own incomes than in ensuring that their
children inherit a lot of farmland. Some might argue that the accumulation of wealth or net
worth, usually in the form of farmland, is more important to most farmers than the goal of
maximizing long run profits. The maximization of long run profits and the accumulation of
wealth in the form of farmland are not entirely inconsistent goals, but neither are the two goals
entirely consistent.

Some non- farm businesses pride themselves in paying consistent annual dividends to
their stockholders. However, aggressive companies are more likely to reinvest such profits in
the firm. If these reinvestments are successful, the price of the stock in the company will
increase. Farmers make similar choices. A farmer might spend profits from last season's crop
on family living expenses. A farmer interested in maximizing single season profits mightuse
part of last years profits to purchase inputs such as fertilizer for this year's crop, with the hope
of increased profits for the coming year. A farmer interested in the accumulation of wealth
might more likely use part of last years profits as a down payment on additional land, and the
profitability of the crop for the coming season may be reduced to a degree. The balance
between these three uses provides important clues with respect to the underlying goals of the
farm manager.

21.2.3 Other Goals

Farmers, much like consumers, are subject to peer pressure. Nearly every farmer wants
to be recognized by his or her neighbors as a good farmer. This peer pressure manifests itself
in curious ways. Some farmers enter contests designed to see who can produce the greatest
yields for a given crop. Yield maximization is almost always inconsistent with profit
maximization. Livestock shows may be enjoyable for farmers. Often there is no clear link
between the characteristics of livestock deemed important in the show ring and profit
maximization. However, large profits may be made it there are others who believe such
characteristics are desirable. Money can be made if a buyer desiring the particular traits can
be found.

Farm machinery provides another example. Examples of farmers who appear to have as
their primary goal the accumulation of the best set of farm machinery can easily be found. A
self respecting farmer would not want to be placed in a situation whereby his tractor was
considered by his neighbors to be somehow inadequate, even though it may provide excellent
service at low cost. Such peer pressure even extends to the color or brand of farm machinery,
with certain brands being favored in certain areas.

The quality of life has a great deal to do with specific decisions made by the farmer.
Some farmers produce cattle not to make a profit but rather to enjoy the associated lifestyle
(to the consternation of ranchers who are attempting to produce cattle for a profit). The home
on ten acres represents a desirable hobby farm for some workers in urban areas.
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21.3 Time as an Input to the Production Process

Farmers normally do not think of time as an input to the production process, but time can
be thought of as an input. Labor is an input only to the extent that it provides a stream of
services over time that presumably increase the profitability of the firm. Farm machinery is
not an input in the sense that fertilizer and seed are inputs to the production process. Rather
the farm machinery also provides a stream of services over time. It is the stream of services,
not the machinery itself, that contributes to the profitability of the firm. Time suitable for
performing planting, tillage and harvest activities is limited by weather conditions, and field
time used to perform one operation cannot be reused to perform another field operation.

Much of farm management involves the allocation of the scarce resource time in such
a way that profits to the farm are maximized. Consider a farmer who has available during a
single production season a limited number of hours (T°) suitable for the performance of
planting (T,), tillage (T,) and harvest (T,) activities. Assume that the farmer produces two
crops, corn and soybeans. The farmer has already determined the acreage of'y, and y, to be
grown, and is interested in allocating available time to each crop. Revenue is sum of the
output of the two crops multiplied by their respective prices (R =p,y; + p,Y,). Output of each
crop is a function of the time available in planting, tillage and harvest operations for that crop.

That is ¥,=Y, (L1, s t1)s Yo = Ya(tso, tos T

Form the Lagrangean:

(21.1) L =Y it Ly Gt PaYalt, to, T)]
+P[T, =ty = to] + V[T = ty = o] + P[T, —ty; — ]

wherey, is corn, Y, is soybeans, t, is the time used in the planting operation per unit of output
Y, t,, is the time used in the planting operation per unit of output Y,, t,, is the time used for
tillage operations per unit of outputy,, t, is time used for tillage operations per unit of output
per unit of output Y,, t,, is the time used for harvest operations per unit of y,.

Then the first order conditions for single season maximization of revenue subject to the
constraint imposed by the the time available for planting, tillage and harvest operations is:

(21.2) p0y,/Ot, = P
(21.3) P.0Y,/Ot,, = P
(21.4) pOy,/Oty = ¥
(21.5) P.0Y,/Ot, = Y
(21.6) P0y,/Oty, = P
(21.7) P.0Y,/Ot, = Y
(21.8) To—t —t,=0

(21.9) T -t, - t,=0
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(21.10) T~ ty —tp=0

By Rearranging (21.2)-(21.7):

(21.11) P,(3y,/0t,;) = Pa(OY,/Ot,)) = p
(21.12) P,(3y,/0t,) = p,(3y,/0t,) =Y
(21.13) P,(3y,/0t,)) = p,(0y,/0t,) =P

The Lagrangean multipliers in this problem can be readily interpreted as the imputed
values for an additional unit of available time in the planting, tillage or harvest seasons for
each crop, in terms of revenue to the farm. For each operation, the farmer should allocate
time in such a way that the last unit of time results in the same marginal increase in revenue
for both outputs y, and y,. In general, the Lagrangean multipliers p, Y, and { will not
necessarily be the same value, but will depend on both on how much time is required for the
operation per unit of output, and how much time is available.

The Lagrangean multipliers indicate the imputed value of time in each period in the
production of various commodities. If the magnitudes of the shadow prices, or Lagrangean
multipliers are large for a particular period, the available time is posing a severe restriction
on production of the various products. A Lagrangean multiplier near zero for a particular
period suggests that although time in that particular period is of some positive value in the
production process, it does not pose a severe restriction.

The example presented here is only illustrative. The farmer will likely break time down
into weekly or perhaps even daily increments. In a daily model, each day would have its own
Lagrangean multiplier, but the same marginal rules for allocating time between enterprises
would apply. These rules suggest that the farmer should do first the operation that contributes
the most to the revenue for the entire farm.

A similar approach could be used determining the sequencing of events for for allocating
farm machinery use, as well as determining the sequencing of chores to be done in allocating
hired labor each day between enterprises. Mathematical programming models have been used
in Kentucky, Indiana and in other states in extension work with farmers. A primary objective
of these models is to determine how available field time, labor and machinery should be
allocated between corn and soybean production. The sequence of events taking place during
the production season is divided into a calendar of weekly events. Farmers specify the
available field time, labor and machinery during each week of the production season, and the
model allocates each time related input according to the rules suggested here. Thus, results
provide an indication of how time related inputs should be allocated during each week of the
growing season.

21.4 Time, Inflation, Interest Rates and Net Worth

A dollar earned a year from now is not the same thing as a dollar earned today. A dollar
spent today is not the same thing as a dollar spent a year from now. There are two reasons for
this. First, a dollar earned today could have been placed in the bank and interest would have
accrued. That interest is foregone if the dollar is earned a year from now. Moreover, the
opportunity cost of a dollar spent today is the interest that could have been earned if the dollar
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had not been spent today. Government policy at the federal level over time plays a significant
role in determining the profitability of agriculture over time.

Inflation or deflation in asset values clearly affects agricultural investments, particularly
those in land, over time. Because of inflation, a dollar earned a year from now is less valuable
than a dollar earned today. A dollar borrowed today can be paid back with cheaper dollars
earned a year from now. Interest rates paid by banks on savings and charged by banks on
loans should reflect these intertemporal differences in the value of a dollar. The interest rate
charged or paid by banks less the inflation rate is sometimes called the real interest rate. Thus
the interest rates charged or paid by banks reflect not only the real interest rate, but also the
general rate of inflation in the economy. Interest rates on low risk investments, such as savings
accounts insured by the federal government, also are of concern. The imputed value of dollars
not invested in the farm can be represented by the return in a risk free investment.

Macroeconomic policies pursued over time by the federal government have a significant
impact on decisions made by farmers. Time affects the opportunity cost, or imputed value for
dollars that could be invested in farming or as an alternative, in a low—risk savings account.
Moreover, over time, inflation and deflation can increase or decrease the value of a farmer's
real estate holdings and other assets, thus affecting net worth.

21.5 Discounting Revenues and Costs

Discounting is used in order to determine what a specific amount of revenue obtained at
some future point in time would be worth today, or to determine the current amount of a cost
incurred at some future point in time. The examples presented here illustrate how to calculate
discounted present values for a stream of revenues that occur over a period of several years,
but the same approach could be applied to costs that do not all occur at the start of the
production period.

21.5.1 The Present Value of a Dollar

The present value of a dollar earned one period from now can be determined by dividing
the dollar by 1 plus the market rate of interest. If the interest rate is 8 percent and the period
of time is one year, then the present value of a dollar is 1/1.08 = $0.926. Suppose that the
dollar is instead earned five years from now. The present value of that dollar is 1/(1.08)° =
$0.681. Suppose that an enterprise generates a dollar in revenue at the end of each of 5 years.
The present value of the 5 dollars thus generated is:

(21.14) 1/(1.08) + 1/(1.08)* + 1/(1.08)° + 1/(1.08)* + 1/(1.08)° = $3.99

A general rule for determining the present value (PV) of a dollar earned at the end of each
of n years is:

(21.15) PV =23 1/(1+i)
where n=1,.,N

N is the number of years
i is the market interest rate.
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21.5.2 Discounting Revenues with the Present Value Formula

The amount of money returned at the end of the year will probably vary from year to
year. For example, if at the end of year 1, 40 dollars is returned, year 2, 50 dollars; year 3,
20 dollars; year 4, 10 dollars and year 5, 100 dollars, the present value formula provides the
value of the revenues at the start of year 1:

(21.16) PV = 40/(1+i) + 50/(1+i)* + 20/(1+i)* + 10/(1+i)* + 100/(1+i)’
A general present value formula is:
PV = X(R/(1+i))
For all j = 1,..., n where n is the number of years.
R; is the revenue from the j th year.

A farmer may consider the purchase of a machine that will return 100 dollars per year
in increased revenue above any variable costs to run the machine and keep it in repair. At the
end of five years, the machine is worn out, but has a salvage value of 150 dollars. The present
value formula can be used to determine what the farmer could afford to pay for the machine
for an interest rate of 8 percent:

(21.17) PV = 100/(1.08) + 100/(1.08)? + 100/(1.08)* + 100/(1.08)* +
100/(1.08)° + 150/(1.08)° = $501.36

The discounted revenue from the machine is $501.36. The farmer can afford to pay up
to $501.36. The current price of the machine could be subtracted from its present value (PV)
to obtain the discounted net present value (NPV). Ifthe NPV is positive and the assumptions
are correct, the farmer will make money on the investment.

Such an approach could easily be applied to a large durable goods investment such as
a farm tractor. The major problem is in obtaining the needed revenue data for the machine.
Ideally, returns should represent the marginal revenue attributed to the machine with costs
other than the purchase price of the machine subtracted. It is sometimes difficult to determine
the revenues that should properly occur as a result of owning the new machine. For example,
a larger tractor may result in increased revenues because of improved timing of planting,
tillage and harvest operations, but these revenues are sometimes difficult to measure.

Another issue involves the determination of the expected life of the tractor, and its
salvage value at the end of the expected life. The true expected life is normally very different
from the assumed life that is allowed for federal tax purposes. The proper interest rate to be
used is another problem. For example, the interest rate could be one of the interest rates
charged by the local bank on borrowed funds, or it could be one of the rates paid on a savings
account.

The present value formula has been modified to determine the present value of an asset
with an infinite life span, such as a piece of land. The present value formula for an asset with
an infinite life span is:
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(21.18) PV =R/i

where R 1s the annual return attributable to the asset over all costs other than the asset itself,
and i1is the assumed interest rate. For example, corn land with a return of 300 dollars per acre
over all costs other than the cost of the land, is worth 300/i dollars per acre. If the interest rate
is ten percent, then the land is worth 3000 dollars per acre. If the land is selling for 2500
dollars per acre, its net present value is 3000 — 2500 or 500 dollars per acre.

21.5.3 Compounding Revenues and Costs

The discounting process presented in section 21.5.2 makes it possible to determine what
revenues and costs occurring over a period of years would be if all were measured at the start
of'the production period. Compounding is the process used to determine revenues and costs
at the end, not the beginning of the planning horizon. The examples used here apply to costs,
but the same approach could be used to determine revenues at the end of the planning horizon.

The process of discounting revenues and costs may be an unfamiliar one, but the process
of compounding revenues and costs should be familiar to anyone who has purchased an item
with borrowed money. The process of compounding costs involves nothing more than the
accumulation of the loan amount (or principal) and interest charges over the time span that
the item is owned.

Suppose that a farmer purchases a truck for 10,000 dollars. The farmer intends to sell
the truck at the end of three years for $6000. The farmer could have instead used the money
to buy a certificate of deposit to mature in three years with a ten percent interest rate
compounded annually. At the end of the first year the truck cost the farmer 10,000 (1.10) =
11,000 dollars. At the end of the second year, the truck cost 11,000 (1.10) = 10,000 (1.10)?
=12,100. At the end of the third year, the truck cost 12,100 (1.10)=10,000 (1.10)*=13,310.
If, at the end of the third year, the farmer sells the truck for 6,000 dollars, then the cost of the
truck was 13,310 — 6000 = 7,310 over the assumed three years of ownership.

If the farmer borrows the money for the purchase of the truck from the bank, then the
interest charge on the loan could be used. However, the example becomes more complicated
in that the farmer will likely pay back the loan in monthly or annual installments. This means
that over the three years, the farmer will have, on the average, owed the bank far less than the
full 10,000, and the interest payments would be based on what was actually owed. However,if
the truck had not been purchased, the payments the farmer would have made to the bank on
the loan over the three years would have instead been put in a savings account which would
have earned interest. The interest on the savings account represents an opportunity cost that
should also be charged to the truck.

A general formula for compounding costs is :
(21.19) C= C,(1+i) + C,_,(1+i)> + ... + C,(1+i)"
where C is the total costs incurred to the end of the n th year, C, is the cost at the start of the

first year, C,_, is the cost incurred at the start of the n th year, C,_, is the cost incurred at the
start of the n—1 th year, n is the number of years, and i is the assumed interest rate.
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A similar formula could be used to discount revenues, except that revenues usually occur
at the end, rather than the start of the year.

21.6 Polyperiod Production and Marginal Analysis

Marginal analysis can be applied to problems in which there is time between the
occurrence of costs and the return of revenue from the sale of the product. In order to do this,
compounding or discounting is used in order to compare revenues obtained at the end of a year
with costs occurring at the start of the year. The approach can then be expanded to take into
consideration production decisions involving enterprises where both costs and returns occur
over a period of several years.

Suppose that a farmer incurs production costs for output y, at the start of the year, but
revenues do not result until the end of the year. Total revenue is:

(21.20) TR=py,
where Yy, is output, and p; is the price of the output.

Total cost (TC) is a function of output:
(21.21) TC =c(y,)
Revenues occur at the end of the year, so they are discounted to the start of the year:
(21.22) PV = TR/(1+) = p,y,/(1+)
Costs occur at the start of the year, and need not be discounted.

The profit equation discounted to the start of the year is:
(21.23) II=TR/(1+) - TC

First order conditions require that the slope of the production function be equal to zero:
(21.24) dIl/dy, = [dTR/dy,][1/(1+i)] - dTC/dy, = 0

p./(1+) = c'(y,)

In a purely competitive model, marginal revenue and price are the same thing. The
discounted marginal revenue or price [p,/(1+i)] must equal the marginal cost [¢'(Y,)].

The problem could also be solved for first order conditions at the end of the production
season. Costs would be compounded, but revenues occurring at the end of the production
season would not be compounded. Total compounded cost would be:

(21.25) TC(1+i) = c(y,)(1+)
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Profit is:
(21.26) II=TR - TC(1+i)

=pyy; — c(y)(1+0)

The first order conditions again require the slope of the profit function to be zero:

(21.27) dIl/dy, = p, - ¢'(y,)(1+i) =0
(21.28) p, = c'(yp(1+i)
(21.29) p./(1+i)=c'(y))

In general, the marginal conditions remain the same regardless of whether the problem is
solved at the start or the end of the year.

Now suppose that a farmer produces two commodities in which revenues occur at the
end of the year, but costs occur at the start of the year. The farmer has the choice of
producing commodity Yy,, which returns revenues in each of the years in a three year planning
horizon; or producing commodity Y,, which does not bring any returns in years one and two,
but does bring a large return at the end of year three. Both commodities incur costs for each
year that are assumed to be paid at the start of each year. The market rate of interest is 1, and
the farmer wishes to choose the combination of y, and Y, that will result in maximum
discounted profits over the three year period.

The discounted revenue from the sale of y, at the end of year 1 is:
(21.30) R, = poy,/(1+)

where R, is the revenue obtained from y, at the end of year 1 discounted to the start of year
1, and p,, is the price of y, at the end of year 1.

The revenue from the sale of y, produced during year 2, discounted to the start of year
lis:

(21.31) Ri= p12y1/(1+i)2

where R, is the revenue obtained from y, at the end of year 2 discounted to the start of year
1, and p,, is the price of y, at the end of year 2.

The revenue from the sale of y, produced during year 3, discounted to the start of year
lis:

(21.32) Ri;= p13y1/(1+i)3

where R,; is the revenue obtained from y, at the end of year 3 discounted to the start of year
1, and p,; is the price of y, at the end of year 3.

Since Y, does not generate any revenues at the end of years 1 and 2, the revenue fromy,
can be calculated from the formula:
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(21.33) Ry = p23y2/(1+i)3

where R, is the revenue obtained from Y, at the end of year 3 discounted to the start of year
1, and p,; is the price of'y, at the end of year 3.

The present value of all revenues in all periods from the sale of y, is:
(21.34) R,=R,, +R,, Ry

The present value of all revenues in all periods from the sale of y, is:
(21.35) R,=0+0+R,;

Since revenues from Y, occur only at the end of period three.

Costs for the production of y, and y, accrue in each year, despite the fact that y, only
produces returns in year 3. Costs in each year are assumed to be a function of the output level.
Since the costs for year one occur at the start of year one, they need not be discounted. Costs
occurring at the start of year two are discounted by the factor 1+i, and costs occurring at the

start of year 3 are discounted by the factor (1+i)*.

Total discounted costs for the production of 'y, are:
(21.36) C,=C,, +C,+Cy

where C, = total costs over the three year period;

C,, =c(y,,) or the costs of producing y, in year one paid at
the start of year one;

C,, = ¢(y,,)/(1+1), or the costs of producing Y, in year two
paid at the start of year two;

and C,; = c(Y,3)/(1+i)?, or the costs of producing Y, in year
three paid at the start of year three.

Total discounted costs for the production of'y, are:
(21.37) C,=C, +C, + Cys
where C, = total costs over the three year period;

C,, = c(Y,,) or the costs of producing Y, in year one paid at
the start of year 1;

C,, = ¢(Y,)/(1+1), or the costs of producing Y, in year two
paid at the start of year two;

and C,; = C(Yy)/(1+i)?, or the costs of producing Y, in year
three paid at the start of year three.
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Profit is discounted revenue less discounted costs for both products:
(2138) II=R,+R,- C, - C,

The necessary conditions for profit maximization require that the slope of the profit
function be equal to zero with respect to both outputs:

(21.39) dIl/dy, = dR,/dy, - AC,/dy, =0
(21.40) dIl/dy, = AR,/dy, — AC,/dy, =0
(21.41) dR,/dy, = 9C,/dy,
(21.42) dR,/dy, = 9C,/dy,

Discounted marginal revenue must equal discounted marginal cost for both outputs. For
outputs Yy, and y,:

(21.43) AR,/y, = p, /(1+) + po/(1+i) + py/(1+i)’
(21.44) OR,/0y, = pyy/(1+i)’

(21.45) OC/Ay, =C¢'(y,)) + ¢/ (Yi)/(1+) + ¢ (y,5)/(1+i)?
(21.46) OC,/0Y, =C' (Y1) + € (Yar)/(1H) + € (Yo3)/(1+i)?

If second order conditions are met, these conditions would determine the allocation
between the production of 'y, and y, that would globally maximize discounted profits under the
assumed interest rate. These relationships can be rearranged to show that the ratio of
discounted marginal revenues to discounted marginal costs should be equal to one in the
production of both outputs.

If the farmer were constrained by the availability of inputs required to produce y, and
Y,, then the ratio of discounted marginal revenues to discounted marginal costs should be the
same for the production of both outputs. However, in this case, the ratio would be equal to a
number greater than 1.

21.7 Concluding Comments

This chapter has illustrated a number of ways in which time can be incorporated into
economic analysis. The labor, machinery and field time available to a farmer during each
period within the calendar of events occurring for a production season are limited, and
available time within each period must be allocated consistent with the equi— marginal return
rule. Time is of even greater concern within a multi—period production framework. Goals and
objective of farmers may change as the length of the planning horizon is altered. Application
of'the equi—marginal return rules within a planning horizon encompassing many production
periods involves either the compounding or discounting of revenues and costs. However, even
within a multiple period framework, the equi—marginal return rules still apply.
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Problems and Exercises

1. Outline alternative goals a farmer might pursue other than short run profit maximization.
Are there possible goals in addition to those listed in this book?

2. Why does compounding and discounting become an inherent part of marginal analysis in
a multiperiod framework?

3. Suppose that an enterprise generates $1000 in revenue in each of 5 years. The interest rate
is 9 percent. What is the present value of the stream of revenue generated over the 5 year
period?

4. Assuming an interest rate of 10 percent, how much is an acre of land worth that generates
$200 in returns over costs (other than interest and principal payments on the land)? Why are
farmers frequently willing to pay more than this value for an acre of land?

5. Suppose the following schedule of revenues and costs

Year Revenue at Costs at
end of start of
year year

1 $2000 $1000

2 $3000 $2000

3 $2000 $4000

4 $5000 $1000

5 $2000 $1000

Calculate the present value of revenues over costs at the start of year 1.

Calculate the future value of revenue over costs at the end of year 5.
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22

Linear Programming and
Marginal Analysis

This chapter provides a basic overview of linear programming, and discusses its relationship
to the maximization and minimization techniques used for the factor-factor and
product-product models. The assumptions of linear programming are given. The
fixed-proportion production function, which forms the basis for linear programming, is
compared with the linear production function. A simple linear programming problem is
illustrated using graphics, and solved numerically using the simplex solution algorithm. An
application of linear programming to a small farm resource allocation problem is presented.

Key terms and definitions:

Classical Optimization Methods
Operations Research
Linear Programming
Mathematical Programming
Computer Programming
Algorithm

Nonlinearities

Linearity

Additivity

Divisibility

Nonnegativity

Single Valued Expectations
Fixed Proportion Production Function
Linear Production Function
Activities

Resource Constraints
Inequality Constraint
Feasible Solution Area
Simplex Algorithm

Slack Variables

Duality

Personal Microcomputer
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22.1 Introduction

This book has made extensive use of what is sometimes referred to as classical
optimization methods. Classical optimization methods involve the maximization or
minimization of a function subject to one or more constraints. To do this, a new variable
called a Lagrangean multiplier is added for each constraint, and the maximization or
minimization entails setting the partial derivatives of the Lagrangean function with respect to
each variable, including the Lagrangean multipliers, equal to zero. The Lagrangean multipliers
can be interpreted as the increase (or decrease) in the function to be maximized (or minimized)
associated with a relaxation of the constraint by 1 unit. Lagrangean multipliers have
substantive economic interpretation for a diverse array of problems.

Classical optimization methods are but one method for maximizing or minimizing a
function subject to one or more constraints. The field of operations research is broadly
concerned with problems of constrained maximization or minimization. Operations research
has applications in economics and agricultural economics, as well as in many other areas in
which problems are found that involve finding the optimal value of a function subject to one
or more constraints.

Mathematical programming is another general term commonly used to describe
problems that involve constrained maximization or minimization. The term algorithm as in
mathematical programming algorithm is used to refer to a method or procedure for solving a
mathematical programming problem.

Students sometimes confuse mathematical programming with computer programming.
The two terms are entirely different. Computer programming refers to the process of
providing a computer with a set of instructions to tell it what calculations to perform.
Mathematical programming algorithms usually require many calculations, and therefore can
quickly become complicated. A computer is usually used to perform the large number of
complicated calculations, so computer programming is often needed to solve mathematical
programming problems. However, small mathematical programming problems can be solved
without the aid of a computer. Moreover, computer programs can be written that have nothing
to do with maximizing or minimizing a function subject to constraints.

The problems in this text that involved maximizing or minimizing a function subject to
a constraint are actually mathematical programming problems. The procedure that involved
setting the partial derivatives of the Lagrangean function equal to zero could be thought of as
the algorithm for solving the problems. The graphic representation could be thought of as the
graphical solution to a specific mathematical programming problem. No computer was needed
to find a solution.

22.2 Classical Optimization and Linear Programming

Mathematical programming can be divided into two major subcategories, nonlinear
programming and linear programming. The problems that involved constrained maximization
using the Lagrangean function are examples of nonlinear programming problems. In every
case, either the objective function was nonlinear, or the constraint was nonlinear, or both. The
production functiona/ =f(x,,X,) canbe either a linear or a nonlinear function. The production
function y = A X,iX,; is clearly nonlinear. The constraint C = v,X, + V,X, is clearly linear.
Becoming familiar with classical optimization methods makes one familiar with a specific
procedure or algorithm for solving certain nonlinear programming problems.
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Linear programming involves the maximization or minimization of a linear function
subject to linear constraints. Unlike classical optimization problems, in which at least one of
the functions was nonlinear, with linear programming, every function is linear.

It may come as a surprise that linear programming has broad application to agricultural
economics. Most of marginal analysis is dependent on relationships that involve nonlinearities.
The most basic example is the law of diminishing returns. Cost and production functions are
seldom linear. Isoquants and product transformation functions are usually curved, meaning
that there is no limit to the number of possible solutions (combinations of inputs or outputs)
as relative prices on inputs and outputs change.

The assumptions underlying linear programming in some ways are more restrictive and
in other ways are less restrictive than the assumptions inherent in classical optimization
techniques. Classical optimization required at least one of the functions to be nonlinear. If
isoquants or product transformation functions did not have continuously turning tangents, a
single unique solution to the constrained maximization problem would not exist. [soquants and
product transformation functions represented in linear programming models never have
continuously turning tangents. Nonlinear functions are approximated with short or piecewise
linear segments. If an isoquant or product transformation function is nonlinear, any change
in the relative prices will result in a change in the quantities of the inputs used or the products
produced. With certain linear programming problems, even large changes in relative prices
will not lead to a change in the relative quantities of inputs used or products produced.

With classical optimization methods, corner solutions that involved the use of none of
certain of the inputs, or production of none of certain of the outputs were not allowed. All
constraints must hold in strict equality. This is because derivatives are defined only on open
sets. Corner solutions are commonplace with linear programming. Inputs are not often fully
utilized and therefore constraints need not hold in strict equality. Possible outputs are not
necessarily always produced. Classical optimization methods are therefore more flexible in
that all functions do not have to be linear, but less flexible in not allowing for corner solutions.

22.3 Assumptions of Linear Programming

Five basic assumptions underlie any linear programming model. These assumptions are
(1) linearity (2) additivity, (3) divisibility, (4) nonnegativity, and (5) single-valued
expectations. Mathematical programming techniques other than linear programming can
sometimes be used for problems in which one or more of the assumptions of linear
programming have been violated.

Linearity. The objective function and the constraints in a linear programming problem
are linear. If the linearity assumption does not hold, one of the nonlinear programming
techniques is required. Classical optimization methods are well known, but many other
advanced techniques are available for solving optimization problems involving one or more
nonlinear functions. A technique called quadratic programming, for example, can be used
when the objective function is quadratic in form.

Additivity. Suppose that in order to produce a unit of y,, 2 units of X,, and 3 units of x,
are required. Two units of output will require 4 units of X, and 6 units of X,. Five hundred
units of y, will require 1000 units of X, and 1500 units of X,. Hence constant returns to scale
exist. The additivity assumption is fundamental to the use of linear programming in
production economics.

Divisibility. If 1 unit of y, can be produced using 1 unit of X; and 1 unit of x,, then 1/2
unit of y, can be produced with 1/2 input of X, and 1/2 unit of X,. One-tenth of a unit ofy, can
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be produced by using one tenth of a unit of X, and one-tenth of a unit of x,. The divisibility
assumption becomes silly for certain categories of agricultural inputs. A linear programming
problem might call for a solution that requires 1.457 bulls and 3.567 tractors. A technique
called integer programming will force the solution to contain only integer values for inputs
that cannot be divided, such as a tractor or a bull.

Nonnegativity The solution should not require that negative quantities of an input or
resource be used. The usual solution algorithms for linear programming models do not allow
for negative quantities of inputs to be used nor negative outputs to be produced. Zero
quantities for both outputs and inputs are allowed.

Single-Valued Expectations. Linear programming models assume that coefficients such
as input requirements and prices are known a priori with certainty. For example, if wheat,
corn, and soybeans are to be included as possible enterprises within a linear programming
model, the prices for which these commodities sell must be known in order to construct the
model. If certain coefficients are not known with certainty, one of the stochastic programming
techniques might be used.

22.4 Technical Requirements and Fixed-Proportion
Production Functions

The production function underlying a linear programming model is sometime called a
fixed proportion production function. The fixed proportion function is sometimes written as

(22.1) y, = min(a,X,, aX,)
Production is determined by the most limiting input. Suppose that a, =4 and a, = 6; and that

10 units of X, is available and 15 units of X, is available. The output of y, is determined by the
smaller of 4 x 10 =40 or 6 X 15 = 90. In this example, Y, would be 40.

The fixed proportion production function is very different from the linear production
function

(22.2) Y= aX, +aX,

The linear production function assumes that inputs X, and X, can substitute for each other. The
marginal product of X, is @, and the marginal product of X, is a,. The MRSxx, is —a,/a,.

With the fixed-proportion production function, one input does not substitute for the
other, but rather, inputs must be used in fixed proportions with each other. The isoquant map
for a fixed proportion production function is a series of right angles with a production surface
similar to that illustrated in case 1 of Figure 12.2. The isoquant map for the linear production
function consists of isoquants with a constant slope of —a,/a,. The surface is as illustrated in
case 5 of Figure 12.2.

22.5 A Simple Constrained Maximization Problem

Suppose that the following objective function is to be maximized subject to constraints
(22.3) Maximize 4y, + 5y,

where Yy, and y, are two commodities. The 4 and 5 represent the price per unit of y, and y,,
respectively.
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The constraints are

(22.4) Resource or input X;: 2y, + 1y, <12

(22.5) Resource or input X,: 1y, +2y,<16

There are 12 units of resource or input X, available, and 16 units of resource or input X,
available. Units of commodity Y, each require 2 units of X; and 1 unit of X,. Units of

commodity X, each require 1 unit of X, and 2 units of X,.

All the available X, and X, need not be used, as indicated by the inequality signs. The
matrix

(22.6) Vi Vs
2 1x
I 2X

represents the technical input requirements for X, and X, needed to produce 1 unit of y, and
Y,. In this example both X, and X, are needed in order to produce either y, or y,, but this need
not always be the case, and some of the input requirements could be zero. The columns of
matrix (22.6) are sometimes referred to as the activities while the rows are referred to as
resource constraints.

This linear programming problem and its solution can be illustrated using a graph with
Yy, on the horizontal axis and Y, on the vertical axis (Figure 22.1). Suppose that only Yy, were
produced. According to the first constraint, 12/2 or 6 units could be produced. Therefore, the
first constraint intersects the Yy, axis at 6 units. Now suppose that only y, were produced.
According to the first constraint, 12/1 units or 12 units could be produced. The first constraint
intersects the vertical axis at 12 units. The slope of the first constraint would be 12/6 or 2:1.

Ifonlyy, were produced, the second constraint would intersect the y, axis at 16/1 or 16.
If only y, were produced, the second constraint would intersect the y, axis at 16/2 or 8. The
slope of the second constraint would be 8/16 or 1:2. If'y, appears on the horizontal axis, and
Yy, appears on the vertical axis, the slope of each constraint is equal to the coefficient on y,
divided by the coefficient on Y,.

The area inside both constraints represents the feasible solution area. The feasible
solution area looks like a diagram representing a product transformation curve. The product
transformation curve is made up of portions of each constraint that lie inside the other
constraint. Instead of being a smooth, continuously turning curve, this product transformation
curve is approximated with two linear segments, each with a different but constant downward
slope. The constraints intersect at the point where the slope of the linear segments of the
product transformation function change.

Ifless than 2 2/3 units ofy, is produced, the slope of the product transformation function
is the same as the slope of the second constraint. If more than 2 2/3 units of y, is produced,
the slope of the product transformation function is the same as the slope of constraint 1. The
slope ofthe product transformation function where the two constraints intersect and the output
of'y, is exactly 2 2/3 units is undefined.
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Figure 22.1 Linear Programming Solution in Product Space

The objective function is identical to the revenue function in the product-product model.
The slope of the objective function will also be equal to the coefficient on y, divided by the
coefficient on y, or 4:5 in this example.

A small linear programming problem can be solved with only some carefully drawn
graphics. The solution represents the largest possible revenue consistent with the specified
constraints. This means that the revenue function must be pushed as far as possible from the
origin of the graph, but still touching the feasible solution area represented by the area inside
both constraints.

For this problem, there are but three possible solutions, not counting 0y,, 0y,. However,
if the objective function has exactly the same slope as one of the constraints, all y, can be
produced, all y, can be produced, or the combination of y, and y, that occurs at the point
where the two constraints intersect can be produced. If the objective function has the same
slope as one of the constraints, an infinite number of combinations ofy, and y, can be found
that maximize the objective function.

The first solution would to be to produce all y, and no y,. Constraint number 2 (the
availability of x,) would limit the production ofy, to only 8 units, despite the fact that there
is enough X, to produce 12 units. The remainder of X, would be unused, or in disposal. For this
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corner solution to occur, the relative price ratio of y, and y, (p,/p,) would have to exceed the
slope of the second constraint, which in this problem is 1:2. This would imply that the price
of'y, would need to be more than twice the price ofy,. If all y, were produced, revenue for this
problem would be 5 x 8 or $40.

The second solution would be to produce all y, and no Y,. In this case, constraint 1 (the
availability of x,) would limit production ofy, to only 6 units, and X, would be in disposal. For
this solution to occur, the relative price ratio of y, and y, (p,/p,) would have to be less than
the slope of the second constraint, which in this problem is 2:1. This would imply that the
price of y, would have to be less than half the price of y,, or that y, is more than twice the
price of y,. If all y, were produced, revenue for this problem would be 4 X 6 or $24.

The third solution would be to produce the mix represented by the intersection of the two
constraints. A carefully drawn graph will reveal that this mix is 2 2/3 units of y, and 6 2/3
units of'y,. For this solution to occur, the price of y, would need to be less than twice the price
of'y,, but greater than one half the price of y,. This implies a price ratio of

172 <p,/p, <2/1

The price ratio for this problem of 4/5 falls within this range. If this combination were
produced, revenue would be 4 X 2 2/3 + 5 x 6 2/3 = $44. The $44 represents the maximum
revenue possible given the price ratios and the two constraints. Both of the other possible
solutions yield less revenue.

One final possibility exists. Suppose that the slope of the objective function were exactly
the same as the slope of one of the two constraints. If the slope of the objective function were
exactly 1/2, as would be the case if the relative prices were 4/8, then the solution that
produced all y, would result in the exact same revenue as the solution that produced a
combination (8§ X8 =8 X 62/3+4X22/3=064).Inthat case, the linear programming problem
would maximize the function either if all y, or the combination of y, and y, were produced.
Any combination consistent with the constraints that called for the production of more than
6 2/3 units of y, would also result in the same revenue. In this case there is not a single
solution to the linear programming problem.

If the relative prices were in the ratio 2/1, such as 8/4, then the solution that produced
all y, would result in the same revenue as that obtained from the combination (§ X6 =8 X 2
2/3 + 4 x 6 2/3 = 48). The same problem would result. If this were to occur, computer
routines designed to solve linear programming problems usually warn the user that the
solution is not unique.

22.6 Other Approaches for Solving Linear Programming Models

The graphical presentation of a linear programming problem is useful in establishing the
linkages between linear programming and the product-product model. However, the
diagrammatic approach cannot be used for problems that involve the production of more than
two outputs. Diagrams become messy for problems involving a large number of constraints.
Numerous algorithms are available for solving linear programming problems. The simplex
algorithm is widely known. For small problems, the simplex algorithm is simple enough that
the needed calculations can be performed by hand.
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Computer programs based on the simplex algorithm for solving linear programming
problems are available. However, most computerized algorithms used in agricultural
economics make use of algorithms for solving linear programming problems that are more
complicated to understand than the simplex algorithm but require fewer calculations by the
computer. The problem of developing algorithms that solve various mathematical
programming problems while minimizing the required computer time is a major research effort
at some universities.

Algorithms for solving linear programming problems on a small, personal microcomputer
are available. The size of the problem in terms of the number of columns (or activities) and
the number of rows (or constraints) place limits on the size of the problem that can readily
be solved on a small computer within a short period.

Currently available from several vendors are algorithms that will solve linear
programming problems of up to 100 x 200 in matrix size, and within a few minutes on a
personal computer at least 256K in size. Large university computers are able to solve very
large linear programming problems within minutes or even seconds of computer time.

The solve time for a linear programming problem seems to increase exponentially, rather
than linearly with the addition of rows and columns. A problem with 100 rows and 100
columns would probably take substantially more than twice as much time to solve as one with

a 50 x 50 matrix. Large and complex mathematical programming problems still require large
and fast computers for quick solutions.

22.7 The Simplex Method
The problem presented graphically in Section 22.4 will be solved using hand calculations
with the aid of the simplex method. The problem was
Maximize
(22.7) 4y, + 5y,

where y, and y, are two commodities. The 4 and 5 represent the price per unit of y, and y,,
respectively.

The constraints are

(22.8) 2y, + 1y, <12
(22.9) ly, +2y,< 16
Yi, Y>>0

where the coefficients on y, and y, represent the technical requirements for X, and X, per unit
of output. Input X, has 12 units available and X, has 16 units available.
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The first step is to introduce two new variables, called slack variables (s, and s,). Slack
variables are used to convert the inequalities into equalities. One is required for each
inequality constraint. The slack variables can each be thought of as a garbage dump for
holding units of input X, or X, not being used in the solution. The coefficients on slack
variables are initially zeros in the objective function. The coefficient on a slack variable that
appears in an equation is 1, and the coefficient on the slack variables not appearing in an
equation is zero. Atthe start, noy, ory, is produced, and therefore the value of the objective
function is zero. The problem is then rewritten as

(22.10) 2y, + 1y, + 1s, + 0s, = 12
(22.11) ly, +2y, +0s, + 1s,= 16
(22.12) 4y, + 5y, + 0s, + 0s, = O

The 12 and 16 in equations (22.10) and (22.11) are sometimes referred to as the
right-hand side (RHS), since they appear on the right hand side. The right hand side represents
the availability of inputs or resources X; and X,. The problem can be rewritten as follows:

(22.13)

Column
Row Y, Y, S, S, RHS
X, 2 1 1 0 12
X, 1 2 0 1 16
Objective 4 5 0 0 0

The usual place to start is to bring in units of the output or activity with the largest price
or coefficient in the objective function. This would be y,. However, it really makes no
difference, and y, could be chosen. In this example, the conventional rule is followed and y,
is chosen. Thus y, becomes what is called the pivotal column.

Since the objective function is to be maximized, the most limiting input must be
determined. Each unit of'y, requires 2 units of X, and 16 units of X, are available. Each unit
of'y, requires 1 unit of X, and 12 units of X, are available. Thus X, is most limiting (16/2 =8
< 12/1 =12). The row labeled X, becomes what is called the pivotal row.

Every element in the X, row is divided by the coefficient that appears at the intersection
ofthe pivotal row and the pivotal column, 2 in this case. This results in a table with a new row
X, labeled nx,
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(22.14)

Column
Row Y, Y, S, S, RHS
X, 2 1 1 0o 12
nx, 12=05 22=1 02=0 122=05 16/2=8
Objective 4 5 0 0 0

The new X, row (n¥X;) is found by subtracting from the old X, row the product of the
element in the nx, row and the column under consideration times the element at the
intersection of entering column y, and the X, row. Suppose that the element to appear in
column y, of row X, is to be found. That number will be 2 — 0.5 x 1. The number 2 appears
in the old X, row for column y,, a 0.5 appears in row nX, for column y,, and 1 appears at the
intersection of the entering y, column and the X, row. Following the same rule, the
corresponding new element at row X, and column y, is 1 — 1 x 1 = 0. Similarly, the new
element at row X, and column s, is 1 — 0 x 1 = 1, and so on. This results in the new matrix

(22.15)

Column
Row Y, Y, S, S, RHS
nx, 1.5 0 1 -05 4
nX, 0.5 1 0 0.5 8
Objective 4 5 0 0 0

A similar approach is used on the objective function row. The new element for the
intersection of the objective row and columny, is 4 — 0.5 x5 =1.5. The new element for the
intersection of the objective row and the right hand side is 0 — 8 x 5 = —40. This number is
the negative of the current objective function value. Notice also that 40 was the profit in the
graphical solution when only Y, entered. The completed matrix is
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(22.16)

Column
Row Y, Y, S, S, RHS
nx, 1.5 0 1 =05 4
nx, 0.5 1 0 0.5 8
nObjective 1.5 0 0 -2.50 -40

If all numbers appearing in the columns representing outputs are 0 or negative, the
optimal solution has been found. In this example, the value at the intersection of the y,
column and the new objective row is positive, indicating that production of'y, will further
increase profits. Following the same procedure, a new table is constructed. However, this time
the entering row is y,. The resultant new table is

(22.17)

Column
Row Y, Y, S S, RHS
nnx,; 1 0 67 -33 2.67
nnx, 0 1 -.33 .67 6.67
nnObjective 0 0 -1.00 -2.00 -44.00

The optimal solution has been found that maximizes revenue from the sale of y, and y,
subject to the two constraints. The 2.67 and 6.67 represent the output of y, and y,,
respectively. The —44.00 is the negative of the objective function value. The solution produces
$44 of revenue. All this information was available from the graphical solution.

However, a new piece of information is also available. The numbers appearing in the
objective function row and the slack columns labeled s, and s, are the negatives of the imputed
values of an additional unit of X, and X,, respectively. If one additional unit of X, were
available, it would, if allocated properly, contribute 1 additional dollar to revenue. An
additional unit of X, would contribute 2 dollars to revenue. These are the shadow prices for
X; and X,. These shadow prices indicate the maximum amount that the manager would be
willing to pay for the next unit of X, and X,.

The shadow prices obtained from a linear programming model can be interpreted in
exactly same manner as the Lagrangean multipliers obtained using classical optimization
methods. In both cases they represent the change in the objective function associated with a
relaxation of the corresponding constraint by 1 unit.
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If the shadow price for an additional unit of an input is $2.00, 1000 additional units of
the input are not necessarily worth $2000 to the farmer. The shadow prices really apply only
to the next unit of the input. Shadow prices usually decline in discrete steps as the availability
of'the input is increased. To be perfectly accurate, the incremental unit of the input should be
infinitely small, or Ax should be dx. The same interpretation problem occurs with Lagrangean
multipliers in a classical optimization model.

Ifthe linear programming solution does not use all available units of an input, its shadow
price, or implicit worth will be zero. Additional units of an input already in excess have an
imputed value of zero and are worth nothing to the farmer.

22.8 Duality

In earlier chapters it was shown that any constrained maximization problem can be
converted into a corresponding constrained minimization problem, and that any constrained
minimization problem can be converted into a corresponding constrained maximization
problem. The use of the inputs becomes the function to be minimized, the revenue function
becomes the constraint.

Any linear programming problem can be converted to its corresponding dual. The primal
problem might involve either the maximization or minimization of an objective function
subject to constraints. If the primal is a constrained maximization problem, the dual will be
a constrained minimization problem. Ifthe primal is a constrained minimization problem, the
dual will be a constrained maximization problem.

The constrained revenue maximization problem found the combination of outputs y, and
Yy, that maximized revenue subject to the constraints and was similar to a constrained revenue
maximization problem in product-product space. The corresponding dual is a constrained
minimization problem. The imputed cost of inputs X, and X, is minimized subject to arevenue
constraint. The problem is similar to that of finding the least cost combination of inputs in
factor-factor space.

The dual of the maximization problem is
(22.18) minimize 12X, + 16X,

where X, and X, are imputed costs of inputs or resources. The constraints are

(22.19) 2X, + 1%, > 4
(22.20) 1X, +2%,> 5
Xj, X, >0

Notice that the rows of the primal are the columns of the dual. The columns of the primal
are the rows of the dual. The right-hand side is made up of coefficients that formerly were
prices of outputs. The objective function to be minimized has coefficients that formerly were
values for input availability on the right-hand side. Less than or equal to constraints now are
greater than or equal to constraints.
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The dual can also be solved graphically, but the axes are now inputs X, and X, rather than
outputs y, and Y,. The first constraint will intersect the X, axis at 2, and the X, axis at 4. The
second constraint will intersect the X, axis at 5 and the X, axis at 2.5 (Figure 22.2).
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0 ® ‘ 1 1
0 1 2 3 4 5

Figure 22.2 Linear Programming Solution in Factor Space

This time the feasible solution area lies outside of both constraints. The feasible solution
areais again bounded by the two constraints. The line following the portion of each constraint
outside the other constraint represents an isoquant constructed of two linear segments rather
than a product transformation function.

The objective function is similar to an isocost line in factor-factor space. The slope of
the objective function is —V,/v,, where v, = 12 and v, = 16. Again, three solutions are possible.
All X, can be used, all x, can be used, or a combination of X; and X, can be used. A carefully
drawn diagram indicates that the combination would be 1 unit of X, and 2 units of x,. These
numbers look familiar.

The minimization problem can be solved via the simplex method. The procedure is the
same as for the maximization problem with two exceptions. Since the constraints are greater
than or equal, the slack variables must have negative rather than positive signs when they
appear. In the maximization problem, the entering row was selected on the basis of the input
that was most limiting or the smallest ratio of the right hand side value to the corresponding
coefficient for the row in the column selected for entry. In the minimization problem, the row
would be selected on the basis of the largest ratio of the right hand side value to the
corresponding coefficient in the row for the column considered for entry.
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However, it is not necessary to solve the dual if the primal has already been solved. The
value for the objective function will be the same for both problems. The optimal levels ofy,
and Y, in the primal are the shadow prices for X, and X, in the dual. The optimal values for X,
and X, (the 1 and 2) in the dual are the shadow prices for the primal problem. The same
solution will result regardless of whether the primal or dual is solved.

22.9 An Application

The use of linear programming in agricultural economics is illustrated with a simple
problem. The problem is purposely kept small in order to shorten the explanation. The
problem illustrates how linear programming might be used as the basis for developing a much
larger farm planning model. The farmer has the choice of the enterprises listed in Table 22.1.
Net revenues per unit of each enterprise over variable costs are listed.

Table 22.1 Enterprises and Net Revenues over Variable Costs

Enterprise Units Revenues Over Variable Costs
Corn Acres $45 per acre

Wheat Acres $32 per acre

Oats Acres $20 per acre

Sows 10 sows $2400 per 10 sows
Steers 10 steers $1400 per 10 steers
Layers 10,000 layers $5400 per 10,000 layers

The farmer has 100 acres of land. Steers, sows, and layers are kept in confinement, so
incremental units will not require any more land. The farm has a wheat allotment limiting
wheat acreage to no more than 12 acres. Only 50 of the 100 available acres are suitable for
the production of row crops. The production of grain crops will require access to no additional
capital, but the production of hogs, steers, and layers will require capital for the purchase of
needed animals and feed. Labor is broken into three periods, January to April, May to August
and September to December. Table 22.2 lists the resource or input availability that will
comprise the right hand side. Table 22.3 provides the resource or input requirements for each
enterprise.
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Table 22.2 Inputs or Resources on the Farm

Input Amount
Total land 100 acres
Row crop land 50 acres
Wheat allotment 12 acres
January April labor 1600 hours
May August labor 2000 hours

September December Labor 1600 hours

Capital $20000

Table 22.3 Input Requirements by Enterprise.

Enterprise: Input Requirement per Enterprise Unit

Corn
Total land 1 acre
Row crop land 1 acre
Wheat allotment None
January April labor 5 hours
May August labor 1 hour
September December labor 3 hours
Additional capital None

Wheat
Total land 1 Acre
Row crop land None
Wheat allotment 1 Acre
January April labor 1 hour
May August labor 2 hours
September December labor 3 hours

Additional capital None
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Table 22.3 (Continued)

Oats
Total land 1 Acre
Row crop land None
Wheat allotment None
January April labor 1 hour
May August labor 2 hours
September December labor 3 hours
Additional capital None
Sows
Total land None
Row crop land None
Wheat allotment None
January April labor 300 hours
May August labor 300 hours
September December labor 300 hours
Additional capital $8000
Steers
Total land None
Row crop land None
Wheat allotment None
January April labor 200 hours
May August labor 20 hours
September December labor 100 hours
Additional capital $6000
Layers
Total land None
Row crop land None
Wheat allotment None
January April labor 900 hours
May August labor 900 hours
September December labor 850 hours

Additional capital $17,000
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The linear programming model was solved with a standard computer algorithm for linear
programming problems. Table 22.4 provides the levels for each enterprise as determined by
the model and the value of the objective function when the solution was found. Shadow prices
or imputed values for an additional unit of each input are found in Table 22.5.

Table 22.4 Linear Programming Enterprise Solution

Corn 50 acres

Wheat 12 acres

Oats 38 acres

Sows None

Steers None

Layers 1.17647 units or 11,764.7 layers

Net returns over
variable costs $9746.94

Table 22.5 Imputed Values or Shadow Prices for Inputs

Total land $20

Row crop land $25

Wheat allotment $12

January April labor 0 (241.18 hours not used)
May August labor 0 (791.18 hours not used)
September December labor 0 (300.00 hours not used)
Additional capital 0.31765

The shadow prices in Table 22.5 indicate what the farmer could afford to pay for an
additional unit of an input. These shadow prices are the same as Lagrangean multipliers in
that they give the increase in the objective function (in this case, returns over variable costs)
of an additional unit of the input. This farmer could afford to pay up to $20 to rent an
additional acre of land. If the land were suitable for row crops, it would be worth $25. If
additional wheat allotment could be secured, up to $12 could be paid for an additional acre.
Excess labor is present in all periods, so an additional unit is worth nothing. The shadow price
on additional capital represents the maximum interest rate the farmer could afford to pay for
the next unit of capital, in this case more than 31 percent.

22.10 Concluding Comments

This chapter has illustrated some of the linkages between linear programming and the
marginal analysis models developed earlier in the text, and provided an illustration of a
practical resource allocation problem that can be modeled with linear programming. A
comprehensive linear programming model designed for farm planning would include far more
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detail, breaking down items such as labor into weekly or even daily periods, and including far
more possible enterprises or activities.

Linear programming models that do a comprehensive and detailed job of allocating
inputs among enterprises have a tendency to quickly become very large and can require a
large computer to solve and/or a substantial amount of computer time. The model presented
here is easy to solve using a PC-based linear programming solver, so it lends itself to
experimentation. The model provides an indication of the types of problems a larger and more
detailed model would be able to solve.

Problems and Exercises

1. Does linear programming tighten or weaken the assumptions underlying classical
optimization methods? Explain.

2. Solve the following linear programming problem by hand, using the simplex method
outlined in the text.

maximize 2y, + 3y,
subject to
3y, +4y, <20
ly, + 6y, <24
Now find a computer program for solving the problem, and solve the problem on the
computer. Compare the results with your hand solution. Now solve the dual with the same

computer program, and compare the results.

3. What happens to the solution if the price of y, increases to $10? Does the second resource
become more valuable as measured by its shadow price?

4. Are a Lagrangean multiplier obtained from a classical optimization problem and a shadow
price obtained from a linear programming problem the same thing? Explain.

5. Explain why the maximum number of possible solutions to a linear programming problem
can be no greater than one more than the number of constraints.

6. Set up on the computer the farm planning problem contained in this chapter, and solve.
Compare the results with those obtained in the text. Are the results presented in the text
accurate? Now change the prices on one of the outputs and observe what happens to the
optimal solution and the shadow prices on each input or resource.
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23

Frontiers in
Agricultural Production
Economics Research

This chapter provides an introduction to topics of current interest to agricultural economists
conducting research on problems of importance in agricultural production economics. The
chapter is organized around three major topic areas: (1) the treatment of management in a
production function, (2) technological change and its link to a production function, and (3)
unresolved conceptual issues relating to the estimation of production functions from actual
data.

Key terms and definitions:

Management Functions

Risk Bearing

Entrepreneurship

Technological Change

Estimation of Production Functions
Correlation
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23.1 Management and Agricultural Production Functions

The manager of a farm performs three functions; the manager (1) selects the amount of
each output and mix of outputs to be produced in the production process, (2) determines the
proper quantity of each input to be used and allocates inputs among the various outputs, and
(3) bears the risk associated with the production and marketing of the products. Some
agricultural economists use the term entrepreneurship to describe the manager's risk bearing
function. The marginal conditions outlined in this book play a key role in determining how a
farm manager might best perform functions (1) and (2). As indicated in Chapter 20, the
manager's willingness and ability to bear risk depends in large measure on his or her psychic
makeup.

23.1.1 Alternative Approaches to Management

Some agricultural economists have attempted to treat management just as any another
input to the production function, to be measured and treated in much the same way as inputs
such as seed and fertilizer. Such an approach might yield a production function such as

(23.1) y = AX, XM

where Y is an output, X, and X, are two variable inputs, and M is management with an
elasticity of production of ¢. With a specification such as equation (23.1), management enters
the production function in a multiplicative fashion, and the marginal products of all the other
inputs contain management in them.

An attempt is then made to locate or develop some measure of the skill of the manager.
A sometimes used measure is the years of education of the farm manager. Analyses based on
this idea have rarely, if ever, yielded anything. Usually, the researcher finds that the measure
of management was unrelated to output, and the faulty measurement of the management skill
is blamed for the bad results.

Agricultural economists who attempt to deal with the concept of management using an
approach such as this might better find fault with the conceptual logic. Management is not
an input as such. Rather the skill of the manager largely determines the amount of the other
inputs to be used in the production process, as well as how these inputs are to be allocated in
the production process. Good managers are those who know and can make use of the marginal
principles and are willing to assume the requisite amounts of risk.

Moreover, although marginal principles can be learned in a class in production
economics, farm managers without the benefit of a college course have often become aware
of and make use of these principles, even though they may not be aware of the formal logic.
A good deal of marginal analysis is nothing but a formal presentation of common sense; and
many people have common sense with regard to decisions with respect to how much input
should be used, even though they lack the formal training in agricultural economics.

Formal education may do little to change the manager's psychic makeup. The
well-educated manager would not necessarily be willing to assume greater amounts of risk
than the manager who lacked an extensive formal education. It is not surprising that education
is not necessarily a good measure of a manager's skills.
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Another approach is to assume that management is not a separate variable but rather,
influences the production elasticities on the remaining variables of the model. Such logic
would lead to a production function with variable elasticities of production

(23.2) y = Ax,2Mx bW

where a and b are individual production elasticities which are each a function of the "level"
of management M.

This model suggests that a given quantity of fertilizer will somehow produce greater
output on the farm of a skilled manager than on the farm of a manager who lacks skill. Just
what the skills are that make a difference is not clear. Good managers have no magical skills
that make it possible for them to get around the technical relationships that govern and limit
the amount of output that can be produced from a given amount of input, but they are keenly
aware of the amount and allocation of inputs needed to produce the greatest net revenue within
the constraints imposed on the farm.

A final possibility is that the manager's skills are embodied in the coefficient or
parameter A. This example is similar to the first example except that management is not
treated as a separate variable. The parameter A in a Cobb Douglas type production function
is a sort of garbage dump, embodying the collective influences of everything that the
researcher did not wish to treat as an explicit input in the production function. One possible
equation for A is

(23.3) A=M0
where O is the parameter with the management variable excluded.

This approach leads back to the same equation as that listed in the first approach, but
possibly avoids the problem of having to find a separate measure of management. The
alternative of not measuring management as a separate variable assumes by default that the
manager's skills do not vary across farms, which may be equally incorrect.

23.1.2 Management and Profit Maximization

Some economists have traditionally aggregated inputs into four categories: land, labor,
capital, and management. In fact, the treatment of management in an agricultural production
function as a separate variable probably had its roots in this input categorization. Each input
category receives a payment. Land receives rent, labor receives wages, capital receives
interest, and management receives profit. Profit is what is left over after all other inputs or
factors of production have received their payments.

The model of pure competition in long run equilibrium yields zero profit. It is not entirely
clear whether this means that the manager's skills go unrewarded. If the manager's skills were
unrewarded, then the manager of a firm operating in a purely competitive long run equilibrium
is indifferent to producing or shutting down. But if the manager were getting no return for his
or her skills, he or she would be better off shutting down the operation, rather than wasting
time doing things that net no return. In short, it is not clear why any firm should want to
produce in the long—run equilibrium of pure competition.
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A critic might argue that in long—run competitive equilibrium, a manager's skills are no
longer needed, and therefore it is not important that these skills go unrewarded. Moreover,
long—run equilibrium is perhaps never achieved, and that managers keep producing because
of the potential short-run pure profits. This same critic might also say that it is foolish to
think about such things because no industry operates in a purely competitive environment.

Even Euler's theorem is problematic. Should management be treated as one of the inputs
to the production process to be paid its VMP? Or does management simply get what is left
over after all other factors of production have received their respective VMP's? If so,
management gets a return only if the production function is homogeneous of a degree less than
1. But is it not proper for management to earn its VMP just like every other input? Maybe
Euler's theorem applies only to the long—run competitive equilibrium, and a manager is not
needed. Euler the mathematician derived an algebraic relationship and was rather
unconcerned as to the competitive conditions under which economists might assume that the
relationship held.

The treatment of management within a production function remains a serious and
unresolved problem in agricultural production economics. Each approach for the treatment
of management in the production function has logic behind it, but it is easy to find fault with
each approach as well.

23.2 New Technology and the Agricultural Production Function

New technology usually comes in the form of an improvement in one or more of the
inputs used in the production process. There are many possible impacts of new technology
on agriculture.

An improvement in one of the inputs might raise its marginal product and increase the
elasticity of production for that input, causing the slope of the new production function to be
greater than the old production function at a given level of input use. An improvement in one
of the inputs might cause the marginal product of one or more of the other inputs to the
production process to increase. An increase in the slope of the production function will cause
the VMP for all the affected inputs to rise, resulting in an increased profit-maximizing level
of'use for any input whose marginal product is affected by the technology. The development
of hybrid seed corn not only raised the marginal product of seed, but undoubtedly also
increased the marginal product of other inputs, such as nitrogen fertilizer.

A second and perhaps less likely possibility is that the new technology shifts the intercept
but not the slope of the production function. Output with the new production function is
increased relative to the old production function, but the marginal products of the inputs are
unaffected. In this case, the profit-maximizing level of input use will not change, but the
output will increase at the profit maximizing level of input use.

A third possibility is that the new technology lowers the per unit cost of production. The
new technology is adopted because with the new technology, one or more of the input prices
are reduced. This amounts to a reduction in the price (V) of input X. As a result of the price
reduction, the profit-maximizing level of input use will be increased. An example of a
cost-reducing technology is the development of a new pesticide that is as effective as the old
but at a lower per acre cost.
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Figure 23.1 Some Possible Impacts of Technological Change

New technology will usually cause output to increase over time. Figure 23.1 illustrates
some possible effects of new technology in a two input setting. Diagram A illustrates a case
in which the new technology makes input X, more productive relative to input X,. Isoquants
farther out are positioned closer and closer to the X, axis.

New technology could cause the per unit cost of the input to decrease, resulting in
increased use of the input experiencing the price reduction for a given budget outlay (diagram
B). An example would be the development of a new herbicide that was as effective at
controlling a particular weed but at a lower cost per acre than before. Such a new technology
may or may not affect the use of the other inputs, depending on the shape of the isoquants.

New technology could also change the shape of the isoquants and therefore result in an
increase in the elasticity of substitution (diagram C). A large elasticity of substitution is
desirable in that it allows for significant changes in the mix of inputs that can be used to
produce a commodity in the face of changes in relative input prices and technology that
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makes possible the substitution of cheap inputs for expensive inputs. Technology that allows
a farmer to produce methane from farm manure is an example.

23.2.1 Some Examples

Suppose that the production function is
(23.4) y=a-+bx+cx
where

a,b>0c<0

Ifthe new technology shifts the entire production function, without any change in the marginal
product of X, the parameter a will have increased. It is unlikely that output would be produced
in the absence of the input. An increase in the marginal product of X could occur as a result
of the parameter b becoming larger or as a result of the parameter ¢ becoming less negative.
This is the probable impact of much new technology.

Now consider the production function
(23.5) y=a+bx, +cx, + dx, + ex,>
where a, b, ¢, d, and e are parameters.

New technology that affects x; will not change the marginal product of X,.

Now suppose that the production function has an interaction term with a corresponding
parameter f

(23.6) y =a-+bx, +cx.2+dx, + ex,” + fx,x,

New technology that affects input X, will probably change the parameters b, ¢, and f. Since
the parameter f is part of the MPP for X, also, the new technology for X, will change the MPP
of'both X, and x,. Normally, f would be expected to be positive, such that the new technology
would increase the marginal product of X, as well. New technology might also increase the
value of f, even if f were negative.

Suppose the Cobb Douglas type of production function
(23.7) y = AX, 2,

One explanation for parameter A of the Cobb Douglas type of production function is that it
represents the current state of the production technology at any point in time. A change in the
parameter A will change the slope of the production function and the individual MPP's for
both inputs. The parameter A appears multiplicatively in each MPP. Moreover, changes in
either a or b result in a change in the MPP for each input. Again a and b both appear in the
MPP's for X, and X,.

If, as a result of the new technology, the price of one of the inputs declines, there will
normally be an increase in the use of the input that experienced the price decrease. The use
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of the other inputs (that do not experience a price decrease) may increase, decrease, or stay
the same, depending on whether the other inputs are technical complements, competitive, or
independent.

23.2.2 Time and Technology

For an agricultural economist dealing with a problem in a static, timeless environment,
the impacts of new technology are of little concern. A production function estimated from
single period cross sectional data has as an underlying assumption the state of the technology
that existed at the time for which the data are available.

However, if a production function is to be estimated from data over several production
periods, technology does become of importance. Moreover, it is often difficult to find direct
measures of the state of technology over time. Agricultural economists usually rely on some
simple, if crude means such as the incorporation of a time variable into the production
function. A simple time variable (for example, 1 for year 1, 2 for year 2, 3 for year 3, and so
on) is a very inaccurate measure of technology but may represent an improvement on a model
that failed to recognize that technology changed at all.

Suppose that the production function was to be estimated as a Cobb Douglas type of
function

(23.8) y = AX, 2’
The parameter A could be defined as
(23.9) A=a+p

where o is the parameter A with the impacts of technology (time) removed and 3 is the
parameter associated with the change in technology. This approach would be most applicable
in instances where there existed a gradual improvement in technology over a long period and
it was difficult to determine which specific input categories are affected.

If the agricultural economist believes that the elasticities for only certain of the inputs
are affected by the technology, the parameters for the affected inputs could be made a function
of the measure of technology (in this case, time). For example, suppose that the new
technology is thought to affect the elasticity of production for input X,. The parameter a on
X; could be defined as

(23.10) a=0+yT

where 0 is the base production elasticity and *y is the change in the production elasticity with
respect to a change in the technology per unit of time. More complicated functions could
easily be developed that would allow for variable rates of change in the technology. The
production function becomes a Cobb Douglas type with variable production elasticities.

Another approach would be simply to estimate separate production functions for each
year in the data series. This would amount to a series of still snapshots of the state of
technology that existed for each period. An approach such as this can provide a good deal of
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information, since separate estimates of every parameter for every period are available, but
a lack of the data needed for such a comprehensive approach may pose a problem.

Solow proposed a transcendental— like approach to the incorporation of technological
change. Following his approach, a simple model would be

(23.11) y =A X%,

where T is a measurement thought to represent technology, such as time, € is the base of the
natural log, and r is the associated coefficient.

Such a model would allow for variable rates of change in marginal products as a result
of the new technology. The function is readily transformed to its natural logarithms and
estimated by ordinary least-squares regression. This approach is applicable in instances where
it is not readily apparent which specific inputs are affected. A similar approach would be to
use the transcendental function

(23.12) y = ax, x, e 1T el

where T is the technology measure. The values for 'y, and Y, would indicate the extent to
which the new technology favors input X, or input X,.

Approaches exist for dealing with technology in an agricultural production function.
However, a major problem remains in that the variable technology is often difficult if not
impossible to measure. Exceptions exist in instances where the specific technology is readily
identifiable.

For example, successful studies have been conducted when the technology is similar to
the development of hybrid corn, high yielding rice varieties in international development, or
amechanized tomato harvester. The kind of technological change that usually takes place in
agriculture is more gradual and less dramatic. Sometimes agricultural economists simply
ignore gradual technological change and hope that the gradual changes associated with a
general technological improvement do not significantly affect research results.

23.3 Conceptual Issues in Estimating Agricultural Production Functions

The estimation of agricultural production functions from survey data collected from
farmers has been a very widespread activity by agricultural economists. A common approach
might be to survey 100 farmers with regard to the quantities of seed, fertilizer, chemical, and
other inputs used, and then attempt to estimate a single production function using the 100
farmers as individual observations in the data set. This research approach is becoming very
popular in studies conducted in developing countries.

Major problems exist with this research approach. Some of the problems are readily
apparent, while others are more subtle but of no less importance. One readily apparent
problem stems from the lack of controlled experimental conditions. It may rain on one
surveyed farmer but not on another. Soil conditions may vary from farm to farm, and
managerial skills may differ from farm to farm. Yet a single production function will be
estimated for all farms in the sample. Most researchers recognize that the lack of controlled
experimental conditions represents a major problem with this approach to estimating
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agricultural production functions, and attempt to take steps to control for factors such as soil
type and weather conditions.

Less well recognized but no less important are the problems associated with the
behavioral objectives of the manager whose farm is part of the data set. Only one production
function is to be estimated from the entire data set. Agricultural economists like to assume that
farmers are profit maximizers or, as an alternative, seek to maximize revenue subject to a cost
constraint. Prices for both inputs and outputs are largely given, and on a cross-sectional basis
do not vary significantly from farm to farm.

Ifasingle production function applies to all farms (an assumption basic to the estimation
of the production function with farms as observations), information is complete, input and
output prices are fixed and the same for all farms, and farmers maximize profit, then all
farmers should have found the point where VMP equals MFC. The data from which the
production function is to be estimated do not consist of a series of points but rather, a single
point. All farmers are using the same quantities of inputs and producing the same yields. To
the extent that farmers are not all observed to be operating at the same point, one or more of
the assumptions have broken down. Either the farmers do not know how to or cannot
maximize profits, the same production function does not apply to all farmers, or input and
output prices are not constant.

Suppose that farmers are not globally maximizing profits, but rather, seek to maximize
revenue subject to a cost constraint. In this case, all farmers would be operating on the same
expansion path, but larger farmers would be operating closer to the point where profits are
globally maximized, where A equals 1. Again, the basic assumption of the analysis is that the
same production function applies to all farmers in the data set. If the production function is
homothetic, the expansion path is linear or has a constant slope, and input prices are constant.
Each farmer's input bundle differs in size from the input bundle owned by the other farmers
in the data set, but everyone's input bundle contains the same inputs in the same proportions.

Ifagricultural economists collect data from survey farms, farms with large outputs will
use large amounts of fertilizer, chemicals, and other inputs. Smaller farms will use smaller
amounts of fertilizer, chemicals, and other inputs. However, the proportions of each input in
each bundle remain constant. When the statistical research is conducted, the agricultural
economist discovers that the data series for the individual inputs are very highly correlated
with each other. A large farmer using lots of fertilizer will also use lots of chemicals and other
inputs; a small farmer uses small amounts of fertilizer, chemicals, and other inputs. This
correlation leads to multicollinearity problems which, if severe enough, make it impossible to
estimate the production elasticities for the individual inputs.

What is seldom recognized is that such problems should occur as a direct result of the
assumption that farmers would like to be on the expansion path. To the extent that the
individual input categories are not perfectly correlated with each other, either a single
production function does not apply to all farmers, input prices vary from farm to farm, or
farmers are not on the expansion path. The breakdown of any of these assumptions is not
very comforting to those agricultural economists who understand marginal theory in a purely
competitive environment.

Agricultural economists thus find themselves in a very difficult position. To the extent
that the results of the analysis are stable enough to provide statistically significant estimates
of'individual production elasticities, one or more of the theoretical assumptions underlying the



364 Agricultural Production Economics

analysis has, to a degree broken down. To the extent that individual production elasticities are
unobtainable, the theoretical assumptions hold. However, this is of little consequence to
agricultural economists in need of specific estimates of MPP's and production elasticities. (See
Doll for additional discussion of this problem.)

One approach to deal with this problem would be to abandon attempts to estimate
agricultural production functions from nonexperimental farmer-generated cross-sectional data.
Reliance might instead be placed solely on data obtained under controlled experimental
conditions in agricultural experiment stations or other laboratory facilities. In the United
States, such data do represent an important basis for the estimation of agricultural production
functions. The problem here is that such data do not entirely reflect what is happening in an
actual farm setting.

A gap exists between results obtained at an experiment station and on the farm.
Experiment station yield trials may utilize a hand harvest not feasible or possible on large
acreages on a farm. In the United States, as in most developed countries, the gap between
experiment station and on— farm results is not that large, and perhaps adjustments could be
made to take the gap into account. In developing countries the gap can be very large indeed,
and agricultural economists working in these countries almost certainly need to know exactly
what is happening on the farms themselves.

23.4 Concluding Comments

This chapter was called "Frontiers in Agricultural Production Economics Research" for
areason. The earlier chapters largely fittogether as a neat package. Problems were proposed,
models developed and analyzed, and solutions obtained. Unlike the earlier chapters, in this
chapter problems are proposed and possible models presented, but no simple and neat
solutions have been presented.

The issues presented in this chapter were chosen because they represent examples of
highly significant and as yet unresolved problems confronting agricultural production
economists. Much of agricultural economics research deals directly with problems such as
these, and work on such problems is challenging. It is the author's hope that this book has
stimulated both an interest in and an appreciation for the work of agricultural economists.
Problems and Exercises
1. What is management?

2. How might management be measured?

3. Outline alternative ways in which management might be incorporated into a production
function. Explain the consequences of each approach.

4. What is new technology?
5. How might new technology be measured?

6. Is a time variable a proxy for new technology? Explain.
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7. Outline alternative ways in which new technology might be incorporated into an
agricultural production function. Explain the consequences of each approach.

8. Draw alternative isoquant maps representing the probable alternative consequences of new
technology.
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24

Contemporary Production
Theory: The Factor Side

The purpose of this chapter is to explore some of the implications of recent work dealing with
duality, elasticities of substitution, and translog specifications of production functions for
agricultural research. These theoretical developments have a broad-based applicability to
research in production economics and demand analysis for agricultural problems at varying
levels of aggregation. The duality principles can be illustrated using simple multiplicative
functions of the Cobb-Douglas type. However, the specific focus in this chapter is on the
development of empirical estimates of elasticities of substitution by making use of
contemporary production theory, and functional forms more complex than the Cobb-Douglas
type are needed. In this publication, the highly flexible translog cost and production functions
introduced within the economics literature by Christensen, Jorgenson, and Lau in the early
1970s are used to provide estimates of elasticities of substitution between major input
categories for U.S. agriculture.

Key terms and definitions

Contemporary Production Theory
Duality

Homothetic Production Function
Translog Function
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24.1 Introduction

Applications of contemporary thought have been made to specific problems within the
agricultural economics literature. Ball and Chambers did a study for meat packing plants at
the firm as the observation level of aggregation. Aoun estimated a translog cost function from
time series data for all of U.S. agriculture, as a basis for obtaining elasticities of substitution
between input pairs reported in this publication. Furtan and Gray conducted a similar study
for a Canadian Province. Hoque and Adelaja and Grisley and Gitu used the approach in
conjunction with studies conducted for dairy farms.

The approaches outlined in this chapter have applications to studies conducted for entire
regions or countries, but are also applicable to studies conducted on data from farm records
for individual firms. Census data on small groups of farms that have been classified according
to major enterprises constitutes another possible data and aggregation level for such research.
Approaches outlined in this publication are useful in situations where cost and input price data
relating to agricultural enterprises are available, regardless of the aggregation level.

Fundamental duality concepts are presented. Some basic algebraic concepts relating to
elasticities and logarithms are reviewed, and the concept of the elasticity of substitution
between input pairs is developed in its various forms. The basic assumptions of contemporary
production theory are outlined. Linkages between the translog functions and earlier functional
forms are developed. Finally, a contemporary translog model designed to estimate elasticities
of substitution between input pairs is introduced and empirical results for U.S. agriculture are
presented.

24.2 Fundamentals of Duality

Agricultural economists are perhaps most familiar with the concept of duality as it
relates to linear programming models. Within a linear programming context, duality refers to
the fact that any linear programming problem can be expressed either as a maximization
problem or a corresponding minimization problem subject to appropriate constraints. The
primal problem may be either a maximization or a minimization problem. If the primal is a
maximization problem, the corresponding dual will be a minimization problem, and,
conversely, if the primal is a minimization problem, the corresponding dual will be a
maximization problem.

The key characteristic of the dual relationship, as illustrated by a linear programming
problem, is that all of the information about the solution to the primal can be obtained from
the corresponding dual, and all of the information with respect to the solution of the dual can
be obtained from the corresponding primal. Either the maximization or the minimization
problem may be solved as the primal, and all information regarding the solution to the dual
is obtained without resolving the problem.

Production functions have corresponding dual cost functions or perhaps
correspondences. The term dual used in this context means that all of the information needed
to obtain the corresponding cost function is contained in the production function, and,
conversely, the cost function contains all of the information needed to derive the underlying
production function. A simple example is the single input production function

(24.1) y = f(X).
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If f(x) is monotonically increasing, and the inverse function exists, the corresponding dual
cost function expressed in physical terms is the inverse of the production function

(24.2) x=f(y)
where f! = the inverse of f.

A simple example is the production function y = x°. The corresponding dual cost function
expressed in physical terms is X = y"°. All of the information with respect to the parameters
of the production function is obtained from the corresponding dual cost function. Cost
functions are usually expressed in dollar, rather than physical terms. The cost function
expressed in dollar terms under the constant input price assumption is

(24.3) vx = v (y)
where V = the price of the input X.

Notall functions can be inverted. In general, a production function can be inverted to generate
the corresponding dual cost function only if the original production function is monotonically
increasing or decreasing. For example, if the production function is the familiar neoclassical
three stage production function, the resultant dual is a correspondence, but not a function, for
two values of X are assigned to at least some values for y.

Single-input cost functions are not normally thought of as arising from an optimization
procedure. However, it is well known that any point on a single input production function
represents a technical maximum output (y) for the specific level of input use (x) associated
with the point. Each point on the inverse cost function is optimal in the sense that it represents
the lowest cost method of producing the specific amount of output associated with the chosen
point. (However, if the underlying production function is not always monotonically
increasing, and as a result, the dual is a correspondence, a point on the dual cost
correspondence is not necessarily a least cost point for the chosen level of output.)

In a multi-factor setting, the duality of the production function and the corresponding
cost function becomes somewhat more complicated. Suppose that a production function for
an output Yy is given by y = f(x), where x is a vector of inputs treated as variable. Under a
specific set of conditions, the corresponding dual cost function exists (McFadden, 1978, pp.
8-9). These conditions are

(1) Marginal products of the inputs are non-negative. The non-negativity implies free
disposal of inputs. This assumption implies that if there is some input vector denoted as
x” which can produce some output vector called y”, then if there exists a second bundle
called x” which is at least as large as x” in every input, then x” can also produce y. One
implication of this assumption is that isoquant maps consisting of concentric rings are
ruled out, and that positive slopes on isoquants are not allowed.

(2) Marginal rates of substitution between input pairs are non-increasing. In the two factor
case, this implies that each isoquant is weakly convex to the origin. However, regions of
constant slope are allowed, and thus the isoquant need not have continuously turning
tangents.
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If conditions (1) and (2) are met, the production possibilities set satisfying assumptions
(1) and (2) is termed input conventional (McFadden, 1978, pg. 10). Figure 24.1 illustrates
some examples of isoquant maps fulfilling and violating conditions (1) and (2). Note that the
ring isoquant maps sometimes used in courses in agricultural production economics are ruled
out.

Assumption 1 Holds Xw Assumption 1 Fails Xw

Assumption 2 Falls XW Assumption 2 Holds XW
Figure 24.1 Assumptions (1) and (2) and the Isoquant Map

Source: Adapted from McFadden

The cost function that corresponds to the production function is c(y;v) =
min[v"”x:f(x)>y]. If conditions (1) and (2) are met, then this minimum cost function that
corresponds to the production function:

(a) exists. This is true because any continuous function defined on a closed and bounded
set achieves its minimum within the set.

(b) is continuous.
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(c) is non-decreasing for each price in the input price vector.

(d) is homogeneous of degree one in all variable input prices. This implies that if all
input prices double, so also will total variable cost, and

(e) is concave in each input price for a given level of output (y*).

Detailed proofs of (a)-(e) can be found in McFadden, 1978, pp. 10-13. The isoquant
maps needed for the existence of a corresponding dual cost function are not necessarily more
plausible in an applied setting than other isoquant maps, but rather are a matter of
mathematical convenience. For example, the Cobb-Douglas, CES and Translog production
functions discussed in this publication all generate isoquant maps consistent with these
assumptions, under the usual parameter restrictions, while the Transcendental does not.

Consider a particular class of production functions known as homothetic production
functions, which include both homogeneous production functions and monotonic
transformations of homogeneous production functions. A key characteristic of the homothetic
production functions is that a line of constant slope drawn from the origin of the
corresponding isoquant map will connect points of constant slope. Hence, homothetic
production functions have linear expansion paths. Moreover, any isocline drawn from the
origin will have a constant slope. An isocline of constant slope represents all points in which
the ratio of the inputs remains fixed or constant, and can be referred to as a factor beam
(Beattie and Taylor p. 42).

Now consider the factor beam for the homothetic production function representing the
expansion path, or least cost combination of inputs. The production surface arising above the
expansion path represents the production function for the use of the optimal bundle as defined
by the least cost combination of inputs according to expansion path conditions. Therefore,
every point on the production surface directly above the expansion path is optimal in that it
represents the minimum cost of producing a given level of output. The production function

represented by the expansion path conditions along the factor beam in an n input setting can
be written as

(24.4) * = f(x*,....X¥%)
where
X%,....x* the least cost quantities of X,,...,X,
y* = output at each point associated with the expansion path conditions.
The cost function that is dual to (24.4) can be obtained by making use of the expansion path
conditions.
For example, suppose that the production function is given by
(24.5) y = Ax,Px P

The input cost function is
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(24.6) C=V,X, + V,X,

where A, 3, and 3, are parameters, X, and X, are inputs, and v, and v, are the respective prices
on X; and X,

The dual cost function for a Cobb-Douglas type production function is found using the
following procedure. First, the equation for the expansion path is found by partially
differentiating the production function with respect to X, and X,, to find the marginal products.
The negative ratio of the marginal products is the MRSxx. The MRSxx, is equated to the
inverse input price ratio. The result can be written as
(24.7) Bov.x, = BV,

Equation (24.7) defines the points of least cost combination along the expansion path.

Equation (24.7) is solved for X, to yield
(24.8) X, = Bvx. 5 v, !

Equation (24.8)is inserted into equation (24.6) and x, is factored out

(24.9) C=%(BV,0 " +V,)

Equation (24.9) defines the quantity of X, that is used in terms of cost (C) and the parameters
of the production function

(24.10) X, = C/B VB, " +v)

Similarly, for input X,

(24.11) X, =C/(Bv,B, " + V)

Inputs X, and X, are now defined totally in terms of cost C, the input prices (v, and v,) and the
parameters of the production function. Inserting equations (24.10)and (24.11) into the original
production function (equation (24.5)) and rearranging, results in

(24.12) y= C(ﬁ'+ﬁZ)A(Bzv1ﬁl_l + Vl)_ﬁ‘ (BIVZBZ_] + Vz)_ﬁ2

Solving equation (24.12) for C in terms ofy, the production function parameters and the input
prices yields the optimal total cost function defined in terms of the expansion path conditions

(4.13)  C* = ylVBBI ALVBBI (B 1B, + v, ) B/BBIB, B v, + vy BB B
= A_l/(B|+Bz) (BZ/BI + 1)ﬁ|/(B1+B2) (BI/BZ + I)Bz/(B|+Bz)y1/(B|+Bz) V]B/(ﬁﬁ'ﬁz) Vzﬁz/(B1+B2)
= Doy]/(B1+B2) VIBI/(ﬁ|+ﬁz) Vzﬁz/(ﬁl+ﬁz)

= ylBB1 7

C* is the least cost method of producing the specific output level y as defined by the expansion
path conditions.
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Equation (24.13) represents the total cost function that is dual to the production function
defined along the expansion path factor beam. Any point on the dual cost function
representing a particular quantity of output designated as y° is optimal in the sense that it
represents the minimum cost, or least cost combination of inputs needed to produce y°.
However, at most only one point on the dual cost function represents global optimality, where
the marginal cost of producing the incremental unit of output using the least cost combination
of factors is exactly equal to the marginal revenue obtained from the sale of the incremental
unit of'y.

For the Cobb-Douglas case, Y is raised to the power 1 over the degree of homogeneity
of'the original production function. The value of Z treated as a constant, since it is dependent
only on the assumed constant prices of the inputs and the assumed constant parameters of the
production function. If prices for inputs are available and constant, all of the information
needed to obtain the corresponding dual cost function can be obtained from the production
function. The coefficients or parameters of a Cobb-Douglas type production function uniquely
define a corresponding dual cost function C*.

Marginal cost associated with the expansion path factor beam (least cost marginal cost)
is

(24.14) MC* = dC*/dy = [1/(B,+B,)Iy!"®#r1iz.

The slope of MC* is positive if the sum of the individual partial production elasticities or
function coefficient is less than 1. If the individual production elasticities sum to a number
greater than 1, then MC* is declining. MC* has a zero slope when the production elasticities
sum exactly to 1. The least cost supply function for a firm with a Cobb-Douglas type
production function can be found by equating marginal cost (equation (24. 14)) with marginal
revenue or the price of the product and solving the resultant equation for y.

Average cost associated with the least cost factor beam is
(24.15) AC* = C/y = yl/BBa-117

Since Z is positive, average cost decreases when the partial production elasticities sum to a
number greater than 1. Average cost increases if the partial production elasticities sum to a
number less than 1. Ifthe production function is a true Cobb-Douglas then total cost is given

by
(24.16) C*=yZ.

In the true Cobb-Douglas case, both marginal and average cost are given by the constant
Z, and therefore both MC* and AC* have a zero slope. For a Cobb-Douglas type production
function, MC* and AC* never intersect, except in the instance where the function coefficient
(or the cost elasticity) is 1, in which case MC and AC are the same everywhere.

The ratio of marginal to average cost along the least cost factor beam, or the dual cost
elasticity ({r*) that applies to the expansion path conditions is

(24.17) P =[1/(B+6))
~ 1/E,
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where E is the returns to scale parameter, or function coefficient for the underlying production
function for the output arising from the least cost combination of inputs along the expansion
path factor beam.

Iftotal product along the expansion path is increasing at a decreasing rate, then costs are
increasing at an increasing rate. If total product along the expansion path is increasing at an
increasing rate, than costs are increasing at a decreasing rate. If total product along the
expansion path is increasing at a constant rate (the true Cobb-Douglas) then costs are also
increasing at a constant rate. If the product sells for a fixed price, that price is a constant
marginal revenue (MR). Marginal revenue (MR) can be equated to the least cost marginal cost
(MC*) only if MC* is increasing. With fixed input prices and elasticities of production, this
can happen only if the cost elasticity is greater than one, which means that the function
coefficient for the underlying production function is strictly less than 1.

The profit function representing the least cost method of generating a specific amount
of profit, and corresponding to the dual cost function can be written as

(24.18) IT*=TR - C*.

If output price (p) is constant
(24.19) II* = py - zy"®,
where E is the function coefficient.

Maximum profits occur if

(24.20) dIT*/dy = p - (/E)y"® =0
MR - MC* =0
and
(24.21) d*IT*/dy? = - (1/E)-[(1/E)- 1]y!"®-I < 0.

E is positive. The only way the second derivative can be negative is for E to be smaller
than 1. This implies that MC* is increasing. If E is equal to one, the second derivative of the
profit function is zero, and that MC* is constant. If E is greater than 1, the second derivative
of the profit function is positive, and MC is decreasing.

24.3 Duality Theorems

The two most famous theorems relating to duality are Hotelling's lemma and Shephard's
lemma. Both are specific applications of a mathematical theorem known as the envelope
theorem. The proofs of the envelope theorem, Shephard's lemma, and Hotelling's lemma are
adapted from those found in Beattie and Taylor (Chapter 6). More detailed and rigorous
proofs can be found in McFadden, 1978, pp. 14— 15 and appendices.
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24.4 The Envelope Theorem
Consider a function z to be maximized with respect to each w;,
(24.22) 7= g(W,,...,W,, 0)

where
Z = a value to be maximized

w; = variables
0. = a vector of parameters
First order conditions require that for each w;,
(24.23) dg/ow; =0
for a maximum.
Now define the optimal value for each w; as w;* in terms of the parameter vector ¢. That is,
(24.23) W = W, *(0n)
foralli=1,..,n
The optimal value for equation (24.22) is
(24.24) 7* = g(W¥,...,.W*,00)
The envelope theorem states that the rate of change in z* with respect to a change in (¢, if all
w; are allowed to adjust, is equal to the change in g with respect to the change in the parameter
o¢ when all w; are assumed to be constant (Beattie and Taylor, pg 228). That is
(24.25) dz*/0w;* = dg/do

In order to prove that equation (24.25) holds, first find the partial derivative of (24.24)
with respect to the parameter vector o

(24.26) 9z*/0a. = X(3g/Ow,*)(Ow,*/det) + Ag/de

However, if the first order conditions from equation (24.23) are to hold, then Ag/Ow;* must be
equal to zero for all i = 1, .., n and equation (24.25) holds.

24.5 Shephard's Lemma

Shephard's lemma (1953) is a specific application of the envelope theorem to the cost
function representing the least cost way of producing a particular level of output, as in
equation (24.13). Suppose that a cost function with characteristics (a)-(e) listed above exists.
Then its corresponding first derivative with respect to the ith variable input is dC*/0v..
Shephard has shown that (1) this derivative is equal to the level of x; (X;*) that minimizes total
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cost for a given level of output, and (2) that if x;* exists as the minimum level of x; for a given
level of output, then dC*/0v; also exists.

Suppose the cost minimizing Lagrangian
(24.27) L = 3vx, + ALy°-f(X;,....X, ]
The corresponding first order conditions are
(24.28) OL/Ox, =V, = Af,

foralli=1,...,n

The indirect cost function, representing the least cost method of production is
(24.29) C* = Dvx*
where the x;* represent the quantities of inputs defined by the expansion path factor beam.
Partially differentiating (24.29) with respect to the ith factor price yields
(24.30) OC*/0v, = v, Ox*/0V, + X *
Substituting equation (24.28) into equation (24.30)
(24.31) 9C*/v, = BAF, Ox.*/0v; + X *

Now suppose that the original production function is defined at the cost minimizing level of
input use

(24.32) y = f(X¥,....x*)
Maximizing the production function with respect to a change in the ith input price
(24.33) dy/ov, = f, Ox*/0v, = 0

foralli=1,..,n

Substituting equation (24.33) into equation (24.31) evaluated at the cost minimizing level of
input use

(24.34) 0C*/0v, = A(0) + x;* = x; used in the least cost combination solution
foralli=1,..,n

Equation (24.34) is Shephard's lemma. Shephard's lemma thus states that the change in cost

for the cost function arising from the expansion path conditions with respect to the change in

the price of the ith factor, evaluated at any particular point (output level) on the least cost total
cost function, is equal to the least cost quantity of the ith factor that is used.
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24.6 Hotelling's Lemma

Hotelling's lemma makes use of the envelope theorem with respect to profit, rather than
cost functions. Consider the case of a firm using n different inputs in order to produce m
different outputs. Total revenue (R) is defined as
(24.35) R =Zpy,
where Yis ooer Yin = OUtputs

s; = the price of the jth output

Total cost is given as
(24.36) C=2vx.
The output expansion path defines the revenue maximizing combination of outputs for the
firm, in much the same manner as the expansion path defines the least cost combination of
inputs. The indirect revenue function represents the optimal allocation of outputs to maximize
revenue, and can be specified as
(24.38) R* = Xsy,*.
The corresponding indirect cost function is

(24.39) C* = Dvx*.

Indirect profit is the difference between revenue and cost according to the output and input
expansion path conditions given as

(24.40) II* = R* - C*.

The profit-maximizing production function transforming inputs into outputs is written in its
implicit form as

(24.41) Fy*,...yxE, . x¥) =0.

The Lagrangian for maximizing profit subject to the constraint imposed by the production
function is

(24.42) L =28y, = ZVX; + QIF(YpoerrsYmiXiseeeXa) — O.
First-order conditions on the product side require that
(24.43) oL/dy; =s, - @OF/dy; =0

forall j=1, ..., m. The optimal y; is y;*.
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First order conditions on the factor side require that
(24.44) OL/Ox; =V, — @OF/Ox =0
for all i =1, ..., n. The optimal X, is X;*.
Now differentiate equation (24.40) with respect to the kth product price
(24.45) OIl*/3s, =y, * + Zs,(Oy;*/0s,) — Zv,(Ox;*/0s,)

Equations (24.43) and (24.44) are then substituted into (24.45) for the product and factor
prices to yield

(24.46) OlI*/0s, =y, * + @{(XLOF/Qy;*)(3y;*/s,) — (LOF/OX*)(OX;*/0s,)}
Differentiate equation (24.41) with respect to the kth product price

(24.47) 9(0)/0s, = 0 = X(OF/9y;*)(3y;*/0s,) + L(OF/Ox*)(OX;*/0s,)

Substitute (24.47) into (24.46)

(24.48) oIl*/0s, =y, *

Equation (24.48)is Hotelling's lemma as applied to product supply. The lemma states that the
change in the indirect profit function arising from the output expansion path with respect to

the kth product price is equal to the optimal quantity of the kth output that is produced.

Hotelling's lemma can also be applied to the factor side. Differentiate the indirect profit
function with respect to the kth input price

(24.49) OII*/0v, = Xs(y;*/9V,)~ ZV,(OX/OV,) — X,

Again substitute equations (24.43) and (24.44) for the product and input prices

(24.50) OII*/0v, = @{X(OF/9y;*)(0y;*/0v,)~ L(OF/OX*)(Ox*/OV,)} — X.*
Differentiate equation (24.41) with respect to the kth input price

(24.51) 9(0)/0v, = 0 = X(IF/0y;*)(Oy;*/0v,) + L(OF/0x;*)(OX;*/0V,)

Substitute (24.51) into (24.50)

(24.52) OIT*/dv, = - x.*

Equation (24.52) is Hotelling's lemma applied to the factor demand side. The lemma states that
the change in the indirect profit function with respect to a change in the kth factor price is
equal to the negative of the optimal quantity of the kth input as indicated by the expansion

path conditions.

Hotelling's and Shephard's lemmas are of considerable importance for empirical research.
If the firm is operating according to the assumptions embodied in the expansion path
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conditions on both the factor and product sides, then product supply and factor demand
equations can be obtained without any need for estimating the production function from
physical input data. For example, equation (24.13) is the indirect (minimum) cost function
arising from a two input Cobb-Douglas type production function. The conditional factor
demand function for input X; can be found by partially differentiating (24.13) with respect to
v;, treating Y as constant, and setting the partial derivative equal to X;* from Shephard's lemma.

Rewriting equation (24.13)
(24.53) C* = D,yov,%v,%

The choice of a Cobb-Douglas type production function to represent a production
process within agriculture is primarily one of mathematical convenience. A Cobb-Douglas
type cost function may also be appropriate so long as certain assumptions with regard to the
parameters are met.

Indirect cost functions should be homogeneous of degree one in all factor prices. A
doubling of all factor prices should exactly double cost. Only relative prices enter the factor
allocation. Since, from Shephard's lemma the factor demand function for each input is the first
derivative of the indirect cost function, then the factor demand equation for each input should
be homogeneous of degree zero in all factor prices. The symmetry condition follows from
Young's theorem, and implies that the elasticity of demand for the ith input with respect to the
jth input price should equal the elasticity of demand for the jth input with respect to the ith
input price.

Indirect profit functions conforming to a Cobb-Douglas type might also be assumed. An
example is

(24.54) II* = G,s,%v,%v,%

Indirect profit functions should be homogeneous of degree one in all prices, and therefore, a
doubling of all prices will double profit. The corresponding product supply and factor demand
equations based on Hotelling's lemma will be homogeneous of degree zero in all prices.
Restrictions regarding the indirect profit, cost, factor demand and product supply functions
can be readily incorporated within the estimation procedures found in many regression
packages.

24.7 Alternative Elasticity of Substitution Measures

Any elasticity might be written as the derivative of one natural log with respect to
another. For example, the elasticity of demand for good g can be written as

(24.55) E, = dIng,/dInp
where
g, = the quantity of the good demanded

p = the price of the good
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This is true, because if

(24.56) z = Ing,

then

(24.57) dz/dqg, = 1/q,
and

(24.58) dz = dg,/q,

Similarly, if

(24.59) r=Inp

(24.60) dr/dp = 1/p

and

(24.61) dr = dp/p

Hence

(24.62) E, = dq,/dp(p/q,) = dlng,/dInp.

Asindicated in Chapter 12, The elasticity of substitution is a pure number that indicates
the extent to which one input substitutes for another and hence indicates the shape of an
isoquant according to the "usual" definition (Henderson and Quandt). The elasticity of
substitution can be represented by the ratio of two percentages. Suppose that there are two
inputs, X, and X,. The elasticity of substitution between X, and X, is usually defined as

(24.63) 0 = % change in (X,/X;)/% change in MRSxx,.

Many approximately equivalent expressions for the elasticity of substitution between two
input pairs exist. For example, it is possible to calculate a point or an arc elasticity of
substitution. The expression

(24.64) 0, = [8(X,/X,)/(Xy/%,)//[O(MRSxx/MRSxx,)]

could be thought of as an arc elasticity of substitution in that it represents the proportionate
percentage change in the input ratio (X,/X,) relative to the percentage change in the Marginal
Rate of Substitution as one moves downward and to the right along an isoquant from point
P, to point P, (Figure 24.2). As one moves along an isoquant from point P, to point P,, two
things happen. First, the ratio of the inputs (X,/X,) changes. Second, the slope of the isoquant
as measured by MRSxx, at point P, is different from that at point P,. The ratio of these two
changes in percentage terms is the arc elasticity of substitution.

A point elasticity of substitution can be defined by the formula

(24.65) 0 = [d(X,/%, )/ (Xo/%,)]/[AMRSxx/MRSx]
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Figure 24.2 A Graphical Representation of the Elasticity of Substitution

or with the equivalent definition (Henderson and Quandt, p. 62)
(24.66) 0 = [d(Xo/X)/(Xo/X)V/[A(F /E)/(F, /)]

where f, and f, are the marginal products of X, and X,, respectively. Now define the input ratio
(Xy/X,) as X. Then the elasticity of substitution O is given as

(24.67) 0 = [dx/X]/[dMRSxx/MRSxx]
= dinx/dInM Rlex2

The elasticity of substitution is a very important parameter of a production process
involving a pair of inputs. As indicated in Chapter 12, it provides an important indication of
the shape of an isoquant. By this definition, isoquants forming right angles (the classic
example is tractors and tractor drivers) have zero elasticities of substitution, while diagonal
isoquants have an elasticity of substitution approaching infinity. Of course, if there is truly
no change in the marginal rate of substitution between points P, and P,, then the percentage
change in the marginal rate of substitution is zero, and the elasticity of substitution is
undefined.

The inverse factor price ratio (v,/v,) measures the marginal rate of substitution of x, for
X, (dX,/dx,) at the point of least cost combination in competitive equilibrium. Therefore, if
competitive equilibriumis assumed, the elasticity of substitution in the two factor case at the
point of least cost combination on the isoquant may be rewritten as
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(24.68) [A(X/X)/A(V, /(L) (VL) (Xo/%)]

or as
din(x,/x,)/dIn(v,/v,)

Equation (24.68) is the definition attributed to Hicks (See also Varian, pp. 44-45). Notice,
however, that v,/v, is equal to the MRSxx, only in competitive equilibrium.

A large elasticity of substitution indicates that the entrepreneur (such as a farmer) has
a high degree of flexibility in dealing with input price variation. If there existed a large
elasticity of substitution between a pair of factors, the farmer would quickly adjust the input
mix in response to changing relative prices. However, if the elasticity of substitution were
small, the input mix would be hardly altered even in the face of large relative shifts in prices.
The extent to which a farmer adjusts the input mix to changing relative prices thus indicates
the magnitude of the elasticity of substitution between input pairs.

In the two factor case, the elasticity of substitution will lie between zero and plus infinity.
However, if there are more than two inputs, some input pairs may be complements with each
other, thus leading to a potential negative elasticity of substitution for some ofthe input pairs.
The definition of an elasticity of substitution in an n factor case is further complicated because
a series of specific assumptions must be made with regard to the prices and input levels for
those factors of production not directly involved in the elasticity of substitution calculation,
and the elasticity of substitution between inputs i and j will vary depending on these
assumptions.

The definition of the elasticity of substitution attributed to Hicks can be generalized to
the n factor case such that

(24.69) 0; = [dIn(x/x)V/[(dIn(v,/v,)]

Equation (24.68) is sometimes referred to as the two-input, two-price or TTES,
elasticity of substitution, or the "usual" definition of the elasticity of substitution in the n
factor case (Fuss, McFadden and Mundlak, p. 241, Ball and Chambers). However, when n
is greater than two, specific assumptions for the calculation need to be made with regard to
prices and quantities of inputs other than i and j.

Moreover, a number of alternative definitions for the elasticity of substitution are
possible. The one-input, one-price elasticity of substitution (OOES) is proportional to the
cross price input demand elasticity evaluated at constant output

(24.70) ¢; = B(dinx;)/(dInv))

The two input one price form (TOES) involves two input quantities but only one input
price

(24.71) w;; = (dInx; - dlnx,)/(dlnv,)
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Furthermore, each definition can be evaluated based on constant output, cost, or
marginal cost (Fuss, McFadden, and Mundlak, p. 241). Each of these alternative definitions
can be evaluated assuming the prices on the remaining inputs other than i and j are held
constant. The quantities of inputs other than i and j can also be held constant or allowed to
vary as V; and V; vary which generates short and long run elasticity of substitution measures.

Allen (1938) uses the Hicks definition of the elasticity of substitution (p. 341), but Allen
also develops an alternative measure of his own, which is linked to the own and cross price
constant output factor demand elasticity (See also Hicks and Allen). This definition of the
elasticity of substitution attributable to Allen (pg. 504) is

(24.72) o, = SE;.

where
S; = the share of total cost attributable to the jth input, or v,x,/C*

E;; = (dInx,)/(dInv;) evaluated at constant output. (This is in reality the cross
price factor demand elasticity.)

This elasticity of substitution has been dubbed the Allen Elasticity of Substitution (or
AES), and is of the OOES form, since only one price (i) and one input (j) are involved (Ball
and Chambers). Notice, also, that an Allen own price elasticity of substitution can be defined
as

(24.73) 0% =SE;

where
S; = V;x;/C* the cost share represented by the jth input

E;; = (dlnx;)/dInv;

The AES concept forms the basis for still other elasticity of substitution concepts. For
example, the Morishima elasticity of substitution (Koizumi) is an example of a TOES
elasticity of substitution and is defined in terms of the AES as

(24.74) o;=S(0% - a%)

=E; - E

i g

This elasticity is the difference between the cross and own price elasticity of factor demand
evaluated at constant output. This elasticity of substitution is TOES since

(24.75) E; - E; = (dlnx; - dinx;)/(dlnv,)

Notice that the Morishima elasticity of substitution is not symmetric, that is

and therefore 0%; # oV}
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The Shadow Elasticity of Substitution (McFadden, 1963) is an example ofa TTES, and
is therefore closer to the original Hicks definition than is the Morishima or Allen definitions.
The Shadow Elasticity of Substitution allows all inputs not involved in the calculation to vary,
and thus can be thought of as a long run elasticity of substitution. The shadow elasticity can
be expressed in terms of the Allen measure as
Thus, if the AES and input cost share data are available, the Shadow Elasticity of Substitution
can be readily calculated.

24.8 Elasticities of Substitution
and the Cobb-Douglas Specification

Specific production functions used by researchers in empirical analysis frequently
embody assumptions that come along with the functional form. Fuss, McFadden and
Mundlak refer to these assumptions as maintained hypotheses. These maintained hypotheses
frequently are not explicitly recognized by the researcher, but do impose constraints on the
possible outcomes that can be generated by the analysis.

An excellent example of a maintained hypothesis is the assumption with regard to the
Hicksian elasticity of substitution that exists between input pairs when a Cobb- Douglas (CD)
type functional form is chosen to represent the production process. Consider, for example a
CD type specification with no imposition of a particular sum on [3, + [3,.

(24.78) y = Ax,PixP:
The marginal rate of substitution of X, for X, is given by
(24.79) MRSy, = (B1/B)(%./X,)
= |\/|Rlex2 = BX
B =B/B, and x =x,/x,
Henderson and Quandt (Chapter 3) provide a somewhat messy proof that the TTES

elasticity of substitution for any functional form of the CD type is 1 as a maintained
hypothesis. As was indicated in Chapter 12, equations (20.15) - (20.20), simple proof is

where

(24.80) MRSxx, = Px

(24.81) INMRSxx, = Inx + Inf3
(24.82) Inx = InMRSx, - Inf3
(24.83) 0 = dinx/dInMRSxx, = 1

Equation (24.83) holds even if the production function is not linearly homogeneous, and the
partial production elasticities sum to a number other than 1. Moreover, it can be easily shown
that the relationship holds for any factor pair if the function contains more than two inputs.
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A maintained hypothesis that the elasticity of substitution between labor and capital is
1 may be tolerable in a 1928 study dealing with a production process representing the output
ofasociety and utilizing capital and labor as inputs. As will be empirically shown, it is clearly
intolerable in a study conducted in the 1980s dealing with the substitutability between energy
and machinery within U.S. agriculture.

Subsequent to the Hicks and Allen publications, the maintained hypothesis regarding the
elasticity of substitution between labor and capital became an issue of some discussion.

Economists have devoted considerable effort aimed at remaking the original Cobb - Douglas
article.

24.9 The CES, or Constant Elasticity of Substitution Specification

The CES or Constant Elasticity of Substitution production function (Arrow et al.) was
an effort to remake the original CD article without the maintained hypothesis regarding the
elasticity of substitution. A specification for the CES function (without linear homogeneity
imposed ) is

(24.84) y=A[Bx, P+ Px, PP

Suppose that the marginal rate of substitution from some unknown production function is
given by

(24.85) MRSxx, = Px'*?
where

[3 = a constant

X = X/,
Taking logs
(24.86) InMRSxx, = Inf3 + (1+p)Inx
(24.87) Inx = [1/(1+p)]InMRSx, — [1/(1+p)]Inf
(24.88) dinx/dInMRSxx, = 1/(1+p) = ©

The elasticity of substitution is given by the power to which the input ratio is raised. In
general, for any production function where the marginal rate of substitution is given by

(24.89) MRS = Bx®
where
(24.90) X = X,/X,

The elasticity of substitution (Hicks) is given by 1/0. It is easily shown that the MRS for the
CES is of this form
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(24.91) fr=—1/pAPBX, P+ B, " " (—pPx, P
(24.92) f,=—1/pABX, P+ B, """ (-pBx, *")
(24.93) dx,/dx, = (Bx, P (B, )

= (By/nBr)xy/x,)"**

= Bx(1+P)

Henderson and Quandt (Chapter 3) prove that the Cobb-Douglas production function is
a special case of the CES when p = 0. This proof requires L'Hopital's Rule. However, it is
easily seen here that when p assumes a value of 0, 1+p = 1 and the MRSxx, = X, the exact
same form as occurs under the Cobb-Douglas type production function. Debertin, Pagoulatos
and Bradford (1977b, pp. 10-11), Chapter 12 provides a detailed discussion of the
relationship of the value of p and the shape of the isoquants.

The CES production function was an appropriate improvement if the interest centered
on the elasticity of substitution within a production process that used only two inputs, such
as capital and labor. However, if the function were extended to the n input case, there
remained but one parameter P and, as a result a maintained hypothesis was that the same
elasticity of substitution applied to every input pair (see Revankar and Sato for extensions).
Agricultural economists are usually interested in disaggregating input categories into more
than two inputs. Thus the CES never was extensively used in agricultural economics
research. A more flexible functional form was clearly needed for agricultural economics
research.

24.10 The Transcendental Production Function and Sigma

Halter, Carter and Hocking (1957) proposed a transcendental production function to
depict the three stage production process as represented by the neoclassical theory familiar to
any undergraduate agricultural economics student. The transcendental production function is
actually a variable elasticity of substitution production function. With proper assumptions
with respect to the parameters, the isoquant map for the transcendental production function,
and the variant proposed by Debertin, Pagoulatos, and Bradford (1977a, 1977b, p. 8),
generate isoquants consisting of concentric rings. This map is quite unlike anything possible
with the CES or Cobb-Douglas specifications, which produce isoquants that are everywhere
downward sloping.

As was indicated in Chapter 11, the HCH transcendental is
(24.94) y = xlalxzuzeylxlwzxz
The Allen elasticity of substitution for the HCH transcendental is

(24.95) 0 = [(0t Y X0 Y X) V(0 (0 +Y 2X0) + (0) (0 Y 1%, )]
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Morishima and Shadow elasticities can be calculated from the Allen measure. This function
is readily estimable with data from agricultural production processes (Halter and Bradford).
The discussion in Chapter 11 links parameter values to the shape of the function.

Despite some recognition of the HCH functional form in the general economics literature
(e.g. Fuss, McFadden and Mundlak, pg. 242), the HCH function is not widely used by
economists. Its strength, that it can depict the neoclassical three stage production function, is
also its weakness. The fact that, at least for certain parameter values, the function is not
monotonically increasing means that the inverse or dual cost curve associated with it is a
correspondence, not a function. As aresult, parameters of the production process represented
by the transcendental cannot be readily derived from the corresponding cost data.
Contemporary production theory involves choosing a functional form to represent the
production process that is monotonically increasing, and can be readily inverted, such that
parameters can be derived from either the cost or the physical input data.

Many agricultural economists continue to emphasize the three stages of the neoclassical
production process in undergraduate classes, and continue to be fascinated with stage three,
where output declines as incremental units of the variable input are added. In order to take
advantage of the duality theorems, contemporary theorists have all but abandoned stage three
and therefore the usual assumption made by contemporary theorists is free disposal.

Assuming positive factor prices, no economic conditions could cause the firm to apply
units of a variable input beyond the point where output is maximum. Beattie and Taylor (p.
91) indicate negative factor prices could exist, for example, if a farmer were paid to remove
a waste product which could be used as a fertilizer. They further contend that a farmer could
operate in stage three if a factor price were negative. However, if the factor price were
negative, under no circumstances would it be more profitable for the farmer to apply
additional units to the crop beyond the point of output maximium, than to dump the waste
product consistent with the free disposal assumption.

If fertilizer were free, the farmer would be better off to dump units than to apply it to a
crop, if in so doing, yields would be reduced. Again, the free disposal assumption is critical.
Contemporary production functions typically increase but at a decreasing rate throughout their
range for each variable input. The Cobb-Douglas production might be thought of in this
regard as contemporary, rather than neoclassical, but this is also true for the CES and
Translog specifications developed much later. The duality concepts are closely linked to the
maintained hypothesis of free disposal, and the marginal products that are correspondingly
everywhere positive throughout the range of the function.

24.11 Linear in the Parameters Functional Forms
and the Translog Production Function

Diewert introduced the concept of linear in the parameters functional forms. While
Diewert recognized that advances in computing technology made it possible to estimate
functional forms that were non linear in the parameters, little if any new information would
be gained about the production process by the use of more complex and computationally
burdensome functional forms.

In addition, Diewert recognized the close linkages that exist between various functional
forms. One way of looking at various functional forms is in terms of Taylor's series
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expansions. For example, the Cobb-Douglas type production function could be written as a
first order Taylor's series expansion of Iny in Inx;

(24.96) Iny = a, + XfInx,

The CES is a first order Taylor's series expansion of y* in X,” (Fuss, McFadden and Mundlak,
p. 237). Similarly, the CES could be written in a multiple input setting as

(24.97) y° =a, + 2Px°

The Translog production function was introduced in 1971 by Christensen, Jorgenson
and Lau, and was the logical choice given the difficulties posed by other functional forms. The
translog production function is simply a second order Taylor's series expansion of Iny in Inx;,
whereas the Cobb-Douglas is a first order expansion. The production function as a Taylor's
Series expansion can be written as

(24.98) Iny = a, + XfInx; + LB Inx; Inx;

The function had a number of other virtues, in addition to its close linkage to the
Cobb-Douglas. It is linear in the parameters, which makes parameter estimation simple. It is
normally monotonically increasing with respect to the use of each input under the usual
parameter assumptions. However, results depend upon the units in which the X; are measured.
If 0<x<1, In X; <0, and under certain positive parameter combinations, the function may not
be increasing with respect to the ith input. That the function does not depict the neoclassical
three stage production process is viewed as a virtue, not a vice, for fundamental concepts of
duality are applicable.

Moreover, there is no maintained hypothesis about the elasticity of substitution between
input pairs, and the various elasticity of substitution measures can be derived either directly
from the production function, or as is now common, from a dual cost function of the translog
form. Thus, it is the production function of choice for agricultural economists who seek to
estimate elasticities of substitution between input pairs with little information about the
production process other than cost data available to them. If there are both fixed and variable
inputs, the translog production function is given as

(24.99) y = ZBInx, + ZXP,InxInx; +X LB, InxInz,° + P, Inz,°

where the 2,° represent fixed inputs. The [3;, represent the assumed interaction between levels
of fixed and variable input use and the assumed constant level of fixed inputs. The term
2 BInz,° is a constant intercept term that performs arole similar to A in a Cobb-Douglas type
specification.

Alternately, one might instead rely on duality, and begin with a dual cost function of the
translog form. The translog cost function expresses cost as a function of all input prices and
the quantity of output that is produced. For a given level of output y*, the corresponding point
on the cost function is assumed to be the minimum cost of producing y* arising from the
expansion path conditions.

The least-cost translog cost function is



388 Agricultural Production Economics

(24.100) InC* = 0, + X6, Inv; + ZX0; Inv, Inv,
+ 0, Iny + X220, Inv, Inz,° + 26,, Iny Inz,°

+2X0, InzP Inz,° + 26, Inz,° + X6, Iny Inv,
where

(v,,...,V,) = the vector of input prices
(zy,...,2,) = the vector representing levels of the fixed inputs
y = output
0 = the parameter vector to be estimated
Equation (24.100) is normally estimated from cost share equations which are derived as
follows.

The elasticity of total cost with respect to a change in the ith input price is given by

(24.101) dInC*/0lny, = dC*/dv, v/C* = €,
Hence
(24.102) £ =0,+ZXZ0,nv,+ X6, Inz,° + 0, Iny.

It was not until the translog production and cost functions were introduced in the early
1970s that the importance of Shephard's Lemma for empirical work became apparent.
Recognize that &, can be written as
(24.103) 9C*/0v, v/C*.

But, since Shephard's lemma states that

(24.104) 9C*/dv, = x.*
Then
(24.105) E = x*v/C*

Notice also, that x;*v, = the total expenditures on input X; according to the expansion path
conditions. Thus, the expression X;*v,/C* =& = S, where S, is the cost share associated with
the ith input. The series of cost share equations thus becomes
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(24.106) S;= 0,+20, v+ X0, Inz, + 0,,Iny

1

S = 6.1 + 20, .lnvj + E.eiz Inz, + Oyihlny

S,= 0,+20, Inv,+ 20, Inz, + O,,Iny
The cost-share equations are empirically estimated, and include price and output variables
and levels of fixed inputs that would normally be readily available from farm records or even
census data. If data on the level of fixed inputs are not available, their combined impact is
estimated as part of the intercept term.

24.12 Restrictions and Other Estimation Problems

Economic theory imposes a number of restrictions on the estimation process. First, Total
Cost=2XS,. Thus, given total cost and any n-1 cost shares, the remaining cost share is known
with certainty. Therefore, one equation is redundant, and mechanically, the choice of the
equation to be omitted is arbitrary, but the empirical results may not be invariant with respect
to the choice of the omitted equation unless an iterative estimation procedure is used (cf.
Humphrey and Wolkowitz; Moroney and Toevs; and Berndt and Wood).

As indicated earlier, any total cost function should be homogeneous of degree 1 in input
prices. This restriction can be imposed by restricting %60, =1 and %6, = 0. Since Young's
theorem states that the order of the differentiation makes no difference and the ﬁij are in
reality partial derivatives, a symmetry restriction must also be imposed such that Oij = ﬁji for
all i and j inputs. Finally, the cost share for the ith input is not unrelated to the cost share for
the jth input, and a Seemingly Unrelated Regressions approach is the usual choice for
estimation of the cost share equations.

24.13 Elasticities of Substitution for U.S. Agriculture

From the parameter estimates of the cost share equations, the corresponding Allen
Elasticities of Substitution between input pairs and the related measures can be derived.
Brown and Christensen derive the constant output partial static equilibrium cross price
elasticity of factor demand as
(24.107) E; = S,0%,

= Olnx/Olnv; = (0 + S;S,)/S;
where
0% = (Gij +S5)/(SS)

is the Allen Elasticity of Substitution.
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The AES estimate is readily derived from the parameter estimates of the cost share
equation. The usual approach is to insert the mean of the cost shares for each input category
in the data for the sample period in order to obtain the Allen estimates. Once the Allen
estimates are obtained, the corresponding Morishima and Shadow Elasticities of Substitution
can then be obtained from equations (24.73)and (24.76). Again, the mean of the factor shares
for the sample data is introduced into the formulas along with the estimated Allen measure.
The Shadow Elasticity of Substitution estimate obtained from this model, that is perhaps the
closest to the Hicks' definition, is not quite the long run measure envisioned by McFadden.
Inputs in the x vector other than i and j are treated as variable in the shadow measure.
However, inputs in the z vector are treated as fixed. The true long run measure suggested by
McFadden could be obtained if all input categories were treated as part of the x vector.

24.14 An Empirical Illustration

The empirical illustration of the application of theory presented in this publication is
from Aoun, who was concerned with the potential changes in elasticities of substitutions
between agricultural inputs over time, particularly energy and farm machinery. Fuss,
McFadden, and Mundlak refer to technological change which impacts the partial elasticities
of substitution between input pairs as substitution augmenting technological change.

Substitution augmenting technological change that increases the elasticity of substitution
between input pairs is desirable in that the producer is given additional flexibility in dealing
with changes in the relative prices of the inputs that might occur due to shocks within the
factor markets. For example, suppose that the elasticity of substitution between capital and
labor within an economy were near zero. The firm would be faced with a situation in which
capital and labor would be used in nearly fixed proportions to each other irrespective of
relative price levels. Moreover, the firm owner would have little flexibility for dealing with
short run variability in input prices over time.

Estimates of elasticities of substitution among input pairs must necessarily rely on data
series for a number of years. If there exist shifts in elasticities of substitution over time due
to technological change, then the data series for a long period of time can not be relied upon
to measure these shifts. If the data series are too short, degrees of freedom problems,

multicollinearity between input vectors and instability of regression coefficients upon which
the elasticity estimates are derived become issues.

24.15 Theoretical Derivation
Aoun used a translog cost function specified as
(24.108)  InC* = o, + ot Iny +Z,x; Inv; + ¥4 B, (Iny)* + ¥4 2,256, Inv;Inv
+ Zyylnylnv; + G + 2 G’ + Pyt Iny + Ziptiny,

where
C* = minimum total cost

Lj=nLmf e
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y = output
n = land
| = labor

m = machinery

f = fertilizer

e = energy

t = annual time trend variable

V;, V; = input prices on n, I, m, f, and e.
The translog cost function is assumed to be continuous, monotonically increasing, concave
and homogeneous of degree one with respect to factor prices. Following the analysis by Brown

and Christensen, an assumption is made that the translog cost function represents a constant
returns to scale technology. This implies the following restrictions

(24.109) o, =1
(24.110 Zy,=0fori=1,5
(24.111 B, =0
(24.112) ¢y, =0

Partially differentiating (24.108) with respect to the ith input price, assuming that restrictions
(24.109)-(24.112) hold

(24.113) AInC*/dlnv, = o, + X B Inv; + v, Iny + Pt
i=1,..,5
Invoking Shephard's lemma
(24.114) dInC*/Olnv; = AC*/0v; v,/C* =(xv,)/C* = S
where
S, = the cost share for the ith inputi=1, 5

and
S=a,+X% Bij Iny; + 7y Iny + Pt

i=1,..,5

The restrictions imposed on the estimation were
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(24.115) Yo, =1

(24.116) ZB;=2p;=ZZB;=0

(24.117) Zy,=0

(24.118) ZP;=0

(24.119) B, = 9InC*/(Alnv;Inv;) = B, = AInC*/(Olnv;Inv,)

The Allen measure is derived from the parameter estimates of the cost share equation.
The approach used in Aoun is to insert the mean of the cost shares for each input category in
the data for the sample period into (24.107) in order to obtain the the Allen estimates. Once
the Allen estimates are obtained, the corresponding Morishima and Shadow Elasticities of
Substitution can then be obtained. Again, the mean of the factor shares for the sample data
is introduced into the formulas along with the estimated Allen measure.

24.16 Empirical Results

Estimates of FElasticities of Substitution for the Allen, Morishima, and Shadow
(McFadden) measures were obtained for U.S. agriculture for the three distinct decades
1950-59, 1969-69 and 1970-79, and for the entire period comprising 31 years from 1950 to
1980 (Aoun). Restricted Three Stage Least Squares was the method of estimation. The
standard U.S.D.A price indexes for the various input categories was used, except for land,
where the index was constructed. A detailed discussion of the sources of data and
computational procedures can be found in Aoun. Allen Elasticities are reported for the three
distinct decades (Table 24.1) and the Morishima and Shadow elasticities are reported for the
period 1970-79 (Tables 24.2 and 24.3). Estimates of the Shadow elasticity of substitution for
most input pairs differed significantly from 1, suggesting that the appropriate production
function to represent U.S. agriculture is not Cobb-Douglas.

Moreover, the Allen elasticities varied rather substantially from one decade to the next.
Of particular interest were the estimates of the elasticities of substitution between machinery
(including tractors) And energy for the three distinct decades. The Allen estimates went from
-13.240 for 1950-59, to -0.118 for 1960-69 to +13.583 for 1970-79. The remarkable
conclusion is that energy and machinery were complements in the 1950s but substitutes during
the 1970s according to the Allen measure. The substitution between energy and machinery for
the 1970-79 decade was further confirmed by the estimated value of 2.808 for the shadow
measure (Table 2), and 1.052 or 5.613 for the nonsymmetric Morishima measure (Table 3).
There has been a clear increase in the substitutability between energy and machinery over the
three periods for which the estimates are based.

Other changes over the three decades, although perhaps not quite as profound, are also
of interest. For example, the elasticity of substitution between labor and energy is clearly
trending downward according to the Allen measure, from + 5.120 (substitute) for 1950-59 to
-10.313 for 1970-79 (complement). Labor and fertilizer, a complement in 1950-59 (- 7.950)
is clearly a substitute for 1970-79 (+2.125) according to the Allen measure. The signs are in
agreement with those for the Morishima and Shadow measures.
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Table 24.1. Estimates of the Allen Cross Ellasticities of Substitution
for the Three Distinct Decades, 1950-59, 1960-69 and 1970-79°

393

onl onm onf one olm
1950-59 - 1.737*%*% +3.789* +8.552*%*-2.000 - 0.327
(0.687) (1.852) (1.745) (1.457)  (0.910)
1960-69 - 1.440 +8327 +2565 -0366 +3.865
(2.073) (5.558) (2.308) (2.209) (4.510)
1970-79 -0.071 +1.484 - 1.083* - 350 +10.962%*
(1.268) (1.833) (0.686)  (0.999)  (2.146)
olf ole omf ome ofe
1950-59 - 7.950*%*% +5.120%* — 5.950%% 13.240** +2.158

0.919)  (0.565) (2.823) (1.705)  (1.762)

1960-69 - 1333 +4.586% +1316 -0.118 - 0.867
(1.780)  (1.740)  (4.207) (3.669)  (1.700)

1970-79 +2.125%* — 10.313%* — .278* + 13.583** +0.455
(0.745)  (1.210)  (0.811) (1.665)  (0.350)

*Standard errors in parentheses

n =land 0;>0 = > factor i and factor j are substitutes

| = labor 0;;<0 => factor i and factor j are complements
m = machinery *(0.10 significance level by a one-tailed t-test
f = fertilizer **(.05 significance level by a one-tailed t-test

e = energy
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Table 24.2 Morishima Elasticities of Substitution for the 1970-79 Decade®

Input Land Labor Machinery Fertilizer Energy
Land 0.0 1.315 3.949 - 0.356 - 0.152
(0.608) (0.840) (0.211) (0.201)
Labor - 0.007 0.0 5.285 0.063 - 1.018
(1.009) (0.684) (0.076) (0.120)
Machinery 0.706 2.945 0.0 - 0.378 1.052
(1.241) (0.335) (0.199) (0.168)
Fertilizer - 0.464 1.286 3.567 0.0 - 0.080
(.672) (0.402) (0.652) (0.107)
Energy - 0.138 - 0.999 5.613 - 0.152 0.0
(.902) (0.385) (0.513) (0.045)

*Standard errors in parentheses

Table 24.3 Shadow Elasticities of Substitution for the 1970-79 Decade®

Input Land Labor Machinery Fertilizer =~ Energy

Land 0.0 0.629 3.191 - 0.380 - 0.150
(0.654) (0.819) (0.280) (0.286)
Labor 0.0 4.278 0.574 - 1.012
(0.447) (0.163) (0.132)
Machinery 0.0 1.540 2.808
(0.355) (0.199)
Fertilizer 0.0 - 0.109
(.030)

Energy
0.0

*Standard errors in parentheses
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24.17 Concluding Comments

Contemporary production theory focuses on the duality that exists between the production
function and the cost function along the expansion path. Although not developed for that
purpose, the Cobb-Douglas production function can be thought of as one of the first forms
consistent with the required assumptions for the development of the dual cost function. But
it had important disadvantages with respect to the maintained hypotheses with respect to the
substitutability of inputs. The CES and Translog specifications represented relaxations of
these maintained hypotheses.

The concept of an elasticity of substitution is highly complex. From the basic and familiar
two input definition, a number of alternative concepts have been presented. At the same time,
this concept is perhaps the most important in all of production economics, and is particularly
useful in an agricultural setting. For example, technological change which increases the
elasticity of substitution between input pairs would give farmers additional flexibility in
dealing with input price variation.

Following the general theoretical approach outlined in this paper, the Aoun study provided
some intriguing results with respect to elasticities of substitution between input pairs for U.S.
agriculture. The elasticity of substitution between energy and machinery within U.S.
agriculture has changed markedly over the three decades from the 1950s to the 1970s. Energy
which was a complement for machinery in the 1950s was a substitute by the 1970s. The
results provide empirical evidence that the form of technological change within agriculture
which increases the elasticity of substitution over time, as suggested by McFadden, has
indeed taken place within U.S. agriculture.

This chapter has attempted to show that the premises of contemporary production theory
are important to and do have application to problems in agricultural production. What is
required is a somewhat different approach than has traditionally been used used in research
in agricultural production. Instead of the estimation of a Cobb-Douglas type specification on
physical input data, a contemporary approach frequently involves the estimation of the factor
share equations from the cost data. But this is an advantage for much agricultural economics
research in that the cost data is usually more readily available than the physical input data,
and is perhaps more reliable as well. The approach should be applicable to studies conducted
using data from individual farm records, census data representing small groups of farmers,
as well as aggregated studies conducted at a regional or national level.
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25

Contemporary Production
Theory: The Product Side

Much of the theory of the firm in product space is not nearly as well developed as the theory
of the firm in factor space. For example, both general and agricultural economists have
devoted considerable effort to developing functional forms representing production processes
in factor space, but the companion effort in product space has been very limited. This chapter
discusses some problems in the modification for use in product space of functional forms
commonly used in factor space. Extensions to the theory of the firm in product space are
developed by using factor space and duality theory as the basis.

Key terms and definitions

Contemporary Production Theory
Duality

Product Space

Translog Function

Product Space Elasticity
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25.1 Introduction

Much of the theory of the firm in product space is not nearly as well developed as the
theory of the firm in factor space. For example, both general and agricultural economists have
devoted considerable effort to developing functional forms representing production processes
in factor space, but the companion effort in product space has been very limited. This chapter
discusses some problems in the modification for use in product space of functional forms
commonly used in factor space. Extensions to the theory of the firm in product space are
developed by using factor space and duality theory as the basis.

An equation for a production process involving h inputs and a single output is:
(25.1) y = (XX,

with an isoquant representing a fixed constant output arising from possible combinations of
the X;:

(25.2) Yo =f(X,,...X,)

In product space, the analogous equation linking the production of m outputs to the use
of a single input (or bundle of inputs, is

(25.3) X =h(Yyse Vi)

The production possibilities function representing possible combinations of the y; that can be
produced from a fixed quantity of a single input (or input bundle, with the quantities of each
input being held in fixed proportion to each other) is:'

(25.4) X =h(Ysees Vi)

Considerable effort has been devoted to the development of explict specifications for equation
(25.1) (Fuss and McFadden, Diewert, 1971). Most attempts at developing explicit forms of
(25.3) have consisted of simple modifications of explicit forms of (25.1), by replacing the X;
with y; and y,, and substituting the quantity of X in the product space model, a single input (or
input vector x = {x,°,...,X,°) for y° in the factor space model. The standard presentation of
the neoclassical theory of the firm usually specifies isoquants in factor space with a
diminishing (or possibly constant) marginal rates of substitution. The standard presentation
in product space specifies product transformation functions with an increasing (or possibly
constant) rate of product transformation. This suggests that the parameters of and even the
explicit form of h (equation (25.3)) needed to generate product transformation functions
consistent with neoclassical theory might be quite different from the parameters and form of
f (equation (25.1)).

25.2 Duality in Product Space

In product space, the total revenue function is analogous to the cost function in factor
space. Suppose that products (a) are either supplemental or competitive but not
complementary with each other for the available resource bundle x°, and (b) rates of product
transformation between output pairs are non-decreasing. These assumptions are analogous
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in product space to the free disposal and non increasing marginal rate of substitution
assumptions (McFadden, pp. 8-9) in factor space.

In factor space, if there is free disposal of inputs, and non increasing marginal rates of
substitution, then the cost function that is dual to the underlying production function c(y;v)
= min[v'x:f(x)>y]

(1) exists. This is true because any continuous function defined on a closed and
bounded set achieves its minimum within the set.

(i1) is continuous.
(iii) IS non-decreasing for each price in the input price vector v.
(iv) is homogeneous of degree one in all variable input prices. This implies that

if all input prices double, so also will total variable cost, and

(v) IS concave in each input price for a given level of output (y*).

Detailed proofs of (i)-(v) can be found in McFadden, 1978, pp. 10-13. The isoquant
maps needed for the existence of a corresponding dual cost function are not necessarily more
plausible in an applied setting than other isoquant maps, but rather are a matter of
mathematical convenience. For example, the Cobb-Douglas, CES and Translog production
functions all are capable of generating isoquant maps consistent with these assumptions, under
the usual parameter restrictions.

Given the product space function

(25.27) X =0(Y1,YassYim)s

the corresponding total revenue function that maximizes total revenue for a given input bundle
X° is:

(25.28) r = max[p'y;g(y)<x°].

If conditions (a) and (b) are met, then equation (25.28)

(vi) exists

(vii) IS continuous

(viii) IS non-decreasing in each price in the product price vector p

(ix) is linearly homogeneous in all product prices {p,...,p,,; (and in all outputs

{Y1,--s¥m})- A doubling of all product prices or a doubling of all outputs will
double revenue.
and

(x) is convex in each output price for a given level of input X° (Hanoch, p. 292).

The product transformation functions needed for the existence of a corresponding dual
revenue function are not necessarily more plausible in an economic setting than other product
transformation functions, but are rather a mathematical convenience. A Cobb-Douglas like
funtion in product space will not generate product transfomation functions consistent with (a)
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and (b), while under certain parameter assumptions, a CES-like or translog like function in
product space will generate product transformation functions consistent with these
assumptions.

25.3 Cobb-Douglas-Like Product Space

Consider first a Cobb-Douglas like analogy in product space. A Cobb-Douglas like two
product one input model suggested by Just, Zilberman and Hochman (p. 771) from Klein is:

(25.5) V1Y, = AX, %X, %X
Now suppose there is but one input to the production process. That is
(25.6) Ax® =yy,0
Solving for input X
(25.7) X = (1/A)"ey, Voy B/e:
The parameters ¢, and & would normally be non-negative, since additional units of y, ory,
can only be produced with additional units of the input bundle, and additional units on the
input bundle produce additional units of outputs Yy, and y,.
Rewriting (25.7) in a slightly more general form:
(25.8) x = By, by, ®:
However, with positive parameters, in no case will equations (25.7) and (25.8) generate
product transformation curves concave to the origin, for the Cobb-Douglas like function is
quasi-concave for any set of positive parameter values.
Given the general single-input, two-output product transformation function:
(25.9) x = h(y,.y,)
For an increasing rate of product transformation:
(25.10) h,h,2 + hy,h,2 = 2h,hh, >0

For a Cobb-Douglas like function in product space equation (25.10) with a positive ¢, and
¢, is equal to:

(25.11) (.2 — b 2y, 22y, 302 <

A Cobb-Douglas-like function in product space cannot generate product trans-formation
functions consistent with neoclassical theory and the usual constrained optimization revenue
maximization conditions.



402 Agricultural Production Economics

25.4 CES-Like Functions in Product Space
The CES production function in two input factor space is:
(25.12) y=C[A X, P+ Ax, PP

Just, Zilberman and Hochman also suggest a possible CES-like function in product space. A
version of this function with one input and two outputs is:

(25.13) x=C[Ay, ®+ Ay, 1"

The five familiar cases (Chapter 12 and in Henderson and Quandt; and Debertin, Pagoulatos
and Bradford) with respect to the CES production function assume that the parameter p lies
between —1 and + . Isoquants are strictly convex when p > —1. When p = -1, isoquants
are diagonal lines. When p =+ o, isoquants are right angles convex to the origin.

For a CES-like function in product space, the rate of product transformation (RPT) is
defined as:

(25.14) RPT = —dy,/dy,
(25.15) dy,/dy, = —(A/A)(Y,/y,)

The product transformation functions generated from the CES-like function in product space
are downsloping so long as A, and A, are positive, irrespective of the value of the parameter

Q.
Differentiating (25.15):
(25.16) dyy/dy,* = - (1+@)(= A /Ay, ¢y, @

Since Yy, Yo, A1, A, > 0, the sign on (25.16) is dependent on the sign on —(1+). In factor
space, the values of p that are of interest are those that lie between — 1 and +o, for these are
the values that generate isoquants with a diminishing marginal rate of substitution on the
input side. Ifthe value of @ is exactly — 1, then the product transformation functions will be
diagonal lines of constant slope A, /A, [since (Y,/y,)° = 1] and products are perfect substitutes.

However, as was indicated in chapter 15, the CES-like function can generate product
transformation functions with an increasing rate of product transformation. The five CES
cases outlined by Henderson and Quandt in factor space include only values of p that lie
between — 1 and +o°. In product space, the values of ¢ that lie between — 1 and —o generate
product transformation functions with an increasing rate of product transformation, since
equation (25.16)is negative when (p <—1. As (p ~ —oo, the product transformation functions
approach right angles, concave to the origin. Small negative values for ¢p generate product
transformation functions with a slight bow away from the origin. As the value of (p becomes
more negative, the outward bow becomes more extreme.

In the limiting case, when (p ~ —o0, y, is totally supplemental to y, when y, exceeds Y,;
conversely Y, is totally supplemental to ¥, when y, exceeds y,. This is equivalent to the joint
product (beef and hides) case.” If @ is a fairly large negative number (perhaps < - 5) there
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exist many combinations of ¥, and y, where one of the products is "nearly" supplemental to
the other. As (¢ » — 1, the products become more nearly competitive throughout the possible
combinations, with the diagonal product transformation functions when ¢p = — 1 the limiting
case. Regions of product complementarity are not possible with a CES-like product
transformation function.

Product transformation functions exhibiting a constant or an increasing rate of product
transformation must necessarily intersect the y axes. Thus, there is no product space
counterpart to the asymptotic isoquants generated by a Cobb-Douglas type function in factor
space.

25.5 Alternative Elasticity of Substitution Measures in Product Space

Diewert (1973) extended the concept of an elasticity of substitution (which he termed
elasticity of transformation) to multiple product-multiple input space. Hanoch suggests that
the elasticity of substitution in product space can be defined analogously to the elasticity of
substitution in factor space. In the case of product space, revenue is maximized for the fixed
input quantity X°, is substituted for minimization of costs at a fixed level of output y°( p. 292)
in factor space. The elasticity of substitution in two product one input space (Debertin) is
defined as:

(25.17) €, = % change in the product ratio y,/y, +~ % change in the RPT
or as
(25.18) ¢, = [d(y,/y)/ARPTI[RPT/(Y,/Y,)]-

Another way of looking at the elasticity of substitution in product space is in terms of
its linkage to the rate of product transformation for CES-like two-product space. Suppose
that Y =y,/y,, or the output ratio. The rate of product transformation for CES-like product
space is defined as
(25.19) RPT = Y(*®)

The elasticity of substitution in product space (equation (25.18)) can be rewritten as:
(25.20) (dlogY)/(dlogRPT).

Taking the natural log of both sides of (25.19) yields
(25.21) 10gRPT = (1+@)logY

Solving (25.21) for log Y and logarithmically differentiating
(25.22) (dlogy)/(dlogRPT) = 1/(1+)

Assuming that (p <— 1, the elasticity of substitution in product space for a CES- like function
is clearly negative, but ~ 0 as p ~ —e.
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The concept of an elasticity of substitution in product space is of considerable economic
importance, for it is a pure number that indicates the extent to which the products which can
be produced with the same input bundle can be substituted for each other. Assuming
competitive equilibrium, the inverse product price ratio p,/p, can be substituted for the RPT,
and equation (25.18) can be rewritten as:

(25.23) by, = [d(y2/y)/d(Py/PIII(P/P)/(Y2/Y1)]

In two-input factor space, Equation (25.23) is rewritten as
(25.24) b, = [d(x/X, /AW, W) TT(W, /WL )/ (Xo/X,)]

As McFadden has indicated, there is no natural generalization of of the of (25.24) when whe
number of factors is greater than 2. The elasticity of substitution will vary depending on what
is assumed to be held constant. However, the Allen, Morishima (Koizumi), and Shadow
(McFadden) Elasticities of Substitution all collapse to (25.23) when n equals 2. Similarly,
there is no natural generalization of product space elasticity of substitution when the number
of products exceeds two.

In the case of farming, the elasticity of substitution in product space is a pure number
that indicates the extent to which the farmer is able to respond to changes in relative product
prices by altering the product mix. An elasticity of substitution in product space near zero
would indicate that the farmer is almost totally unable to respond to changes in product prices
by altering the mix of products that are produced. An elasticity of substitution in product
space of - o« indicates that the farmer nearly always would be specializing in the production
one of the two commodities with the favorable relative price. As relative prices change toward
the other commodity, a complete shift would be made to the other commodity.

For most agricultural commodities, the elasticity of substitution in product space would
be expected to lie between 0 and — oo, indicating that to a certain degree, farmers will respond
to changes in relative product prices by altering the product mix. Commodities which require
very similar inputs would be expected to have very large negative elasticities of product
substitution. Examples include Durum wheat versus Hard Red Spring wheat in North Dakota,
or corn versus soybeans in the corn belt. Conversely, two dissimilar commodities requiring
very different inputs would be expected to have elasticities of substitution approaching zero,
and a change in relative prices would not significantly alter the output combination.

A representation of equation (25.23)inm product space when m>2 is
(25.25) €,, = [dlogy, — dlogy,)/[dlogp; - dlogp,]
Equation (25.25)is representative of a two-output, two-price (or TOTP) elasticity of product
substitution analogous to the two input two price (TTES) elasticity of substitution in factor
space, with the quantities of outputs other than i and K held constant.

Other elasticity of product substitution concepts can be defined, each of which is

analogous to a similar concept in factor space. For example, the one output one price (or
OOOP) concept is Allen-like and symmetric:

(25.26) €4 = B(dlogy)/(dlogpy)
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The one-output, one-price (OOOP) concept in factor space is proportional to the cross
price input demand elasticity evaluated at constant output. Similarly, the OOOP concept is
proportional to the cross output price product supply elasticity evaluated at a constant level
of input use. An own price OOOP can also be defined, that is proportional to the own price
elasticity of product supply. In factor space, the Allen elasticity of substitution is proportional
to the cross price input demand elasticity evaluated at constant output. Normally, as the price
of the jth input increases, more of the ith input, and less of the jth input would be used in the
production process, as input X; is substituted for input X;, evaluated at constant output. Thus,
the sign on the Allen elasticity of substitution in factor space is normally positive if inputs
substitute for each other.

However, in product space, the Allen like elasticity of substitution is proportional to the
cross output price product elasticity of supply evaluated at a constant level of input use.
Normally, as the price of the jth output increases, the amount of the jth output produced
would increase, and the amount of the ith output produced would decrease, the opposite
relationship from the normal case in factor space. Thus, while the Allen elasticity of
substitution in factor space would normally have a positive sign, the Allen like elasticity of
substitution would normally have a negative sign in product space. The negative sign is also
consistent with the sign on the product elasticity of substitution for the CES-like function
derived earlier.

In the n input setting, Hanoch (p. 290) defines the optimal (cost minimizing) share for
input X; as a share of total variable costs as:

(25.27) S;=wx,/C

where
C=2wx
w; = the price ofthe ith input
y = a constant

Invoking Shephard's lemma,

(25.28) 9C/ow, = X;.

Equation (25.27) representing the optimal share of total cost for the jth input can then be
rewritten as:

(25.29) S; = dlogC/dlogw,

In the n input case, the Allen elasticity of substitution (A;) between input X; and X; evaluated
at a constant input price W, is defined as:

(25.30) A; = (1/S)(Ey)
where

E;; = dlogx;/dlogw;, the cross-price elasticity of demand for input X; with
respect to the jth input price.
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By substituting (25.29) into (25.30), equation (25.30) may be rewritten as (Hanoch, p. 290):
(25.31) A;; = dlogx/dlogC = A;; = dlogx,/dlogC,
since the inverse of the Hessian matrix for the underlying production function f is symmetric.
In this contect the Allen elasticity of substitution is the elasticity of X, with respect to total cost
C for a change in another price p; (Hanoch).

These relationships may be derived analogously on the product side. Define the revenue
maximizing revenue share (R, *) for output y, treating the input x° (or input vector bundle x°)
constant as

(25.32) R* =Py */R,

where
p, = the price of the kth output

R=2py,i=1,..,m

Y,.* = the revenue-maximizing quantity of output y, from the
fixed input bundle x°.

Invoking the revenue counterpart to Shephard's lemma (Beattie and Taylor, p. 235)
(25.33) OR/Op, =VY,.

Equation (25.33) representing the share of total revenue for optimal quantity of the kth output
can then be rewritten as:

(25.34) R, = dlogR/dlogp,

In the m output case, the Allen like elasticity of substitution (or transformation) (A;P) in
product space between input X; and X; evaluated at a constant input price W; is defined as:

(25.35) Ai? = (1/RI(E;)
where

E; = dlogy,/dlogp,
the cross-price elasticity of supply for output y; with respect to the kth product price.
By substituting (25.34) into (25.35), equation (25.35) may be rewritten as
(25.36) A" = dlogy;/dlogR = A,; = dlogy,/dlogR, since the inverse of the Hessian
matrix for the underlying function h in product space is symmetric. In this context the Allen
like elasticity of substitution in product space is the elasticity of y; with respect to total
revenue R, for a change in another price p,, holding the quantity of the input (or input bundle)

constant.

Yet another way of looking at the Allen like elasticity of substitution in product space
is by analogy to the Allen elasticity of substitution defined in factor space defined in terms of
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the cost function and its partial derivatives. The Allen elasticity of substitution between the
ith and jth input (Aijf) in factor space can be defined as in terms of the cost function and its
partial derivatives:
(25.37) A;f=(CCy/CC)
where

C=h(w,, ..., W, ¥¥)

C, = 0C/ow,

C;=0dC/ow;

C; = 9°C/owdw,

The corresponding revenue function definition in product space is:

(25.38) A = (RRy/(RR)
where
R=h(p,,....p,, X*¥)
R, = dR/0w;
R; = oR/ow;
R; = 9°R/ow,0w;

The two-output, one-price (or TOOP) elasticity of product substitution is analogous to
the two-output, one-price, or Morishima elasticity of substitution in factor space. The
Morishima like elasticity of substitution in product space (Koizumi) is:

(25.39) €,om = (dlogy; — dlogy,)/dlogp,.

Like its factor-space counterpart, the Morishima-like elasticity of substitution in product
space is nonsymmetric.

Fuss and McFadden (p. 241) note that in factor space, each elasticity of substitution can
be evaluated based on constant cost, output or marginal cost. In product space, the total
revenue equation is analogous to the cost equation in factor space. Hence, each elasticity of
substitution in factor space may be evaluated based on constant total revenue, marginal
revenue, or level of input bundle use.

Generalization of the various product elasticity of substitution measures to m outputs
involves making assumptions with regard to the prices and/or quantities of outputs other than
the ith and jth output. A shadow-like elasticity of substitution in product space is, like its
factor space counterpart (McFadden), a long-run concept, but in this case, all quantities of
outputs other than i and j are allowed to vary.
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25.6 Translog-Like Functions in Product Space

The second-order Taylor's series expansion of log y in log X;, or translog production
function (Christensen Jorgenson and Lau), has received widespread use as a basis for the
empirical estimation of elasticities of substitution in factor space. The slope and shape of the
isoquants for the translog production function are dependent on both the estimated parameters
of the function and the units in which the inputs are measured. Given the two input translog
production function:

(25.40) y = Axla'xzazeleIngllogxz —+ Y1i(logx,)* +,,(logx,)*

The important parameter in determining the convexity of the isoquants is 'y 12. Imposing the
constraint that y 11= 22 = 0, equation (25.29) may be rewritten as:

(25.41) y = AX] %x2%gYeloexiogs,
or as:
(25.42) logy = logA+ o,logx, + ®t,logX, + ¥,,logx,logx,

Berndt and Christensen (p. 85) note that when Y;;# 0, there exist configurations of
inputs such that neither monotonicity or convexity is satisfied. In general, the isoquants
obtained from (25.42) will be convex only if Y 1> > 0. In addition, since the natural log of X;
is negative when 0< xi<1, so the isoquants may have regions of positive slope even when
Y >0, depending on the units in which the x; are measured. It is also possible to obtain convex
isoquants for the translog production function when Y, <0, depending on the magnitude of
X; and X,, which is units dependent.

The parameter Y ,, is closely linked to the elasticity of substitution in factor space. If 'y,
=0, the function is Cobb-Douglas. Small positive values of 'y, will cause the isoquants to
bow more sharply inward than is true for the Cobb-Douglas case.

Imposing the same constraint that 0, = 0, a two-output translog function in product
space can be written as

(25.43) logx = logB + B,logy, + B,logy, + 0,,logy,logy,
In two-product space, the parameter 0, would normally be expected to be negative, just as
in factor space, Y, would be expected to be normally positive.
25.7 Translog Revenue Functions

The indirect two output translog revenue function that represents the maximum amount
of revenue obtainable for any specific quantity of the input X°, allowing the size of the input
bundle to vary is:

(25.44) logR* = logD + 0,logp, + 8,logp, + 0,, (log p,)* + 0,,(logp,,)*

+ 0,,logp,logp, +@,,logp,logx + @, logp,logx +@,logx + @, (logx)’
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Every point on the translog revenue function in product space is optimal in the sense that
every point is a point on the output expansion path, which represents the maximum amount
of revenue obtainable from a given level of resource use x°.

Beattie and Taylor (p. 235-6) derive the revenue counterpart to Shephards lemma. They
show that

(25.45) OR*/3p; = y;.
Thus, if the firm's revenue function is known, systems of product supply equations can be
derived by differentiating the revenue function and performing the substitution indicated by
(25.45). Factor prices are treated as fixed constants in such an approach.

Differentiating (25.44) with respect to the jth product price, say p,, yields:
(25.46) dlogR*/dlogp, = &, +20,,logp, + 0,,logp, + @, logx.

Economic theory imposes a number of restrictions on the values that the parameters of
equation (25.46) might assume in the m output case. These restrictions are similar to those
imposed on the parameters of cost share equations in factor space.

First, total revenue from the sale of m different products is

(25.47) R=XRji=1,...m

Thus, if the revenue from m—1 of the revenue share equations is known, the remaining
revenue share is known with certainty, and one of the revenue share equations is redundant.

Young's theorem holds in product just as it does in factor space. Thus, 6ij = 5ﬁ, which
is the same as the symmetry restriction in factor space.

Any revenue function should be homogeneous of degree one in all product prices. The
doubling of all product prices should double total revenue. This implies that

(25.48) 28, =1
and
(25.49) ;=0

One might also draw the analogy to the Brown and Christensen assertion that in factor
space, the cost function represents constant returns to scale technology. In product space, the
corresponding assumption is that there is a constant increase in revenue associated with an
increase in the size of the input bundle. This implies
(25.50) drR*/dx =8, =1
(25.51) %8, =0fori=1,...n

(25.52) 5, =0



410 Agricultural Production Economics

These assumptions are as plausible in product space as the analogous assumptions are with
regard to indirect cost functions in factor space.

It is also possible to think in terms of an analogy to a Hicks' like technological change
in product space. In product space, technological change occurring over time may favor the
production of one commodity at the expense of another commodity. If, as the state of
technology improves over time, and no shift is observed in the proportions of the y; to y; over
time, then the technology is regarded as Hicks like neutral in product space. Technology that
over time shifts the output-expansion path toward the production of the jth commodity, then
the technology is regarded as Hicks like favoring for producty;. If technological change causes
the output expansion path to shift away from the production of commodity y,, then the
technological change could be referred to as y; inhibiting technological change.

Brown and Christensen derive the constant-output Allen elasticities of substitution in
factor space from the formula:

(25.53) 0;= (0, + S:S)/SS;
where
S;, S; = the cost shares attributed to factors i and j, respectively.

ﬁij = the restricted regression coefficient from the logr;logr; term in the cost
share equation, where r; and r; are the corresponding factor prices for
inputs i and j.

The estimated parameter Gij is usually positive, indicating that inputs i and j are substitutes,
not complements within the n dimensional factor space.

The analogous formula for deriving the Allen-like elasticities of substitution in product
space is

(25.54) 05, = (0; - RR)/RR,

Asindicated earlier, the parameter (3ij will usually be negative, and the Allen-like elasticity of
substitution in product space (0;;,) for most commodities is negative.

25.8 Empirical Applications

Many possibilities exist for empirical analysis linked to agriculture based on the models
developed in this chapter. One of the simplest approaches would be to estimate revenue share
equations for major commodities in U.S. agriculture for selected time periods (following the
approach used by Aoun for estimating cost share equations for agricultural inputs in factor
space) and derive various elasticity of substitution measures in product space. These revenue
share parameter estimates would be used to estimate product elasticity of substitution
measures for the various major agricultural commodities in the United States. Such an
empirical analysis could stress the implications for current agricultural policy in terms of
determining how farmers alter their product mix over time in the face of changing government
price support programs such as those contained in the 1986 farm bill.
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The Hicks-like technological change approach appears to be promising as well. As
technological change occurs for a specific agricultural commodity, presumably that
commodity is favored relative to others in a product space model. For example, has
technological change over the past thirty years tended to favor the production of soybeans
relative to other grains? Such an approach might be useful in assessing the economic impacts
of genetic improvements in specific crops or classes of livestock.

Another possibility is to estimate changes in the product space elasticity of substitution
measures over time. Some thirty years ago Heady and others discussed the impacts of
specialized versus flexible facilities using a product space model. One way of looking at a
facility specialized for the production of a specific commaodity is that it represents product
space in which the elasticity of substitution is near zero. A flexible facility is represented by
a product space elasticity of substitution that is strongly negative.

Note

! There is considerable disagreement in the literature with regard to terminology relating to the
firm capable of producing more than one product. Henderson and Quandt argue that the term
joint product should be used in any instance where a firm produces more than one output, even
in instances where the products can be produced in varying proportions. The convention
followed in many agricultural production economics texts is to use the term joint product to
refer only to those products that must be produced in fixed proportions with each other such
as beef and hides. If products must be produced in fixed proportions with each other, then
relative prices will not infuence the output mix. The term multiple products is used to refer
to any situation where more than one output is produced, regardless of whether or not the
outputs are produced only in fixed proportion with each other. 2 The concept of an elasticity
of substitution in product space is one mechanism for resolving the problems with the joint
and multiple product terminology. The output elasticity of substitution is zero when outputs
must be produced in fixed proportions (joint) with each other. The output elasticity of
substitution is -0 when products are perfect substitutes for each other. A CES-like product
space function encompasses a series of intermediate cases for which the product
transformation function is downsloping but concave to the origin and the value for the product
space elasticity of substitution lies between 0 and -o°.
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