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10
The Cobb-Douglas
Production Function
This chapter describes in detail the most famous of all production functions used to represent
production processes both in and out of agriculture. First used in 1928 in an empirical study
dealing with the productivity of capital and labor in the United States, the function has been
widely used in agricultural studies because of its simplicity.  However, the function is not an
adequate numerical representation of the neoclassical three stage production function. One of
the key characteristics of a Cobb Douglas type of production function is that the specific
corresponding dual cost function can be derived by making use of the first order optimization
conditions along the expansion path. Examples of constrained output or revenue maximization
problems using a Cobb Douglas type of function are included. 
 
Key terms and definitions:

Cobb Douglas Production Function
True Cobb Douglas
Base 10 Logarithm
Base e Logarithm
Cobb Douglas Type of Function
Technology and the Parameter A
Homogeneity
Partial Elasticities of Production
Function Coefficient
Total Elasticity of Production
Asymptotic Isoquants
Three-Dimensional Surface
Duality of Cost and Production
Cost Elasticity
Finite Solution
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10.1 Introduction

The paper  describing the Cobb Douglas production function was published in the
journal  American Economic Review in 1928. The original article dealt with an early
empirical effort to estimate the comparative productivity of capital versus labor within the
United States.

Since the publication of the article in 1928, the term Cobb Douglas production function
has been used to refer to nearly any simple multiplicative production function. The original
production function contained only two inputs, capital (K) and labor (L). Moreover, the
function was assumed to be homogeneous of degree 1 in capital and labor, or constant returns
to scale. 

Economists of this period, while recognizing  that the law of diminishing returns (or the
law of variable proportions) applied when units of a variable factor were added to units of a
fixed factor, were fascinated with the possibility of constant returns to scale, when all factors
of production were increased or decreased proportionately. They probably believed that  as
the scale of the operation changed, it was no longer possible to divide inputs into the
categories fixed and variable. In the long run, the marginal product of the bundle of inputs that
comprise the resources or factors of production for the society should be proportionate to the
change in the size of the bundle, or the amount of resources available to the society.

There were other constraints in 1928. Econometrics,  the science of estimating economic
relationships using statistics, was only in its infancy. The function had to be very simple to
estimate. The lack of computers  and even pocket calculators meant that at most, statistical
work had to be done on a mechanical calculator. Estimates of parameters of the function
derived from the data had to be possible within the constraints imposed by the calculation
tools of the 1920s.

10.2 The Original Cobb Douglas Function

The function proposed in the 1928 article was

†10.1 y = Ax1
"x2

1!" 

where x1 = labor

 x2 = capital

The function had three characteristics viewed at that time as desirable

1. It was homogeneous of degree 1 with respect to the input bundle, which was consistent
with the economics of the day that stressed that production functions for a society should
have constant returns to scale.

2.  The function exhibited diminishing marginal returns to either capital or labor, when the
other was treated as the fixed input, so the law of variable proportions held. The parameter
A was thought to represent the technology of the society that generated the observations upon
which the parameters of the function were to be estimated.

3. The function was easily estimated with the tools of the day. Both sides of the function
could be transformed to logarithms in base 10 or natural logarithms in base e (2.71828...)

†10.2 log y = log A + " log x1 + (1 ! ") log x2
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The resulting equation is referred to as linear in the parameters or linear in the coefficients.
In other words, log y is a linear function of log x1 and log x2. The transformed function  is the
equation for a simple two variable regression line in which all observations in the data set used
for estimating the regression line have been transformed into base 10 or natural (base e =
2.71828..) logarithms:

†10.3   log y = bo + b1 log x1 +b2 log x2 + ,

where  

A = ebo if the transformation is to the natural logarithms, or

10bo if the transformation is to base 10 logarithm

b1 = "

b2 = 1 ! "

, = regression error term

There was no point in empirically estimating b2 if the assumption was made that the
parameters on capital and labor summed to 1. The function could be estimated with only one
input or independent variable. Cobb!and Douglas estimated the parameter on labor using
regression analysis and saved their statistical clerks a lot of work on the mechanical
calculator.

It is important to recognize that the Cobb Douglas production function, when originally
proposed, was not intended to be a perfect representation for the United States of the technical
relationships governing the transformation of labor and capital into output. Rather, it was
chosen because it retained the two key economic assumptions of the day (diminishing returns
to each input and constant returns to scale) and because its parameters were easy to obtain
from actual data. 

The Cobb Douglas function had economic properties clearly superior to what  was the
probable alternative of the day, a simple linear function with constant marginal products for
both inputs

†10.4 y = ax1 + bx2

As will be seen shortly, the Cobb Douglas function lacked many features characteristic
of the three stage production function proposed by the neoclassical economists, which was
graphically developed earlier. Had Cobb and Douglas perceived the massive impact of their
early work on both economists and agricultural economists, they perhaps would have come
up with something more complicated and sophisticated. Part of the appeal of the function
rested with its utter simplicity in estimation. Agricultural economists today use only slightly
modified versions of the Cobb Douglas production function for much the same reasons that
the function was originally developed-it is simple to estimate but allows for diminishing
marginal returns to each input.

10.3 Early Generalizations

The first generalization of the Cobb Douglas production function was to allow the
parameters on the inputs to sum to a number other than 1, allowing for returns to scale of
something other than 1. The function
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†10.5 y = Ax1
$1x2

$2

where $1 + $2 sum to any number, 

is sometimes referred to as a Cobb Douglas type of production function, but it is not the true
Cobb Douglas function. This function was also readily transformed to logs. Parameters could
still be estimated by least squares regression with two inputs or explanatory variables, and
with the advent of the computer, this could be done very easily.

As the use of the function moved from the problem of estimating the relationships
between capital, labor, and output at the society level to problems of representing production
processes at the individual farm level, the interpretation of some of the parameters changed.
Cobb and Douglas assumed that output could be produced with only capital and labor. At the
farm firm level, x1 and x2 more likely represent two variable inputs that are under the control
of the manager. The remaining inputs are treated as fixed. The parameter A might be thought
of as the combined impact of these fixed factors on the production function. In this context

†10.6 A = E xi
$i

   For all i = 3, ..., n

In equation †10.6,  there are n inputs, with all but n ! 2 being treated as fixed.
Technology could have an impact on the magnitude of the $i themselves. The parameters $1
and $2 might be expected to sum to a number substantially less than 1, particularly if there
are a large number of fixed inputs contained in the parameter A. Thus, a restriction that forced
the coefficients on the variable inputs to sum to 1 would be silly.

The second generalization was to expand the function in terms of the number of inputs.
The four input expansion is

†10.7 y = Ax1
$1x2

$2x3
$3x4

$4

A function of the general form of equation †10.7 with any number of inputs was readily
transformed to logs, and the parameters were empirically estimated from appropriate data
using ordinary least squares regression techniques. As the number of inputs treated as variable
expanded, the sum of the parameters on the variable inputs should also increase, assuming
that each variable input has a positive marginal product.

In this text, the term Cobb Douglas function or true Cobb Douglas function is used only
in  reference to the two-input multiplicative function in which the sum of the individual
production elasticities is equal to 1. The term Cobb Douglas type of function is used in
reference to a multiplicative function where the elasticities of production sum to a number
other than 1, or in a case where there are more than two inputs or factors of production.

10.4 Some Characteristics of the Cobb Douglas Type of Function

The Cobb Douglas type of function is homogeneous of degree E$i. The returns to scale
parameter or function coefficient is equal to the sum of the $ values on the individual inputs,
assuming that all inputs are treated explicitly as variable. The $ values represents the
elasticity of production with respect to the corresponding input and are constants.
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The partial elasticities of production for each input are simply the $ parameters for
the input.  This can easily be shown. The partial elasticity of production for input xi is the
ratio of MPP to APP for that input. The MPP for input xi is

†10.8 MPPxi = $iAxi
$i!1 Exj

$j

for all j =/ i = 1, ..., n where n is the number of inputs. The APP for input xi is

†10.9 APPxi = Axi
$i!1 E xj

$j

The ratio of MPP to APP for the ith input is $i. Hence, the elasticities of production for the
Cobb Douglas type of production function are constant irrespective of the amounts of each
input that are used. The ratio of MPP to APP is constant, which is very unlike the neoclassical
three-stage production function.

Moreover, MPP and APP for each input never intersect, but stay at the fixed ratio
relative to each other as determined by the partial elasticity of production. The only
exception is an instance where the partial production elasticity is exactly equal to 1 for one
of the inputs. If this were the case, the MPP and the APP for that input would be the same
everywhere irrespective of how much of that input were used.

All inputs must be used for output to be produced. Since the Cobb Douglas function is
multiplicative, the absence of any one input will result in no total output, even if other inputs
are readily available. This characteristic may not be extremely important when there are but
a few categories of highly aggregated inputs, but if there are a large number of input
categories, this characteristic may be of some concern, since it is unlikely that every input
would be used in the production of each commodity. 

There is no finite output maximum at a finite level of input use. The function increases
up the expansion path at a rate that corresponds to the value of the function coefficient.  If the
function coefficient is 1, the function increases at a constant rate up the expansion path. If the
function coefficient is greater than 1, the function increases at an increasing rate.   If the
function coefficient is less than 1, the function increases at a decreasing rate. Agricultural
production functions of the Cobb Douglas type when estimated usually have function
coefficients of less than 1.

For a given set of parameters, the function can represent only one stage of production
for each input, and ridge lines do not exist. If the elasticities of production are for each input
less than 1, the function will depict stage II everywhere. 

If the function coefficient is less than 1, there will normally be a point of global profit
maximization at a finite level of input use. Pseudo scale lines exist and will intersect on the
expansion path at this finite level.

10.5 Isoquants for the Cobb Douglas Type of Function

The Cobb Douglas type of production function, as given by

†10.10 y = Ax1
$1x2

$2

has the corresponding marginal products

†10.11 MPPx1 = My/Mx1 = $1x1
$1!1 x2

$2
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†10.12 MPPx2 = My/Mx2 = $2x1
$1 x2

$2!1

The MRSx1x2 is obtained by finding the negative ratio of MPPx1/MPPx2. 

†10.13 MRSx1x2 = !($1x2)/($2x1)

The MRS is a linear function of the input ratio x2/x1.

The equation for an isoquant is obtained by fixing the output of y at some constant level
y° and solving for x2 in terms of x1

†10.14 y° = Ax1
$1x2

$2

†10.15 x2
$2 = y°/(Ax1

$1)

†10.16 x2 = [y°/(Ax1
$1)]1/$2

†10.17 x2 = y°(1/$2) A!1/$2 x1
!$1/$2

†10.18 dx2/dx1 = !($1/$2)y°(1/$2)A!1/$2 x1
(!$1/$2)!1 < 0

The isoquants for a Cobb Douglas type of production function have a downward slope as long
as the individual production elasticities are positive. This is true irrespective of the values of
$1 and $2.

Moreover,

†10.19 d2x2/dx1
2 = [(!$1/$2) ! 1][!$1/$2]y°(1/$2)A!1/$2x1

(!$1/$2)!2 > 0 

if the individual production elasticities are positive.

The sign on equation †10.19 indicates that the isoquants for the Cobb!Douglas type of
production function are asymptotic to the x1 and x2 axes irrespective of the values of the
partial production elasticities, as long as the partial production elasticities are positive.
Isoquants for a Cobb Douglas type of function are illustrated in Figure 10.1, with Y1 - Y7
indicating various specific output levels represented by each isoquant. Although these
isoquants appear to be rectangular hyperbolas, their position relative to the x1 and x2 axes will
depend upon the relative magnitudes of $1 and $2. The isoquant will be positioned closer to
the axis of the input with the larger elasticity of production.

To reemphasize, the general shape of the isoquants for a Cobb Douglas type of function
are not conditional on the values of the individual production elasticities. As long as the
individual production elasticities are greater than zero, the isoquants will always be downward
sloping, convex to the origin of the graph, and asymptotic to the axes. The convexity of the
isoquants for the function occurs because of the diminishing marginal rate of substitution and
because the function is multiplicative, not additive, resulting in a synergistic influence on
output when inputs are used in combination with each other. That is, output is the product of
that attributed to each input, not the sum of that attributed to each input.



The Cobb-Douglas Production Function 177

Figure 10.1  Isoquants for the Cobb-Douglas 
                     Production Function

The expansion path generated by a Cobb Douglas function in the x1 and x2 plane has a
constant slope equal to (v2/v1)($1/$2). The expansion path is obtained by setting the MRSx1x2

equal to the inverse price ratio

†10.20 MRSx1x2 = ($1x2)/($2x1) = v1/v2

†10.21 $2x1v1 = $1x2v2

†10.22 $2x1v1 ! $1x2v2 = 0

†10.23 x2 = (v1/v2)($2/$1)x1

10.6  The Production Surface of the Cobb Douglas Production Function

Figure 10.2 illustrates the three dimensional surface of the Cobb Douglas type of
production function with two inputs, under varying assumptions with respect to the values of
the $ coefficients. Depending on the specific coefficients, the production surface for the Cobb
Douglas type of function can vary rather dramatically.  Diagrams A and B illustrate the
surface and isoquants for the case in which the parameters on the two inputs sum to 1. In this
illustration, $1 is  0.4 and $2  is 0.6. Each line on the diagram represents a production function
for one of the inputs holding the other input constant. Production functions for x2 begin at the
x1 axis. Production functions for x1 begin at the x2 axis. Since x2 is the more productive input,
production functions for x2 have a steeper slope than do the production functions for x1. Now
move along an imaginary diagonal line midway between the x1 and x2 axes. The production
surface directly  above this  imaginary diagonal line has a constant slope. The slope of the
surface above this line represents the function coefficient or returns-to-scale parameter of 1
for this two input Cobb Douglas production function which has constant returns to scale. 
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B  Isoquants  A  Surface  y = x1
0.4x2

0.6

E  Surface   y = x1
0.6x2

0.8

D  Isoquants

F  Isoquants

C  Surface  y = x1
0.1x2

0.2 
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H  IsoquantsG  Surface  y = x1
0.4x2

1.5

J  IsoquantsI  Surface  y = x1
1.3x2

1.5

Figure 10.2.   Surfaces and Isoquants for a Cobb-Douglas Type Production Function

Diagrams C and D illustrate the surface and isoquants of a Cobb Douglas type of
production function in which  the elasticities of production sum to a number smaller than 1.
In this example, $1 is 0.1, and $2 is 0.2. The function is homogeneous of degree 0.3 and has
a function coefficient of 0.3. Again, x2 is the more productive input, as verified by its larger
elasticity of production. 

Production functions for x2 are found by starting upward at the x1 axis, and production
functions for x1 are found by following a line upward from the x2 axis.  Input x2 has the
production functions with the steepest slope. The marginal product of each input appears to
be very great at small values for x1 and x2, but drops off rapidly as input use is increased. The
output (y) produced by the function for a specific quantity of x1 and x2 is much smaller than
for the function illustrated in diagram A. The production surface above the imaginary diagonal
line is concave from below. The function coefficient of .3 indicates that the marginal product
of incremental units of a bundle of x1 and x2 is declining. 
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Diagrams E and F illustrate a Cobb Douglas type of production function in which the
individual elasticities of production for each input are less than 1 but the elasticities of
production sum to a number greater than 1. In this example, $1 is 0.6 and $2 is 0.8, yielding
a function coefficient of 1.4. The marginal product for individual production functions is
declining, but the marginal product for the bundle along the imaginary diagonal line is
increasing. This implies that the production surface above this imaginary scale line is convex,
not concave from below. 

Diagrams G and H illustrate a Cobb Douglas type of production function in which one
input has an elasticity of production greater than 1, but the elasticity of production for the
other input is less than 1. In this example, $1 is 0.4 and $2 is 1.5. Starting at the x1 axis,
follow a line representing the production function for x2. Note that this production function
is curving upward, or increasing at an increasing rate, and the marginal product of input x2
is increasing as the level of x2 is increased. But the production functions for x1, which start at
the x2 axis, have a declining marginal product, as evidenced by the fact that they increase at
a decreasing rate. The production surface above the imaginary diagonal line is convex from
below. The marginal product of the input bundle defined by the diagonal line increases as the
size of the bundle increases, and the function coefficient is 1.9.

Diagrams I and J illustrate a Cobb Douglas type of production function  in which both
inputs have elasticities of production of greater than 1. In this example, $1 is 1.3 and $2 is 1.5
yielding a total elasticity of production or function coefficient of 2.8. That the marginal
product of both x1 and x2 is increasing is clearly evident from a careful examination of
individual production functions in  diagram E. The production surface above the imaginary
diagonal line representing the input bundle is clearly convex from below.

10.7  Profit Maximization with the Cobb Douglas Function

Regardless of the values for the elasticities of production, a multiplicative production
function of the Cobb Douglas type never achieves an output maximum for a finite level of x1
and x2. Upon learning that the first order conditions of a maximum are achieved by setting the
first partial derivatives of a function equal to zero, students are sometimes tempted to try this
with a Cobb Douglas type of  function. Unless the elasticities of production for each input are
zero, (in which case, increases in each input produce no additional output, since any number
raised to the zero power is 1) the only way for these first-order conditions to hold  is for no
input to be used, and if that were the case, there would also be no output.  A Cobb Douglas
type of  function has no finite maximum where the ridge lines would intersect. This is not
surprising, since the ridge lines do not exist, and any point on any isoquant for a Cobb
Douglas type of  function, irrespective of the parameter values, will have a negative slope. 

Profit maximization is possible only if the function coefficient is less than 1, assuming
that the purely competitive model holds, with constant input and output prices.  In the purely
competitive model, the price of the output is a constant p, total revenue is py and the total
value of the product (TVP) is

†10.24 TVP = px1
$1 x2

$2

The function coefficient or total elasticity of production for the production function
indicates the responsiveness of output to changes in the size of the input bundle. It is the
percentage change in output divided by the percentage change in the size of the input bundle.
Assuming a constant output price, the function coefficient also represents the responsiveness
of total value of the product to changes in the size of the input bundle. It is the percentage
change in the total value of the product or output divided by the percentage change in the input
bundle.
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With constant input prices, the marginal cost of acquiring an additional unit of the input
bundle along the expansion path is also constant, not decreasing or increasing. If the function
coefficient is greater than 1, each additional unit of the bundle produces more and additional
output and total value of the product. Incremental units of the bundle can be obtained at  a
fixed constant price per unit. The manager would be better off in terms of increased revenue
by acquiring more and more additional units of the bundle. This process could occur
indefinitely, and both input use and output would be expanded up to the point where the purely
competitive assumptions with regard to both input and output prices are no longer met. Either
the manager is producing so much output that it can no longer be sold at the going market
price, or so much input is being purchased that more cannot be bought without causing the
price of the input bundle to increase.
 

Now consider a case in which each input has a production elasticity of less than 1 but
the total elasticity of production or function coefficient is exactly 1. If this case, a 1 percent
increase in the size of the bundle is accompanied by a 1 percent rise  in revenue. The marginal
cost of an additional unit of the bundle is a constant V. The revenue from the use of an
additional unit of the bundle is the revenue generated from an additional unit of output, or p.
The manager would attempt to equate the marginal cost of the bundle (V) with the marginal
revenue from the additional unit of output (p). Both numbers are constants. If p > V, the
manager could make additional profits by expanding use of the input bundle indefinitely,
which is the same solution as the first case. Total profit is (p ! V)y where y is the number of
units of output produced. If p were less than V, then the manager should shut down since each
and all incremental units of output cost more that they generated in additional revenue. The
total loss is (p ! V)y, where y is the number of units of output produced. Only if p were equal
to V would the manager be indifferent to producing or shutting down. Each incremental unit
of output cost exactly what it returned, so there would be zero profit everywhere.

Finally, consider a case in which the sum of the individual elasticities of production is
less than 1. Again the price of the input bundle is treated as a constant, but in this case the
value of the marginal product is declining. Profits can be maximized at some finite level of use
of the input bundle, assuming that for certain levels of input use, TVP does exceed the cost of
the bundle.

Another way of looking at the profit maximization conditions for the Cobb Douglas type
of function is with the aid of the pseudo scale lines developed earlier. Assume constant input
and output prices.  If the function coefficient is less than 1, the pseudo scale lines exist and
converge at some finite level of input use along the expansion path. The convergence of the
pseudo scale lines represents the global point of profit maximization. If the function
coefficient is equal to 1, the pseudo scale lines exist but diverge from each other, so that they
do not intersect for any finite level of use of the input bundle along the expansion path. If the
function coefficient is greater than 1 but the individual elasticities of production are less than
1, the pseudo scale line exist but diverge, going farther and farther apart as the use of the
bundle is expanded. A pseudo scale line for an individual input does not exist if the elasticity
of production for that input is greater than or equal to 1.

10.8  Duality and the Cobb Douglas Function

The Cobb Douglas type of function is homogeneous, and its corresponding dual cost
function exists.  It is possible to derive the specific cost function in terms of output for a
Cobb!Douglas type of production function. Assume the production function

†10.25 y = Ax1
$1 x2

$2 

The input cost function is
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†10.26 C = v1x1 + v2x2

The dual cost function for a Cobb Douglas type of  production function is found using
the following procedure.  First, the equation for the expansion path is found by partially
differentiating the production function with respect to x1 and x2, to find the marginal products.
The negative ratio of the marginal products is the MRSx1x2. This is equated to the inverse input
price ratio. The result can be written as

†10.27 $2v1x1 = $1v2x2 

Equation †10.27 defines the points of least cost combination along the expansion path.

Equation †10.27 is solved for x1 to yield

†10.28 x1 = $1v2x2$2
!1v1

!1

Equation †10.28 is inserted into equation †10.26 and x2 is factored out

†10.29 C = x2($1v2$2
!1 + v2)

Equation †10.29 defines the quantity of x2 that is used in terms of cost (C) and the parameters
of the production function

†10.30 x2 = C/($1v2$2
!1 + v2)

Similarly, for input x1,

†10.31 x1 = C/($2v1$1
!1 + v1)

Inputs x1 and x2 are now defined totally in terms of cost C, the input prices (v1 and v2) and the
parameters of the production function. Inserting equations †10.30 and †10.31 into the original
production function  [equation †10.25] and rearranging, results in

†10.32 y = C$1+$2A($2v1$1
!1 + v1)!$1 ($1v2$2

!1 + v2)!$2

Solving equation †10.32 for C in terms of y, the production function parameters and the input
prices yields

†10.33 C = y1/($1+$2) A!1/($1+$2) ($1
!1$2v1+ v1)$1/($1+$2)($2

!1$1v2 + v2)$2/($1+$2)

or C =  y1/($1+$2)Z

where

 Z =  A!1/($1+$2)($1
!1$2v1+ v1)$1/($1+$2)($2

!1$1v2 + v2)$2/($1+$2)

Notice that y is raised to the power 1 over the degree of homogeneity of the original
production function.  The value of Z is a constant, since it is dependent only on the assumed
constant prices of the inputs and the assumed constant parameters of the production function.
Notice that prices for inputs are available, all of the information needed to obtain the
corresponding dual cost function can be obtained from the production function. The
coefficients or parameters of a Cobb Douglas type of  production function uniquely define a
corresponding dual cost function. C is  cost in terms of output. 
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Marginal cost is

†10.34 MC = dC/dy =  [1/($1+$2)]y1/($1+$2)!1Z

The slope of MC is positive if the sum of the individual partial production elasticities or
function coefficient is less than 1. If the individual production elasticities sum to a number
greater than 1, then MC is declining. MC has a zero slope when the production elasticities sum
exactly to 1.  The supply function for a firm with a Cobb Douglas type of  production
function can be found by equating marginal cost (equation †10.34) with marginal revenue or
the price of the product and solving the resultant equation for y. 

Average cost is

†10.35 AC = TC/y = y1/($1+$2)!1Z

Since Z is positive,  average cost decreases when the partial production elasticities sum to a
number greater than 1. Average cost increases if the partial production elasticities sum to a
number less than 1. If the production function is a true Cobb!Douglas, total cost is given by

†10.36 TC = yZ

Both marginal and average cost are given by the constant Z, and therefore both MC and
AC have a zero slope. For a Cobb!Douglas type of  production function, MC and AC never
intersect, except in the instance where the function coefficient (or the cost elasticity) is 1, in
which case MC and AC are the same everywhere.

The ratio of marginal to average cost or the cost elasticity (R) is

†10.37 (R) = 1/($1 + $2)

  = 1/E, 

where E is the returns-to-scale parameter, or function coefficient.

If total product along the expansion path is increasing at a decreasing rate, then costs are
increasing at an increasing rate. If total product along the expansion path is increasing at an
increasing rate, than costs are increasing at a decreasing rate. If total product along the
expansion path is increasing at a constant rate (the true Cobb Douglas function), then costs
are also increasing at a constant rate. If the product sells for a fixed price, that price is a
constant marginal revenue (MR). Marginal revenue (MR) can be equated to marginal cost
(MC) only if MC is increasing. With fixed input prices and elasticities of production, this can
happen only if the cost elasticity is greater than 1, which means that the function coefficient
for the underlying production function is strictly less than 1. 

The profit function can be written as 

†10.38 A = TR ! TC

†10.39 A = py ! Zy1/E

where E is the function coefficient.

Maximum profits occur if
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†10.40 dA/dy = p !Z (1/E)y(1/E)!1 = 0

 MR ! MC = 0

and

†10.41 d2A/dy2 = !Z (1/E)[(1/E)!1]y(1/E)!2 < 0

E is positive. The only way the second derivative can be negative is for E to be smaller
than 1. This implies that MC is increasing. If E is equal to 1, the second derivative of the
profit function is zero, and that MC is constant. If E is greater than 1, the second derivative
of the profit function is positive, and MC is decreasing. 

10.9 Constrained Output or Revenue Maximization

A finite solution to the problem of globally maximizing profits could be found only in
those instances where the production function had a function coefficient of less than 1. The
same conditions do not hold for the problem of finding the least cost combination of inputs
required to produce a particular level of output or revenue. The isoquants generated by a
Cobb!Douglas type of  production function are convex to the origin  if the partial elasticities
of production are positive, and as a result, points of tangency that meet second order
conditions are easy to find. For example, suppose that the production function is

†10.42 y = x1x2

The individual partial elasticities of production  for each input is 1, and the function
coefficient is 2. Despite its strange appearance, this is a production function of the Cobb
Douglas type.

Suppose that the price of both x1 and x2 is $1 per unit.  The Lagrangean would be

†10.43 L = x1x2 + 8(C° ! 1x1 ! 1x2)

With the corresponding first order conditions

†10.44 ML/Mx1 = x2 ! 18 = 0

†10.45 ML/Mx2 = x1 ! 18 = 0

†10.46 M/M8 = C° ! 1x1 ! 1x2 = 0

The second order conditions require that the determinant of the following matrix be
positive

†10.47  0  1 !1
1  0 !1

!1 !1   0

The determinant of †10.47 is 2, which is clearly positive, thus meeting the second order
conditions for a constrained output maximization.  Despite the fact that the production
function in equation †10.42 meets both first- and second-order conditions for a constrained
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revenue maximization, there is no assurance that revenue less costs will be positive when the
point of least-cost combination is found.

10.10 Concluding Comments

The Cobb Douglas type of  production function has been estimated by agricultural
economists for virtually any production process involving the transformation of inputs into
outputs in an agricultural setting. Economists have used a Cobb Douglas type of  specification
for virtually every conceivable type of production process. To review specific applications of
the Cobb Douglas type of  function would be to review a large share of the literature in which
empirical attempts have been made to estimate production functions. Some of this literature
is cited in the reading list.

The appeal of the Cobb Douglas type of  function rests largely with its simplicity. Even
when the Cobb Douglas form is not used as the final form of the function, it is often used as
a benchmark specification for comparison with other functional forms. The null research
hypothesis might be that the production function is of the Cobb Douglas type. The alternative
hypothesis is that another specification provides a better fit to the data.

Cobb and Douglas never intended that the Cobb Douglas production function represent
the subtle details of the three-stage production function of the neoclassical economists.
However, the elegant simplicity of the algebra surrounding the Cobb Douglas type of
production function seems to appeal to both economists and agricultural economists alike.
Never mind that the relationships were not always as the neoclassical economists had
proposed.

The neoclassical three-stage production function was a marvelous invention. However,
as subsequent chapters will show, the three stage production function as originally conceived
is not always the easiest thing to represent with mathematics. The problem becomes especially
difficult as extensions are made to multiple input categories. Agricultural economists use the
Cobb!Douglas specification for no better reason than that the algebra is simplified. 

Problems and Exercises

1. For a Cobb Douglas type of  function

y = Ax1
"x2

$

For each case, does there exist the following?

a. A global point of output maximization.

b. A global point of profit maximization (assume constant input and output prices).

c. A series of points of constrained output maximization.
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)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
Case    Value for A  Value for  "             Value for $
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
             
 (1) 1.0  0.2  0.3
 (2) 1.0 0.4  0.6
 (3) 1.0 0.6  0.8
 (4) 1.0  1.0  1.0
 (5) 1.0 2.0  2.0
 (6) 1.0   ! 0.3  0.5
 (7) !1.0 0.4  0.6
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

2. For each case outlined above, find MPP and APP for each input, holding the other input
constant at some predetermined level. What is the relationship between MPP and APP in each
case?

3. Suppose that the production function is

y = x1x2

The input x1 sells for $1 per unit and input x2 sells for $2 per unit. The farmer has $200 to
spend on x1 and x2. How much of each input will the farmer purchase in order to be at a point
of constrained output maximization?

4.  Making certain that the scale on both the x1 and the x2 axes is the same, draw a graph for
an isoquant generated by the function

y = x1
0.5x2

0.33

Assume that the length of each axis represents 10 units of input use. Is the isoquant closer to
the x1 axis or the x2 axis? Why?

5. Assume that the production function is
y = x1

0.5x2
0.33

x1 costs $1 per unit; x2 costs $2 per unit. Find the corresponding total cost function with total
cost expressed as a function of output (y), the input prices, and the production function
parameters.
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