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11
Other Agricultural
Production Functions
In addition to the Cobb Douglas, agricultural economists have made use of a diverse array of
other functional forms. The earliest efforts to develop production functions from agricultural
data predate the Cobb Douglas work, using a production function developed by Spillman.
The transcendental production function represented an attempt  conducted in the 1950s to
develop a specification closely tied to the characteristics of the neoclassical three-stage
production function.  Production functions with variable rather than constant input elasticities
represented a development during the 1960s. In the early 1970s de Janvry showed that the
Cobb Douglas function with either fixed or variable input elasticities and the transcendental
production functions were all members of a family of production functions called generalized
power production functions. All of these production functions have been used as a basis for
estimating relationships within agriculture. This chapter will be of primary interest to students
interested in doing research in agricultural economics.

Key terms and definitions:

Spillman Production Function
Transcendental Production Function
Cobb Douglas Function with Variable Elasticities
Generalized Power Production Function
Polynomial Forms
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11.1 Introduction

Despite the widespread use of the Cobb Douglas production function, it was not the first
or the only production function to be used by agricultural economists for representing
production relationships. Agricultural economics as a formal discipline is relatively new,
having had its start as a separate discipline in the first decade of the twentieth century. The
first work in agricultural economics was conducted by biological scientists who were
interested in providing farmers with useful information with regard to designing plans for
feeding livestock or fertilizing crops. Even these early efforts, conducted by biological
scientists with little or no training in economics, had a central focus in obtaining estimates of
parameters of agricultural production functions as a basis for the development of
recommendations to farmers.

11.2 The Spillman

One of the earliest efforts to estimate a production function in agriculture was conducted
by Spillman, and was published in the newly created Journal of Farm Economics (later to
become the American Journal of Agricultural Economics) in two articles in 1923 and 1924.
The first article was titled "Application of the Law of Diminishing Returns to Some Fertilizer
and Feed Data.' The second was "Law of the Diminishing Increment in the Fattening of Steers
and Hogs." It is not surprising that Spillman was interested in determining whether or not the
law of diminishing returns had empirical support within some rather basic agricultural
production processes. 

The empirical efforts by Spillman were published prior to the work by Cobb and
Douglas in 1928, and the form of the production functions used by Spillman differed slightly.
The Spillman function was

†11.1 y = A (1 ! R1
x1)(1 ! R2

x2)

where A, R1  and R2 are parameters to be estimated.  The parameters R1 and R2 would
normally be expected to fall between zero and 1. The sum of R1 + R2 would normally be less
than or equal to 1. 

An example of the Spillman function is

†11.2 y = 1(1 ! 0.3x1)(1 ! 0.4x2)

In equation †11.2, if one of the inputs is increased, output increases, but at a decreasing rate.
The marginal products of x1 or x2 are positive but decreasing.

The marginal product of input x1 (MPPx1) is

†11.3 My/Mx1 = !ln R1(1 ! R2
x2)AR1

x1 > 0

since A,R1 > 0,

†11.4 (1!R2
x2)lnR1 < 0

Like the Cobb Douglas function, the marginal product is positive for any level of input use.

Moreover,

†11.5 M2y/Mx1
2 = !ln2 R1(1 ! R2

x2)AR1x1 < 0

MPP is declining for any level of input use.



Other Agricultural Production Functions 189

The production surface of the Spillman function is somewhat different from the Cobb
Douglas. Figure 11.1 illustrates the surface and isoquants under the assumption that R1 = 0.4
and R2 = 0.6 and A = 10. Compared with a Cobb Douglas with similar parameters (diagram
A, Figure 10.1), the function appears to initially increase at a much more rapid rate, and then
increase very slowly.

Figure 11.1  The Spillman Production Function

Since the advent of the the Cobb Douglas, the Spillman has seldom been used by
agricultural economists. It is primarily of historical interest because the Spillman research
represented one of the first efforts to estimate parameters of a production function for some
basic agricultural processes.

11.3  The Transcendental Production Function

By the mid-1950s, both economists and agricultural economists were very much aware
of many of the limitations of the Cobb Douglas production function. They recognized that
although parameters of the function were very easy to estimate from data, the function did not
very well represent the neoclassical three stage production function. The problem of greatest
concern at that time was the fixed production elasticities, which require that APP and MPP
be at a fixed proportion to each other. This issue was not unrelated to the fact that the Cobb
Douglas could represent only one stage of production at a time, very much unlike the
neoclassical presentation.

Halter, Carter, and Hocking were concerned with the lack of compatibility between the
Cobb Douglas and the neoclassical three-stage production function.  The researchers sought
to make modifications in the Cobb Douglas to allow for the three stages of production and
variable production elasticities, yet at the same time retain a function that was clearly related
to the Cobb Douglas and was easy to estimate from agricultural data.

The function that Halter et al. introduced in 1957 looked like a slightly modified version
of the Cobb Douglas. The base of the natural logarithm, e was added and raised to a power
that was a function of the amount of input that was used.
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The two-input function was

†11.6
The corresponding single input function was

†11.7 y = Ax"e(x

The MPP for the single input version, using the composite function rule, was

†11.8 dy/dx = "Ax"!1e(x + (e(xAx" 

          = ("/x + ()y

Since APP is y/x and the elasticity of production is MPP/APP, the elasticity of production for
the single input transcendental is

†11.9 , =  ("/x + ()y(x/y)

   = " + (x

The elasticity of production, and hence the ratio of MPP to APP, is clearly dependent on
the amount of input that is used. The change in the elasticity of production (,) with respect
to a change in the use of x (d,/dx) is equal to the parameter  (. In other words, the size of (
indicates how rapidly the elasticity of production is declining. In the case of a single input
power production function such as y = Axb, the elasticity of production is a constant b,  and
hence d,/dx is 0. This function is a special case of the single input transcendental with the
parameter ( equal to zero.  Since illustrations of the neoclassical production function show
a declining elasticity of production as the use of the input increases, the transcendental
production functions of greatest interest are those in which ( is negative.

Halter et al. worked out the properties of the transcendental production function for the
single-input case under varying assumptions with respect to the values of " and (. Table 11.1
summarizes their findings.

11.4 The Two-Input Transcendental

Halter et al. proposed an extension of the single-input transcendental to two inputs

†11.10
The MPP of x1 is

†11.11 My/Mx1 = ("1/x1 + (1)y

The MPP of x2 is

†11.12 My/Mx2 = ("2/x2 + (2)y
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Table 11.1  Properties of the Single-Input Transcendental Under Varying 
           Assumptions with Respect to Parameters " and (

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
Value of "   Value of (   What Happens to y and ,
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

0 < " <_ 1 < 0  y  increases at a decreasing rate
    until x = !"/(, then decreases;
    as x increases, , is declining.

  > 1 < 0 The neoclassical case. y increases 
    at an increasing rate until
    x = (!" + /")/(, increases at a
    decreasing rate until 
    x = !"/(, then decreases;
    as x increases, , is declining.  

0 < " < 1   0  y increases at a decreasing 
    rate; , is constant equal to ".

1       0  y increases at a constant rate;
    , is 1; MPP and APP are the
    same everywhere.

> 1     0   y increases at an increasing 
rate; , is constant equal to ".

0 < " < 1         > 0 y increases at a decreasing
rate until x = (!" + /")/(, then

    increases at increasing rate;
    , is increasing.

>_ 1                 > 0             y increases at an increasing
    rate; , is increasing

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

Source: Adapted from Halter et al. 

APPx1 is y/x1 and APPx2 is y/x2.

Therefore, the partial elasticity of production with respect to x1 is

†11.13 ,1 =  "1 + (1x1

and with respect to x2 is

†11.14 ,2 =  "2 + (2x2

Each production elasticity is dependent on the quantity of that input being used but not
on the quantity of the other input. If a measurement of returns to scale is the sum of the
individual production elasticities, the returns to scale are not constant but are dependent on
the amount of x1 and x2 that is used. The two input transcendental is not homogeneous of any
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Figure 11.2  Isoquants and Ridge lines for the Transcendental,
                   (1 =(2 = -2; "1 ="2 = 4; (3 = 0

degree.

†11.15 M,1/Mx1 = (1 M,1/Mx2 = 0

†11.16 M,2/Mx1 = 0 M,2/Mx2 = (2

The marginal rate of substitution of x1 for x2 is equal to the negative ratio of the marginal
products†11.17   MRSx1x2 = dx2/dx1 = ![("1/x1 + (1)y]/[("2/x2 + (2)y]

  = ! ("1/x1 + (1)/("2/x2 + (2)

  = ! [x2 ("1 + (1x1)]/[x1 ("2 + (2x2)]

The isoquants for the transcendental  when "1 and "2  > 0 and (1 and (2 < 0 consist of a
series of concentric rings or lopsided ovals centered at the global output maximum for the
function (Figure 11.2). The exact shape of the rings is determined by the value of the
parameters for the function. The exact center of the rings occurs at x1 = !"1/(1, x2 =  !"2/(2.

The first-order conditions for profit maximization can be derived by setting the marginal
rate of substitution equal to the negative ratio of the input prices (!v1/v2). The resultant
equation defines the expansion path along which the farmer would move as output is
expanded. The first-order conditions are defined by

†11.18 ("1/x1 + (1)/("2/x2 + (2) = v1/v2
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The expansion path equation is defined by

†11.19 x2v2("1 + (1x1) = x1v1("2 + (2x2)

†11.20 x2 = v1x1"2/(v2"1 + v2(1x1 ! v1x1(2)

The expansion path for the transcendental production function is clearly nonlinear  unless (1
and (2 are zero.

The ridge lines for the transcendental are present only when (1 and (2 are negative, and
are straight lines that form a right angle at the point of maximum output, where x1 = !"1/(1.
The position of the ridge line for x1 in the horizontal axis is determined by the value of "1 and
(1. Similarly, the position of the ridge line on the x2 axis corresponds to the point where x2 =
-"2/(2. (The slope of this ridge line dx2/dx1 is clearly zero.)  

The resultant square is very much unlike the football shape defined by the ridge lines for
the neoclassical case. This ridge line pattern suggests that the maximum output for the family
of production functions for the input x1 occurs at the same level of use for input x1, regardless
of how much of the second input is used. The same holds for input x2. This is not consistent
with the neoclassical case in which an increase in the use of x2 pushes the maximum of the
production function for x1 farther and farther to the right.

A modification of the transcendental suggested by this author to make the function more
closely correspond to the neoclassical diagram would be to include an interaction term in the
power of e. The function is

†11.21            
the corresponding MPP for x1 is ("1/x1 + (1 + (3x2)y. APP is y/x1, so the corresponding partial
elasticity of production for input x1 is

†11.22 ,1 = "1 + (1x1 + (3x2x1

Along the ridge line for x1, the production elasticity for x1 is zero. This implies that

†11.23 "1 + (1x1 + (3x2x1 = 0

or

†11.24 x1((1 + (3x2) = !"1

†11.25 x1 = !"1/((1 + (3x2)

The amount of x1 required to maximize output is clearly a function of the quantity of x2
that is available. Ridge lines no longer form right angles with each other parallel to the x1 and
x2 axes. If (3 is positive, ridge lines will slope upward and to the right. Moreover,  ,1 and ,2
are functions of the amount of both inputs that are used.

11.5 Illustrations and Applications of the Transcendental

Figure 11.3 illustrates production surfaces and isoquants under varying assumptions with
respect to the parameters of the two input transcendental. Diagrams A and B illustrate the
"original" two-input transcendental with "1 = "2 = 4 and (1 = (2 = !2.
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A  Surface  (1 = (2 = -2; "1 = "2 = 4; (3 = 0     B  Isoquants

C  Surface (1 = (2 = -2; "1 = "2 = 4; (3 = 0.2     D  Isoquants

E  Surface  (1 = (2 = -2; "1 = "2 = 4;(3 = 0.3     F  Isoquants
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G Surface (1 = (2 = -2; "1 = "2 = 0.5; (3 = 0     H  Isoquants

I  Surface  (1 = (2 = 1; "1 = "2 = 0.5; (3 = 0     J  Isoquants

Figure 11.3  The Transcendental Production Function Under 
                    Varying Parameter Assumptions

The three stages of production are clearly visible, as is the fact that the maximum for
each single input production function for x1 generated by assuming x2 held fixed at a varying
level occurs at the same level of input use for x1. Diagrams C D, E and F illustrate what
happens as an interaction term with the parameter (3 is added. Diagrams C and D assume that
(3 is 0.2, whereas diagram E and F assume that (3 is  0.3. Each successive production
function for x1 has a maximum to the right of the one below it. The same holds for input x2.
The shape of the production surface is highly sensitive to changes in the value of the
parameter (3.

Diagrams G and H illustrate the surface and isoquants when "1 and "2 are positive but
less than 1 (0.5), (1 and (2 are negative (!2), and (3 is zero. The function increases at a
decreasing rate, and then decreases at x1 = !"1/(1, x2 = !"2/(2.
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Diagram I and J illustrate what happens when (1 and (2 are positive (1.0) and "1 and
"2 are positive (0.5). The surface looks not unlike a total cost function in three dimensions,
first increasing at an increasing rate, and then increasing at a decreasing rate. The
transcendental production function can be viewed as a generalization of the Cobb Douglas
production function that can depict the three stages of production and has variable production
elasticities. The transcendental is easily transformed to natural logs to yield

†11.26   ln y = ln A + "1ln x1 + "2ln x2 + (1x1 + (2x2 + (3x1x2

This function is linear in the parameters, and is again easily estimated via ordinary least
squares regression techniques.

The first attempt to estimate parameters of a transcendental production function was
published by Halter and Bradford in 1959. They estimated a TVP function with gross farm
income as the dependent variable and dollar values for owned and purchased inputs as x
variables.  The dependent variable was adjusted by a weather measure based on the number
of drought free days during the growing season. Data were collected from 153 individual
farms in 1952 and 1956.

The function was estimated both as a Cobb Douglas specification and as a
transcendental specification. Based on the statistical results including a comparison of actual
values for the dependent variable with those predicted by the equation, the transcendental
specification did give slightly improved results than the Cobb Douglas specification.

11.6 Cobb Douglas with Variable Input Elasticities

Another approach was to develop a Cobb Douglas type of function in which the powers
on each input were assumed to vary. The function was

†11.27 y = Ax1
$1(X)x2

$2(X)

The $i are functions of one or more inputs represented by X. These inputs may include x1 and
x2, but they also may include inputs not incorporated in the function directly. One proposal
suggested that X should incorporate the skills of the manager, and that production functions
for skilled managers should have greater partial elasticities of production than production
functions for unskilled managers. 

11.7 de Janvry Modifications

de Janvry recognized the linkages between the Cobb Douglas production function with
variable input elasticities and the two input transcendental. He proposed the generalized power
production function (GPPF), which had as special cases the Cobb Douglas, the Cobb Douglas
with variable input elasticities, and the transcendental. 

The general form of the GPPF is

†11.28
where g, h and j are each functions of the inputs.  If j = 0; g = "1; and h = "2, the function is
the traditional Cobb Douglas type.  If g and h are constants and j is nonzero, the function is
a general two input transcendental, without any particular restriction of the form of j. If j =
(1x1 + (2x2, the function is the standard transcendental. The Cobb Douglas function with
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variable input elasticities results where j is zero but g and h vary according to x1 and x2.

The major contribution of de Janvry was to develop a general functional form that
included as special cases many of the other production functions used by agricultural
economists.

11.8 Polynomial Forms

The production functions described so far in Chapters 10 and 11 require that a positive
amount of each input be present for output to be produced. Isoquants come asymptotic to, but
do not intersect, the axes. When isoquants intersect an axis, output is possible even in the
absence of the input represented by the other axis.

A polynomial form is inherently additive rather than multiplicative. if interaction terms
are not included, there will be an additive but not synergistic impact on output as a result of
an increase in the level of input use.

Consider the polynomial

†11.29 y = a + bx1 + cx1
2 + dx2 + ex2

2

where a, b, c, d, and e are  constant parameters. The marginal product of x1 is b + 2cx1. The
marginal product of x2 is d + 2ex2. The marginal product of x1 is not linked to the quantity of
x2 that is present. The marginal product of x2 is not linked to the quantity of x1 that is present.
The function achieves a maximum (or possibly minimum) when b + 2cx1 = 0 and d + 2ex2 =
0. Ridge lines  again form right angles that intersect at the global output maximum. Second
order conditions for a maximum require that c be negative and ce be positive. (The proof is
left with the reader.) This implies that both c and e must be negative or that the MPP with
respect to both inputs must slope downward to the right. The parameters b and d must be
positive, or there will be no point at which an increase in the use of the input will produce a
positive marginal product.

Now consider the polynomial

†11.30 y = a + bx1 + cx1
2 +dx2 + ex2

2 + fx1x2

The marginal product of x1 is b + 2cx1 + fx2. The marginal product of x2 is d + 2ex2 + fx1. The
marginal product of each input is linked to the quantity of the other input that is present, as
long as f is nonzero. The first order conditions for maximum output require that each marginal
product be zero. Ridge lines no longer intersect at right angles, but if f is positive, each
successive single-input production function achieves its maximum to the right of the one
below it. Second order conditions for a maximum require that 2c be negative and 2c2e ! f2

be positive. These polynomials and any other polynomial that is linear in its parameters could
be  estimated via ordinary least squares. 

Figure 11.4 illustrates the polynomial

†11.31  y = x1 + x1
2 !0.05x1

3 + x2 + x2
2 !0.05x2

3 + 0.4x1x2

The three stages of production are clearly evident, and output is possible even in the absence
of one of the two inputs. Note the white area between each axis and the production surface,
indicating that the isoquants intersect both axes.
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A  Surface B  Isoquants

Figure 11.4 The Polynomial  y = x1 + x1
2 !0.05x1

3 + x2 + x2
2 !0.05x2

3 + 0.4x1x2

11.9 Concluding Comments

Agricultural economists have made use of a wide array of production functions over the
last 50 years and more. Some of these efforts have represented attempts to make explicit
linkages between the mathematical specification and the traditional neoclassical three stage
production function. The effort conducted by Halter and his colleagues was clearly aimed at
that objective, as have been the attempts to estimate polynomial forms.

Other agricultural economists saw the problem somewhat differently.  Efforts in the early
1970s by de Janvry and others focused on the development of general functional forms that
would encompass a number of explicit specifications as special cases. 

In the 1960s and 1970s, the direction of research both in general and in agricultural
economics increasingly turned to the problem of determining the extent to which inputs to a
production process substituted for each other. This led to the development of functional forms
that are not necessarily linked to the neo classical three-stage form, but rather were useful in
estimating elasticities of substitution between input pairs. Chapter 12 discusses some of these
functional forms. 

Problems and Exercises

1. For input levels between zero and 10 units, graph the following production functions and
compare their shape.

Single-input power (Cobb Douglas like):

a. y = x0.5

Single-input (Spillman like):

b. y = (1!0.5x)
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Single-input transcendental:

c. y = x4e!2x

where e is the base of the natural log 2.71828...

2. For part (c) in Problem 1, find the level of x corresponding to:

a. The inflection point.
b. Maximum MPP.
c. Maximum APP.
d. Maximum TPP.

3. If the production function is a polynomial consistent with the neoclassical three stage
production function (see Problem 5, Chapter 2), show that the level of x that maximizes MPP
will be two thirds of the level that maximizes APP.
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