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The Demand for Inputs
to the Production Process
The demand for inputs to a production process within agriculture is dependent on a number
of factors: (1) the price of the output being produced, (2) the price of the input, (3) the price
of other substitute or complement inputs that are also  in the production function, and (4) the
technical coefficients or parameters of the production function itself, particularly production
elasticities for each input.  Under certain conditions, the quantity as well as the price of other
inputs, and the availability of dollars for the purchase of inputs may affect the input demand
function. This chapter shows how specific input demand functions can be derived that
explicitly link the demand by a farmer for an input to the prices of other inputs and the
technical parameters of the underlying production function.

Key terms and definitions:

Derived Demand
Input Demand Function
Elasticity of Input Demand
Logarithmic Differentiation
Output Price Input Demand Elasticity
Own Price Input Demand Elasticity
Cross Price Input Demand Elasticity
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Technical Competitiveness
Technical Independence
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13.1 Introduction

The demand for inputs to the agricultural production process is a derived demand. That
is, the input demand function is derived from the demand by buyers of the output from the
farm. In general, the demand for an input or factor of production depends on (1) the price of
the output or outputs being produced, (2) the price of the input, (3) the prices of other inputs
that substitute for or complement the input, and (4) the parameters of the production function
that describes the technical transformation of the input into an output. In some instances, the
demand for an input might also depend on the availability of dollars needed to purchase the
input. 

For example, the demand by a farmer for seed, fertilizer, machinery, chemicals, and other
inputs is derived from the demand by users for the corn produced by the farmer. The demand
for each of these inputs is a function not only of their respective prices, but also the price of
corn in the marketplace. The demand by a dairy farmer for grain and forage is dependent not
only on the respective prices of grain and forage, but also on the price of the milk being
produced. 
 
13.2 A Single-Input Setting

In a single input setting, the derivation of a demand function for an input x  makes use
of (1) the production function that transforms the input x into the product y; (2) the price of
the output y, called p, and (3) the own price of the input, called v. Since there are no other
inputs, in a single input setting prices of other inputs do not enter. 

A general statement of the problem is as follows.  Given a production function y = f(x,
") where x is the quantity of input used and " represents the coefficients or parameters of the
production function, a constant product price (p) and a constant input price (v), the
corresponding input demand function can be written as x = g(", p, v). Notice that the function
g, the input demand function, is a different function from f, the production function. The
derivation of the input demand function for a specific production function and set of prices
makes use of the firm's first order conditions for profit maximization. 

Assume that the farm manager uses only one input in the production of a single output.
The farmer is operating in a purely competitive environment, and the price of the input and
the output is assumed to be fixed and given. The farmer is interested in maximizing profits.
The first order conditions for maximum profit require that the farmer equate

†13.1 pMPPx = VMPx = v

where p is the output price and v is the input price.

Now suppose that the price of the input (v) varies. Figure 13.1 illustrates what happens.
The intersection between VMPx and v represents the demand for the input at that particular
input price, which, in turn, traces out the demand curve or input demand function for the input
x under a series of alternative input prices. If the price of the output increases, the VMP curve
will shift upward, increasing the demand for x at any positive input price. Conversely, a
decrease in the price of the output will reduce the demand for the input x at any given input
price.  The input demand function normally begins at the start of stage II and ends at the start
of stage III.
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Figure 13.1  The Demand Function for Input x 
                    (No Other Inputs)

As the productivity of the underlying production function increases, the MPPx will increase.
This, in turn, will increase the demand  by farmers for input x.  Conversely, a decrease in the
productivity of the underlying production function will cause a reduction in the demand for
x for a given input and output price.

Assume that the production function is

†13.2 y = Axb

Where A is a positive number and b is assumed to be greater than zero but less than 1.

The corresponding MPP of x is

†13.3 MPPx = dy/dx = bAxb!1

The first order conditions for maximum profit require that

†13.4 PMPPx = pbAxb!1 = v

The demand for the input can be found by solving the first order conditions for x

†13.5 xb!1 = v/pbA

†13.6 x = (v/pbA)1/(b!1) = v1/(b!1)p!1/(b!1)(Ba)!1/(b!1)

Notice here that the demand for x is a function only of the price of the input (v), the price of
the product (p), and the coefficient or parameter of the underlying production function (b) as
suggested in the general case.
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A numerical example is used to further illustrate these relationships.  Assume that A is
1 and b is 0.5. Then

†13.7 x = 0.25v!2p2 = 0.25p2/v2

Table 13.1 provides four demand schedules for input x, when A is 1 and b is 0.5, and
assuming output prices of $2, $4, $6, and $8. Each column represents a different demand
function. As the price of x increases, the quantity demanded declines. An increase in the price
of the output (y) causes a shift upward in the entire demand schedule or function.
 
Table 13.1  Demand for Units of Input x Under Various Assumptions 
                 about the Output Price, p
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
Price of    Price of y in dollars
x (v) in
(dollars       2      4    6  8
                   )))))))))))))))))))))))))))))))))))))))))))))))))))))))
   1 1.00  4.00 9.00 16.00

  2 0.25 1.00 2.25     4.00

   3 0.11 0.44 1.00 1.78

   4 0.0625 0.25 0.5625 1.00

  5 0.04 0.16 0.36 0.64
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

13.3 The Elasticity of Input Demand

In consumer demand, the elasticity of demand is defined as the percentage change in
quantity of a good taken from the market divided by the percentage change in the price of that
good. Using calculus, the point elasticity of demand is defined as

†13.8 (dQ/dP)(P/Q)

where P is the price of the good being demanded by the consumer, and Q is the quantity of the
good

Now suppose that the specific demand function is

†13.9 Q = Pa

Taking natural logarithms of both sides of equation †13.1, results in 

†13.10 ln Q = a ln P

Now let r equal ln Q and s equal ln P; equation †13.10 may be rewritten as

†13.11 r = as

Now differentiate equation †13.11:
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†13.12 dr/ds = a

But notice that

†13.13 d ln Q/d ln P = a

The elasticity of demand for Q can be shown  to be equal to the coefficient or parameter a.
In this example

†13.14 dq/dp = aPa!1

†13.15  (dq/dp) (P/Q) = (Apa!1)(P/Q) = (Apa!1)(P/Pa) = a

which is the same result as that obtained in equation †13.13. In general, any  elasticity can be
expressed as the derivative of the logarithm of one of the variables with respect to the
derivative of the logarithm of the other variable. 

 Parallel formulas for input demand elasticities exist. The own price elasticity of demand
for an input is defined as the percentage change in the quantity of the input taken from the
market divided by the percentage change in the price of that input. Using calculus, the own
price input demand elasticity is

†13.16 (dx/dv)(v/x), or

†13.17 dlnx/dlnv.

The output-price elasticity can be similarly defined as the percentage change in the
quantity of the input taken from the market divided by the percentage change in the price of
the output. Using calculus, the output-price demand elasticity is defined either as

†13.18 (dx/dp)(p/x)

or as

†13.19 dlnx/dlnp.

If there were more inputs to the production process than one, both own!price and
cross-price elasticities can be defined. The own price elasticity is the same as is the single
input case, that is, the percentage change in the quantity of the input xi taken from the market
divided by the percentage change in the price of that input (vi). The subscript i indicates that
the price and quantity are for the same input. The formula using calculus would be either

†13.20 (dxi/dvi)(vi/xi) 

or as

†13.21 dlnxi/dlnvi

The cross-price elasticity is defined as the percentage change in the quantity of input xi
taken from the market divided by the percentage change in the price of input xj (vj). The
subscript i is not the same as j. Using calculus, the formula is
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†13.22 (dxi/dvj)(vj/xi)

for all i=/ j
or as

†13.23 dlnxi/dlnvj

Now consider a production function

†13.24  y = Axb

The input price (v) and the output price (p)  are assumed constant and the farmer is assumed
to maximize profits. The input demand function is

†13.25 x = (v/pbA)1/(b!1) = v1/(b!1)p!1/(b!1)(Ba)!1/(b!1)

The own price elasticity of input demand is derived as follows

†13.26 dx/dv = [1/(b ! 1)/v]x = [1/(b ! 1)](x/v)

†13.27 (dx/dv)(v/x) = [1/(b ! 1)](x/v)(v/x) = 1/(b ! 1)

The own!price elasticity could be obtained by taking natural logarithms of the input demand
function and then finding the derivative

†13.28 dlnx/dlnv = 1/(b!1) 

The own price elasticity of demand for the input depends entirely on the parameter b
from the underlying power production function. Given information about the elasticity of
production for the input, the corresponding input demand elasticity can be calculated.   For
example, if b were 0.5, the own!price elasticity of demand for x is 1/(0.5 ! 1) = !2. There
exists a close association between the elasticity of demand for an input and the underlying
elasticity of production for that input. This analysis breaks down if b is greater than or equal
to 1. If b is greater than 1, VMP cuts MFC (v) from below, and  the second-order conditions
for profit maximization do not hold for any finite level of use of x.   If b is equal to 1, VMP
= MFC everywhere and there is no demand function based on the profit-maximization
assumption.

A similar analysis can be made for the output-price elasticity

†13.29 dx/dp = [!1/(b ! 1)](x/p) = !x/[p(b ! 1)]

†13.30 (dx/dp)p/x = !px/[px(b ! 1)] = !1/(b ! 1)

or

†13.31 d ln x/d ln p = !1/(b ! 1)

In the single-input case, the output-price elasticity of demand for input x is equal to the
negative of the own!price elasticity of demand. In this case, the output-price elasticity of
demand is 2. This suggests that a 1 percent increase in the price of the output will be
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accompanied by a 2 percent increase in the demand for the input x. Again, the output-price
elasticity of demand is a function solely of the elasticity of production of the underlying
production function.

13.4  Technical Complements, Competitiveness, and Independence

An input (x2) can be defined as a technical complement for another input (x1) if an
increase in the use of x2 causes the marginal product of x1 to increase. Most inputs are
technical complements of each other. Notice that inputs can be technical complements and still
substitute for each other along a downward- sloping isoquant.1 

A simple example of technical complements in agriculture would be two different kinds
of fertilizer nutrients in corn production. For example, the presence of adequate quantities of
phosphate may make the productivity of nitrogen fertilizer greater. 
 
   Technical complements can also be defined by

†13.32 d(MPPx1)/dx2 > 0

Consider a production function given by

†13.33 y = Ax1
ax2

b

MPPx1 is

†13.34 dy/dx1 = aAx1
a!1x2

b

†13.35 d(dy/dx1)/dx2 = baAx1
a!1x2

b!1 > 0

By this definition, inputs are technical complements for a broad class of Cobb Douglas  type
of production functions. An increase in the use of x2 causes the MPPx1 to shift upward.

An input (x2)  is said to be technically independent of another input if when the use of x2
is increased, the marginal product of x1 (MPPx1) does not change. This requires that

†13.36 d(MPPx1)/dx2 = 0

Consider a production function given by

†13.37 y = ax1 + bx1
2 + cx2 + dx2

2

†13.38 dy/dx1 = a + 2bx1

†13.39 d(dy/dx1)/dx2 = 0

For additive production functions without interaction terms, inputs are technically
independent.

Examples of technically independent inputs to a production process within agriculture
are difficult to find. Even the marginal product of a laborer may be affected by the availability
of other inputs such as seed and chemicals.

An input (x2) is said to be technically competitive with another input (x1) if when the use
of x2 is increased, the marginal product of x1 (MPPx1) decreases. This requires that 



Agricultural Production Economics222

†13.40 d(MPPx1)/dx2 < 0

An example of a production function in which this might occur is an additive function
with a negative interaction term. 

Consider a production function given by

†13.41 y = ax1 + bx1x2 + cx2 

†13.42 dy/dx1 = a + bx2

†13.43 d(dy/dx1)/dx2 = b

If b were negative, the inputs would be technically competitive.

Examples of inputs that are technical substitutes for each other would include inputs that
are very similar to each other. For example, suppose that x1 represented nitrogen applied as
ammonium nitrate and x2 represented nitrogen applied as anhydrous ammonia. The presence
of ample quantities of x1 would reduce the marginal product of x2.

13.5  Input-Demand Functions in a Two-Input Setting

Input demand functions in a two input setting can also be derived. Suppose that the
farmer is  again interested in maximizing profits, and that output and input prices are given.
The production function is

†13.44  y = Ax1
ax2

b

The profit function corresponding to equation †13.44 is 

†13.45 A = py ! v1x1 ! v2x2

     = pAx1
ax2

b ! v1x1 ! v2x2

Suppose also that a + b < 0 (decreasing returns to scale). Then the first order conditions for
profit maximization are

†13.46 MA/Mx1 = apAx1
a!1x2

b ! v1 = 0

†13.47 MA/Mx2 = bpAx1
ax2

b!1 ! v2 = 0

One approach for finding the input demand function for x1 would be to solve the
first-order condition equation  †13.46 for x1 in terms of the remaining variables. This yields

†13.48 x1
a!1 = v1(apA)!1x2

!b

†13.49 x1 = v1
1/(a!1)(apa)!1/(a!1)x2

!b/(a!1)

Equation †13.49 expresses the demand for x1 in terms of its own price (v1) the price of the
output (p), and the quantity of the other input (x2). This approach leads to a demand function
made up of points of intersection between a single VMP function (that assumes a constant x2)
and the price of x1 (v1).  But the quantity of x2 used will probably  change if the price of x1
changes, so the assumption that x2 can be assumed constant is untenable. 
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Figure 13.2   Possible Impacts of an Increase in the Price of x1 on the Use of x2

Figure 13.2  illustrates three cases. Diagram A illustrates the common case in which an
increase in the price of x1 causes the quantity of x2 that is used to decrease. Diagram B
illustrates a case in which the use of x2 increases as a result of an increase in the price of x1.
Diagram C illustrates a special case in which the use of x2 remains constant when the price
of x1 increases. Diagram C illustrates the only case in which this approach would yield the
correct input demand function.

Only if inputs are technically independent will the marginal product and VMP of one
input be unaffected by the quantity of the other input(s) that is(are) available. In other words,
it is highly unlikely that the VMP for x1 would be unaffected by the availability of x2. As a
result, the input demand function specified in equation †13.49 will probably make the demand
function for the input x1 appear less elastic than it really is.

As the price of input x1 increases, the farmer will use less of it, because the level of x1
that maximizes profits will shift to the left.  This effect is captured by the own price elasticity
in equation †13.49. However, the farmer might also respond to the increased price for x1 by
substituting x2  for x1, and equation †13.49 ignores this substitution possibility. The quantity
of x2 used by the farmer is treated as fixed.

Another approach is clearly needed that will explicitly take into account the possibility
of substitution x2 for x1 as the price of x1 rises.  The use of x1 should be a function not of the
quantity of x2 but rather of the price of x2. Such an approach would allow the farmer to move
from one VMP function to another as the price of x1 (v1) changes. A change in the price of x1
causes the use of x2 to change, which in turn, results in a new VMP function for x1 (Figure
13.3). 
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Figure 13.3  Demand for Input x1 When a Decrease in the price of x1 
                     Increases the Use of x2

The new approach makes use of the same first order conditions (equations †13.46 and†13.47) as those used in the first example. Prices and production function parameters are
treated as knowns, the quantities of x1 and x2 are unknowns. Equations †13.46 and †13.47
thus represent two equations in two unknowns that are solved as a system.  To solve the
system, first-order condition †13.46  is divided by first-order condition †13.47 to yield

†13.50 ax2/bx1 = v1/v2

or

†13.51 x2 = v1bx1/av2

Equation †13.51 is then substituted into first-order condition †13.46 and solved for x1

†13.52 Apax1
a+b!1v1

bv2
!b bb a!b = v1

†13.53 x1
a+b!1 = v1

1!b v2
b(pA)!1 ab!1 b!b

†13.54   x1 = v1
(1!b)/(a+b!1)v2

b/(a+b!1)(pA)!1/(a+b!1)a(b!1)/(a+b!1)b!b/(a+b!1)

For equation †13.54, the input own!price demand elasticity is

†13.55   (dx1/dv1)(v1/x1) = (1 ! b)/(a + b ! 1) < 0

†13.56    dlnx1/dlnv1 = (1 ! b)/(a + b ! 1) < 0

If a + b < 1, then the input own!price demand elasticity is negative. For any specific set of
values for a and b,  the input own!price demand elasticity may be calculated.
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The cross price demand elasticity between input x1 and x2 may be defined from equation†13.54 as

†13.57   (dx1/dv2)(v2/x1) = b/(a + b ! 1) < 0

†13.58   dlnx1/dlnv2 = b/(a + b ! 1) < 0

This elasticity is also negative when a + b < 1. As the price of x2 increases, less of x1 will be
used.

The output price elasticity is

†13.59    (dx1/dp)(p/x1) = !1/(a + b ! 1) > 0

†13.60    dlnx1/dlnp = !1/(a + b ! 1) > 0

This elasticity is positive when a + b < 1. This suggests that the demand for x1 increases as
the output price increases.

Notice also that the sum of the input own!price and cross-price elasticities equals the
negative of the output price elasticity

†13.61 (1 ! b)/(a + b ! 1) + b/(a + b ! 1) = !1[!1/(a + b ! 1)]

The relationship defined in equation †13.61 between elasticities holds for production functions
with decreasing returns to scale. This relationship would also hold in instances where there
are more than two inputs. In general, the sum of the own!price and cross-price input demand
elasticities equals the negative of the output-price input demand elasticity.

The own!price and product-price elasticities obtained from the second approach will in
general be more strongly negative or elastic than those obtained from the first approach (see
Figure 13.3). However, the exact relationship between elasticities will depend on the extent
to which the farmer substitutes x2 for x1 in the face of rising prices and the impact that this
substitution has on the VMP function for x1. Estimates of elasticities from the second approach
normally should more accurately portray the extent of the adjustment process by the farmer
in response to changing input prices than those estimates obtained from the first approach.

13.6 Input-Demand Functions Under Constrained Maximization

Ordinarily, no attempt would be made to derive individual input demand functions for
production functions that have constant or increasing returns to scale. If there were increasing
returns to scale and input prices were constant (not a function of the demand for the input),
profits to the farmer could be maximized by securing as much of both (or all) inputs as
possible. Here, no demand function as such could exist. If there were constant returns to scale,
the farmer would shut down if the cost of the inputs per unit of output exceeded the output
price. If the cost of the inputs per unit of output was less than the product price, the farmer
would again attempt to secure as much of each input as possible, and no demand function for
the input would exist.

However, if the farmer has a constraint or limitation in the availability of dollars for the
purchase of inputs, it may be possible to derive input demand functions even when the
underlying production function has no global profit maximizing solution, or in other situations
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where a constraint exists in the availability of dollars for the purchase of inputs. Such demand
functions are sometimes referred to as conditional demand functions, in that they assume that
the specific budget constraint is met. The conditional demand function specifies the quantity
of x1 and x2 that will be demanded by the farmer for a series of input prices v1 and v2, and
assuming that C° total dollars are spent on inputs.

 Consider the production function

†13.62  y = x1x2

The function coefficient for this production function is 2. Now suppose that the farmer
faces a budget constraint C°

†13.63  C° = v1x1 + v2x2

At the budget level defined by equation †13.63,  output y° can be produced.

The Lagrangean representing the constrained maximization problem is

†13.64 L = x1x2 + 8(C° ! v1x1 ! v2x2)

A key assumption of Lagranges formulation is that the farmer must spend exactly C° dollars
on x1 and x2. The corresponding first order conditions are

†13.65   ML/Mx1 = x2 ! 8v1 = 0

†13.66   ML/Mx2 = x1 ! 8v2 = 0   

†13.67   ML/M8  = C° ! v1x1 ! v2x2 = 0

Dividing equation †13.65 by equation  †13.66 and rearranging gives us

†13.68 x2 = (v1/v2)x1

Inserting equation †13.68 into equation †13.67 yields

†13.69 C° ! v1x1 !v1x1 = 0

†13.70 C° !2v1x1 = 0

†13.71 2v1x1 = C°

†13.72 x1 = C°/2v1

In this example, the demand for input x1 is a function only of its own price and the
dollars available for the purchase of x1. However, this conclusion is a result of the particular
set of coefficients or parameters chosen for the production function and does not hold in the
general case. 

The input demand function for x2 could be derived analogously. The price of x2 (v2)
would have appeared in the input demand function if both x1 and x2 appear in each MPP. The
price of the output does not enter. The constrained maximization problem assumes that the
output level defined by the isoquant tangent to the budget constraint will be produced
regardless of the output price. The possibility that the farmer may wish to instead shut down
is not recognized by the calculus. 
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13.7 Comparative Statics and Input Demand Elasticities

Consider a general profit function for the two-input case

†13.73) B = pf(x1,x2) - v1x1 - v2x2.

The first order profit-maximizing conditions are
 †13.74)  MB/Mx1 = pf1 - v1 = 0

†13.75)  MB/Mx2 = pf2 - v2 = 0.

How does the use of the inputs x1 and x2 vary with prices of the inputs v1 and v2 and with the
output price p.  To determine this, it is necessary to take the total differential of (13.74) and
(13.75), treating the input quantities and the prices of both the inputs and the outputs as
constants. 

The elasticity of demand for input x1 with respect to its own price is (dx1/dv1)(v1/x1) =
dlnx1/dlnv1; with respect to the price of the second input is (dx1/dv2)(v2/x1) = dlnx1/dlnv2; with
respect to the product price is (dx1/dp)(p/x1) = dlnx1/dlnp.  The sign on each of these
elasticities determines whether the firm will increase or decrease its use of the input or factor
of production with respect to a change in each of the prices.

The prices and input quantities are always positive, and hence, do not affect the sign on
each elasticity. However, the sign on dx1 and dx2 when either v1, v2, or p changes determines
the sign on the corresponding  elasticity. Hence, dx1 and dx2 must each be calculated assuming
a change in v1 (dv1), a change in v2 (dv2) and a change in p (dp).
  

To do this, the total differential of equations (13.74) and (13.75) is calculated, allowing
input quantities and the prices of inputs and the output to vary. The result is.

†13.76) pf11dx1 + pf12dx2 = dv1 - f1dp

pf21dx1 + pf22dx2 = dv2 - f2dp

First, equation 13.76 is solved. It is easier to employ matrix notation to do this.

Solving for dx1 and dx2,
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Equation (13.78) can be solved for dx1 or dx2 by using Cramer's rule.  For example, dx1
is

Since by Young's theorem, f12 = f21, then 

Notice that p2 is always positive. Furthermore, for second order conditions to be met for profit
maximization, the quantity  f11f22 -f12

2 must always be positive. Therefore, the bottom half of
equation (13.80) must always be positive. Hence, the sign on dx1 is conditional on the sign on
the top half of equation (13.80).

First, suppose that the input's own price increases, while other prices are held constant.
Thus, dv1 increases, but dv2 and dp are assumed to be zero. Equation (13.80) becomes

Therefore,

Since the bottom half of equation (13.82) is always positive, the sign on dx1/dv1 depends
entirely on the sign on f22. The second derivative f22 is the slope of MPPx2, which must be
negative to fulfill the second order conditions for profit maximization derived by
differentiating equations (13.74) and (13.75).  Therefore, without exception, if the first and
second order profit-maximizing conditions are fulfilled, then the firm will always use less of
an input in response to an increase in the input's own price.  Since the own-price input
elasticity of demand is defined as (dx1/dv1)(v1/x1),  and v1/x1 is always positive, the input's
own-price elasticity of demand is therefore always negative.

Now consider the demand for input x1 in response to an increase in the price of the
product, p.  Equation (13.81) becomes
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Rearranging,

What is known about the sign on equation (13.84)?  Once again the bottom half of the fraction
must be positive in order to fulfill the second order conditions for profit maximization.  We
know that if the inputs have positive prices, then both f1 and f2 must be positive, since MPPx1

and MPPx2 are always positive at the point of profit maximization.  The second derivative, f22
(the slope of MPPx2), is always negative for a maximum.  Therefore the term -f1f22 is always
positive.  Since f2  is also positive, the sign on equation (13.84) depends in part on the sign on
f12. Only if f12 is negative  is there a possibility  that dx1/dp could be negative. If f12 is negative,
then the sign on dx1/dp will be negative if the absolute value of f2f12 is greater than f1f22.

Clearly, we cannot conclude that the firm will always use more of x1 in response to an
increase in the output price.  However, the circumstances under which f12 would be negative
enough for the firm do decrease its use of x1 in response to an increase in the product price are
quite rare.  To illustrate, it is helpful to understand the economic interpretation of the cross
partial f12. The cross partial f12  is the change in MPPx1 with respect to an increase in the use
of x2. (By Young's theorem, f12 is also the change in the MPPx2 with respect to an increase in
the use of x1.) In other words, if the use of x2 is increased, f12 tells us by how much this
increase will affect MPPx1.

Consider three production functions. The first is

(13.85) y = x1
" + x2

$ .  

For equation (13.85), since there are no cross products (interaction terms containing the
product of x1 and x2), f12 is zero. In general, this will be true for all additive functions that do
not include interaction terms (cross products) between the two inputs.

Suppose, however, that equation (13.85) was modified such that 

(13.86) y = x1
" + x2

$ + *x1x2.

For equation (13.86), f12 could be negative if * were negative, but this would mean that an
increase in the use of one of the inputs decreased the productivity of the other input. Even if
* were negative, it would need to be quite negative if the absolute value of f2f12 were to be
greater than greater than f1f22. This means that for the elasticity of demand for input x1 to be
negative with respect to the price of the product, increases in the use of input x2 would need
to result in a substantial decline in MPPx1!  

Finally, consider a Cobb-Douglas type function

(13.87) y = Ax1
"x2

$.

Assuming that " and $ are positive, f12 will always be positive.  That is, an increase in the use
of x2 cannot decrease the marginal productivity of x1. The reader may verify the sign on f12 for
other production functions in this book.
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The firm's response to changes in the price of a second input depends only on the sign
on f12, that is, whether input x2 is a substitute or a complement to input x1. To illustrate,
assume a positive change in the price of the second input v2, and therefore that dv2 is positive.
Then,

Therefore,

If f12 is positive, the firm will decrease its use of input x1 in response to an increase in the
price of the second input (v2).  In this instance, the inputs are technical complements and
increases in the use of x2 increase MPPx1. If f12 is negative (however near zero) the firm will
increase its use of x1 in response to an increase in the price of the second input. In this
instance, the inputs are technical substitutes. For the production function represented in
equation (13.86), the inputs are technical complements if * > 0, but technical substitutes if
* < 0.

By Young's theorem, f12 equals f21, and as a consequence, dx1/dv2 equals dx2/dv1. As a
result, the elasticity of demand for input x1 with respect to a change in the price of input x2
is always exactly equal to the elasticity of demand for input x2 with respect to a change in the
price of input x1.  This is the symmetry of the cross-price input demand elasticities. 

13.8 Concluding Comments

This chapter has shown how demand functions for inputs or factors of production can
be obtained from the production function for a product. A key assumption of the model of
pure competition, that the prices for both inputs and outputs be constant and known with
certainty, was made throughout the analysis. The demand for an input is then determined only
by the input and output prices and the coefficients or parameters of the underlying production
function. 

Notes
1. The definitions for technical complements, technical substitutes, and technical

independence proposed here are quite different from those suggested in Doll and Orazem (pp.
106!107). Doll and Orazem argue that technical complements must be used in fixed
proportion to each other, resulting in isoquants consisting of single points or possibly right
angles. Downward sloping isoquants indicate that inputs are technical substitutes. By the Doll
and Orazem definition, most inputs are technical substitutes, not complements. In all three
cases specified in this text, isoquants can be downward sloping.
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Problems and Exercises

1. Assume that the production function is y = x0.5. The price of the input is $2, and the price
of the output is $5. What is the profit-maximizing level of use of x? What is the own-price
elasticity of demand for input x? What is the output-price elasticity of demand for input x?

2. Find the demand function for input x under an alternative set of prices for x. Graph the
function. Now increase the price of y to $7 per unit. Graph the function again. Now decrease
the price of y to $3 per unit. Again graph the function. 

3. Suppose that the production function is given as y = 0.3x. Is there a demand function for
input x? Explain.

4. Suppose that the production function is given as y = x2. Is there a demand function for input
x? Explain.

5. Suppose that the production function is given as

y = x1
0.3x2

0.9 

Find  the input demand function for x1 assuming that input x2 is allowed to vary. What
happens to the demand for x1 when the price of x2 declines? What is the own-price elasticity
of demand for input x1? What is the cross-price elasticity of demand for x1 (the elasticity of
demand for input x1 when the price of input x2 changes)? What is the output or product-price
elasticity of demand for input x1?

6. Assume that the production function is 

y = x1
0.5x2

0.5

The price of y is $10 per unit, and the price of x1 and x2 are each $2 per unit. How much of
each of x1 and x2 would the manager demand if he or she had but $100 to spend on x1 and x2?
Now suppose that the price of x1 increases to $10 per unit, and the manager has the same
$100 to spend. How much of x1 and x2 would the manager demand?

7. Verify that for the profit maximizing firm, regardless of the specific production function
employed,  the sum of the elasticities of demand with respect to the input's own and the other
input prices plus the elasticity of demand for the input with respect to the product price equals
zero. That is, verify that all input demand functions must be homogeneous of degree zero with
respect to product and all factor prices.

Hint: First multiply equation (13.82) by v1/x1, equation (13.84) by p/x1 and equation (13.89)
by v2 /x1. Then remember that for the profit-maximizing firm, the MPP for each input equals
the respective factor/product price ratio.

8. Suppose that the production function that generated the isoquants in Figure 13.2 was
equation 13.86. For each case, what must be the value of *?
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