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18
General Multiple-Product 
and Multiple-Input
Conditions
The necessary and sufficient conditions for maximization and minimization developed for
the factor-factor model in Chapter 8 and for the product-product model in Chapter 16, can
be extended to accommodate any number of inputs and outputs. This chapter illustrates three
models. The first model extends the two-input factor-factor model  to more than two inputs.
The second model extends the two-output product-product model to more than two outputs.
The third model combines the factor-factor and product-product models using many different
inputs and outputs to derive a general set of conditions for constrained revenue maximization
and global profit maximization.  

Key terms and definitions:

Categorization of Inputs
First-Order Conditions
Second-Order Conditions
Necessary!Conditions
Sufficient-Conditions
Bordered Principal Minor
Resource Endowment
Input Requirements Function
Implicit Production Function
General Equimarginal Return Principle
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18.1 Introduction

The models that have been developed can be extended to accommodate any number of
inputs and outputs. Farmers usually operate in a situation where many  inputs  are used to
produce  many different outputs. A general set of rules for allocation of inputs and outputs
is needed. In this chapter the factor-factor and product-product models are extended to
accommodate more than two inputs and outputs. A general set of rules are developed that
would apply in a multiple-product, multiple-input setting.

18.2 Multiple Inputs and a Single Output

Production economists frequently rely on  models in which only two factors of
production are used. However, there are few if any production processes within agriculture
that use only two inputs. The inputs to a production process  within agriculture are usually
quite diverse. 

For example, a production function for a particular crop might include inputs such as
land,  the farmer's labor, hired labor, fertilizer, seed,  chemicals (insecticides and herbicides),
tractors, other farm machinery, and irrigation water. A production function for a particular
livestock enterprise might include as inputs such as land, the farmer's labor, hired labor,
feeds such as  grain and forage, buildings, veterinary services and supplies, and specialized
machinery and equipment.

If the production economist were to rely on the two-input factor-factor model, the
inputs used for the production of either crops or livestock would need to be combined into
only two aggregate measures. Here problems arise, for the inputs listed above are very
different from each other. A production function calls for inputs measured in physical terms.
If such inputs as tractors and fertilizer are to be aggregated, they would have to be measured
in dollar terms. Moreover, the tractor provides a stream of services over a number of years,
while a high percentage of applied fertilizer is used up during the crop year and a question
arises as to how the aggregation for the production function for a single cropping season
should take place.

A better approach might be to categorize inputs as fixed or variable and then to extend
the theory such that more than two variable inputs could be included in the production
function.  In such an  approach, production and variable cost functions include only those
inputs that the farmer would normally treat as variable within the production season. For
crops, seed, fertilizer, part time hired labor paid an hourly wage, herbicides and insecticides
would be included, but inputs such as tractors and machinery, full time salaried labor, and
land would be treated as fixed within the production function and would not be included in
the production function and variable-cost equation. 

The categorization of inputs as fixed or variable depends on the use which the farmer
might make of the marginal conditions proposed by the theory. For example, if the farmer
wishes to make use of the marginal conditions only to determine the proper quantity of
fertilizer, pesticides, herbicides and part-time hired labor to use in the production of a
particular crop, the remaining inputs should be treated as fixed and not as part of the
maximization process. 

However, such a model would not provide the farmer with any information with respect
to questions such as whether or not the renting of additional land would be profitable. If the
farmer wanted the model to provide information with regard to the amount of land that could
be rented at a profit, the acres of land could be treated as variable with a cash rent charge per
acre as the price in the cost function.
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Assume that a decision has been made with respect to which inputs are to be treated as
variable such that the farmer can make an allocation decision, and the  n different inputs in
the production function represent only those categorized as  variable.  A production function
using n different variable inputs can be written as

†18.1 y = f(x1, ..., xn)

where n is the inputs to the production process to be treated as variable and under the control
of the farmer.  Each x represents one of the specific inputs used in the production process,
whereas y may be the output from either a specific crop or livestock enterprise.  

The cost equation for n inputs treated as variable by the farmer in a purely competitive
environment is

†18.2 C = v1x1 + ... + vnxn = Evixi  for i = 1, ..., n

A general Lagrangean formulation for revenue maximization allowing for multiple
inputs is

†18.3 L = pf(x1,...,xn) + 8(C° ! Evixi)

where p is the output price.

n different inputs can be varied, and the farmer can control the amount to be used of
each.  Let

    f1 denote the MPP of x1 holding all other inputs constant

    fi denote the MPP of xi holding all other inputs constant

    fn denote the MPP of xn holding all other inputs constant  

Then the first-order conditions for constrained revenue maximization in a many input setting
requires that

†18.4 pf1/v1 = ... = pfi/vi = ... = pfn/vn = 8

†18.5 pMPPx1/v1 = ... = pMPPxi/vi = ... = pMPPxn/vn  = 8

†18.6 VMPx1/v1 = ... = VMPxi/vi = ... = VMPxn/vn = 8

First-order conditions for constrained revenue maximization in a many!input setting
require that all ratios of VMP for each variable input  to the respective  variable input price
be equal and equal 8, the imputed value of an additional dollar available for the purchase of
x. If the Lagrangean multiplier 8 is 1, a point of global profit maximization on the input side
has been achieved. Conditions presented in equations †18.4 - †18.6  represent the general
equimarginal return principle in the n! factor case and are consistent with those developed
in the two factor case.

For every pair of inputs i and j,

†18.7 dxj/dxi = vi/vj
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†18.8 MRSxixj = vi/vj

The slope of the isocost line must be equal to the slope of the isoquant for every pair of
inputs. Equations †18.7 and †18.8 define a point of least-cost combination on the expansion
path. These conditions are also consistent  with those obtained in the two factor setting.

The second-order conditions for a constrained maximization in the n!factor case differ
somewhat from those derived in the two-factor setting.  In the two-factor setting the
determinant of the matrix of partial derivatives obtained by differentiating each of the
first-order conditions with respect to x1, x2, and the Lagrangean multiplier was always
positive. In the n!factor case, the second-order conditions require that determinant of the
following matrix have the sign associated with (!1)n, where n is the number of inputs

†18.9 f11 ... f1i ... f1n  !v1

  .    .    .
   .    .    .
    .    .    . 

fi1 ... fii ... fin  !vi

  .    .    .
  .    .    .
  .    .    .

fn1 ... fn1 ... fnn  !vn

              !v1 ... !vi ... !vn     0

In the two-input setting, the determinant of this matrix must  be positive, but negative
for three inputs, positive for four inputs, and so on. If the number of inputs is even, the
determinant will be positive. If the number of inputs is odd, the determinant will be
negative.1 Moreover, the bordered principal minors  in the n!input case alternate in sign. To
illustrate, the bordered principal minors for the three-input case and the required signs for
the determinants are

†18.10 f11  !v1 f11  f12  !v1   f11  f12  f13  !v1
    < 0

!v1   0   f21  f22  !v2   > 0   f21  f22  f23  !v2  < 0   

                      !v1  !v2   0   f31  f32  f33  !v3

          !v1  !v2  !v3   0

The first-order conditions represent the necessary conditions for constrained revenue
maximization in the many!input setting. If the first order conditions hold, the second-order
conditions as specified by the required signs on the determinants above are necessary and
sufficient for constrained revenue maximization in a many input setting.  Second-order
conditions rule out points of revenue minimization as well as saddle-point solutions.  If the
first- and second-order conditions hold and  the Lagrangean multiplier is equal to 1, the
global point of profit maximization on the input side has been found.     
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18.3 Many Outputs and a Single Input

Most farmers do not restrict production to a single output, but are involved in the
production of several different outputs. The endowment of resources or inputs available to
a farmer may differ markedly from one farm to another.  Usually, it is not the physical
quantities of inputs that are restricted, but rather the dollars available for the purchase of
inputs contained within the bundle.

An input requirements function using a single-input bundle to produce many different
outputs can be written as

†18.11  x = g(y1, ..., yi, ..., ym)

where m is the number of outputs of the the production process.

Multiplying by the weighted price of the input bundle v yields

†18.12  vx = vg(y1, ..., yi, ..., ym)

where vx = C°, the total dollars available for the purchase of inputs used in the production
of each output.

A general revenue equation for m different outputs produced in a purely competitive
environment is

†18.13 R = p1y1 + ... + pmym = E piyi  for i = 1, ..., m

A general Lagrangean formulation for revenue maximization allowing for multiple
outputs is

†18.14 L = p1y1 + ... + piyi + ... + pmym + R[vx° ! vg(y1, ..., yi, ...,ym)]

where vx° = C°, the money available for the purchase of the input bundle x.

Let gi denote one over the MPP of x in the production of yi holding all other outputs
constant.  Then the first order conditions for constrained revenue maximization in a many
output setting require that

†18.15 p1/g1v = ... = pi/giv = ... = pm/gmv = R

†18.16 p1MPPxy1/v =... = piMPPxyi/v = ... = pmMPPxym/v = R

†18.17 VMPxy1/v = ... = VMPxyi/v = ... = VMPxym/v = R

where v is the price of the input.

First-order conditions for constrained revenue maximization in a many output setting
require that all ratios of the VMP of x to the price of the input bundle (v) be equal, and equal
R, the imputed value of an additional dollar available for the purchase of x. If the
Lagrangean multiplier R is 1, a point of global profit maximization on the output side has
been achieved.
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Dollars available to the farmer and used for the purchase of the input bundle must be
allocated in such a way that the last dollar spent in the production of each output returns the
same amount for all the possible different outputs. In other words, if the farmer has found
the optimal solution in the constrained case, then the last dollar spent in the production of
each output will generate the same return, whether the output is corn, beef, soybeans wheat
or milk.   

For every pair of outputs i and j,

†18.18 dyj/dyi = pi/pj

†18.19 RPTyiyj = pi/pj

The slope of the isorevenue line must be equal to the slope of the product
transformation function for  every pair of outputs. This equation defines a point on the output
expansion path.

Second-order conditions require that determinant of the following matrix have the sign
associated with (!1)m, where m is the number of outputs

†18.20 !Rvg11 ... !Rvg1i ... !Rvg1m !vg1

   . . .     .
   . . .     .
  . . .     . 

             !Rvgi1 ... !Rvgii ... !Rvgim  !vgi

   . . .     .
   . . .     .
   . . .     .

            !Rvgm1 ... !Rvgm1 ... !Rvgmm  !vgm

                !vg1  ...  !vgi    ...   !vgm         0

In the two-output setting, the determinant of this matrix must be positive, but negative
for three outputs, positive for four outputs, and so on. This second-order condition rules out
points of revenue minimization as well as saddle-point solutions. Again, the bordered
principal minors must alternate in sign.

The first-order conditions comprise the necessary conditions for constrained revenue
maximization in a many input setting. If the required signs for the determinant of equation†18.20 and the bordered principal minors also hold, the conditions are  sufficient. If the
Lagrangean multiplier is equal to 1 and these sufficient conditions have been met, the global
point of profit maximization on the input side has been found.  The farmer is globally
maximizing profits if the last dollar spent for the input bundle returns exactly a dollar in each
farm enterprise.    

18.4 Many Inputs and Many Outputs

The most realistic setting is one in which the farmer uses many different inputs to be
treated as variable in the production of many different products. The farmer faces a series
of decisions. Normally, he or she is constrained by limitations in the availability of dollars
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that can be used for the purchase of inputs, so the total dollars used for the purchase of inputs
must not exceed some predetermined fixed level. The farmer must decide how the available
dollars are to be used in the production of various commodities such as corn, soybeans,
wheat, beef, or milk. The mix of commodities to be produced must be determined. The
farmer must also decide the allocation of dollars with respect to the quantities of variable
inputs to be used in each  crop or livestock enterprise. Therefore, the mix of inputs to be used
in the production of each of the many enterprises must be determined. 

Marginal analysis employing Lagrange's method can be used to solve the problem
under conditions in which many different factors or inputs to the production process  are
used in the production of many different commodities. The rules developed in the
many!input, many!output case are the same as those derived in the two-factor, two-product
case presented in Chapter 17. However, the  mathematical presentation becomes somewhat
more complicated. 

In the problem with two inputs and two products, the equality that must hold contained
four expressions, each representing a ratio of VMP for an input used in the production of a
product relative to the price of an input. In a general setting allowing for many more inputs
and outputs, there will be many more expressions in the equality. If there are m different
outputs produced and every possible output uses some of each of the n different inputs, there
will be n times m expressions in the equality representing the first-order conditions. For
example, if a farmer uses six inputs in the production of four different outputs, the 24 ratios
of VMP's to input prices must be equated. 

Suppose that the farmer uses n different inputs in the production of m different outputs.
The farmer wishes to maximize revenue subject to the constraints imposed by the technical
parameters of the production function, as well as the constraints imposed by the availability
of dollars for the purchase of inputs. The revenue function is

†18.21 R = p1y1 + ... + pmym

The production function linking inputs to outputs is written in its implicit form2

†18.22 H(y1, ..., ym; x1, ..., xn) = 0

In the implicit form, a function of both inputs and outputs (H) is set equal to zero. The inputs
are treated as negative outputs,  so each x has a negative sign associated with it.

The Lagrangean maximizes revenue subject to the constraint imposed by the technical
parameters of the production function, and the availability of dollars for the purchase of
inputs. The Lagrangean function is

†18.23 L = p1y1 + ... +pmym + R[0 ! H(y1, ..., ym; x1, ..., xn)]

    + 8[C° + v1x1 + ... + vnxn]

Since each input has a negative sign associated with it, it is appropriate that the second
constraint be written as C° + Evixi rather than as C° ! Evixi.
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Differentiating first with respect to outputs, the first order or necessary conditions are

†18.24 ML/My1 = p1 ! RMH/My1    = 0

 .  .  .     .
 .  .  .     . 

  .  .  .     .

    ML/Myi = pi ! RMH/Myi = 0

 .  .  .      .
 .  .  .      . 

 .  .  .      . 

ML/Mym = pm ! RMH/Mym = 0 

For every pair of outputs, i not equal to j

†18.25 dyj/dyi = pi/pj

The slope of the product transformation function or rate of product transformation must
equal the slope of the isorevenue line or inverse output price ratio.  Moreover

†18.26 (MH/My1)/p1 = ... = (MH/Myi)/pi = ... = (MH/Mym)/pm =  1/R

Differentiating with respect to inputs, the first order conditions are

†18.27 ML/Mx1 = !RMH/Mx1 + 8v1 = 0

     . .   .    .
     . .   .    . 
     . .   .    .

 ML/Mxi = !RMH/Mxi + 8vi = 0

     . .   .    .
     . .   .    .
     . .   .    .  

 ML/Mxn = !RMH/Mxn + 8vn = 0

For every pair of inputs, i not equal to j

†18.28 dxj/dxi = vi/vj 

The marginal rate of substitution must be equal to the corresponding inverse price ratio.
Furthermore

†18.29 R(MH/Mx1)/v1 = ... = R(MH/Mxi)/vi = ... = R(MH/Mxn)/vn = 8

But
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†18.30 R = p1/(MH/My1) = ... = pi/(MH/Myi) = ... = pm/(MH/Mym)  

The m different expressions for R from equation †18.30 can be substituted each time R
appears in equation †18.29. The multiplier R appears in equation †18.29 n different times,
so the required m times n expressions are possible.

†18.31 pi(MH/Mxj)/(vj MH/Myi)  =  (pi Myi/Mxj)/vj   =   piMPPxjyi/vj

or

†18.32              p1MPPx1y1/v1 =... =   piMPPx1yi/v1 = ... =   pmMPPx1ym/v1  

   . .           .
  . .           .
   . .               . 

          = p1MPPxjy1/vj =... =   piMPPxjyi/vj = ... =   pmMPPxjym/vj  

   . .           .
   . .           . 
   . .           . 

         = p1MPPxny1/vn =... =   piMPPxnyi/vn = ...         =   pmMPPxnym/vn = 8

The ratios of the values of the marginal products to the respective input prices must be
the same for each input in the production of each output and equal to the Lagrangean
multiplier 8. The Lagrangean multiplier 8 is the imputed value of an additional dollar
available for the purchase of inputs, allocated according to these conditions. A value for the
Lagrangean multiplier 8 of 1 would imply global profit maximization in this setting.

Second-order conditions  for the multiple-input, multiple-product case are not presented
here, but would not be at variance with the second-order conditions presented earlier in the
chapter.  The final conclusion in the multiple-input, multiple-product setting is entirely
consistent with each of the   marginal conditions developed earlier in the text. The rules with
respect to input allocation across various outputs can be looked upon as extensions to the
simpler models rather than as something different. 

18.5 Concluding Comments

This chapter has developed a general equimarginal return principle or rule that applies
in a situation where a farmer uses many different inputs in the production of many different
outputs. While the underlying  conclusions in the case in which many factors are used to
produce many different products do not differ from the conclusions reached in Chapter 17
for the two- input, two-output case, the derivation of these conclusions becomes somewhat
more complicated. If n inputs are each used in the production of m different outputs, then n
times m different terms will appear in the equimarginal return equation. 

Since farmers usually use several different inputs in the production of a number of
different outputs, the equimarginal return expressions developed in this chapter perhaps
come closest to applying to the actual  situation under which most farmers operate.  A farmer
will have found a constrained maximization solution if the ratio of VMP to input price is the
same for every input in the production of every output. Global profit maximization occurs
when this ratio is 1 for all inputs and all outputs.  
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Notes
1. The slope of MPP or f11 is negative in stage II of the production function. If there are

two inputs, f22 is also negative in stage II. If there are three inputs, f33 is also negative in stage
II.  Thus

      f11 < 0

   f11f22 > 0

    f11f22f33 < 0

and so on. The fact that the required  sign on the determinant changes  as the number of
inputs increases is a direct result of the fact that MPP is declining within stage II of the
production function, where the optimal solutions would be found that meet both necessary
and sufficient conditions for a maximum.
2. A function may be written in its implicit form. For example, the production function y =
f(x1) can be written in its implicit form as h(x1, y) = 0. However, if the implicit function h(x1,
y) = 0 is to  be written  as an  explicit  production function y = f(x1), or as the explicit cost
function in physical terms x1 = f!1(y), then the partial derivatives Mh/Mx1 and Mh/My must exist
and be nonzero. 

Problems and Exercises

1. Are the necessary and sufficient conditions  for finding a point representing a solution to
the constrained revenue maximization problem the same in an n!input,  one-output setting,
as in a two-input,  one-output setting?   Explain.

2. Are the necessary and sufficient conditions for finding a point representing a solution to
the constrained revenue maximization problem the same in a  one-input, n!output setting
as in a one-input, two-output setting?   Explain.

3. What do the necessary conditions for constrained revenue maximization require in an
n!output, n!input setting? What are the required sufficient conditions?

4. Suppose that in an n!input, n!output problem, the Lagrangean multiplier was found to
be 3 for all inputs used in the production of all outputs. Interpret this Lagrangean multiplier.
What if the Lagrangean multiplier were instead found to be 1? What would be the
interpretation of a Lagrangean multiplier of zero. Could the Lagrangean multiplier be
negative? Explain.


