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Production With 
One Variable Input
This chapter introduces the concept of a production function and uses the concept as a
basis for the development of the factor-product  model. An agricultural production function
in presented using graphical and tabular approaches. Algebraic examples of simple
production functions with one input and one output are developed. Key features of the
neoclassical production function are outlined. The concept of marginal and average
physical product is introduced. The use of the first, second, and third derivatives in
determining  the shape of the underlying total, marginal, and average product is illustrated,
and the concept of the elasticity of production is presented.  

Key terms and definitions:

Production Function 
Domain
Range
Continuous Production Function
Discrete Production Function
Fixed Input
Variable Input
Short Run 
Long Run
Intermediate Run
Sunk Costs
Law of Diminishing (Marginal) Returns
Total Physical Product (TPP)
Marginal Physical Product (MPP)
Average Physical Product (APP)
)y/)x
Sign
Slope
Curvature
First Derivative
Second Derivative
Third Derivative
Elasticity of Production
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2.1 What Is a Production Function?

A production function describes the technical relationship that transforms inputs
(resources) into outputs (commodities). A mathematician  defines a function as a rule for
assigning to each value in one set of variables (the domain of the function)  a single value
in another set of variables (the range of the function). 

A general way of writing a production function is

†2.1 y = f(x)

where y is an output and x is an input. All values of x greater than or equal to zero
constitute the domain of this function. The range of the function consists of each output
level (y) that results from each level of input (x) being used.  Equation †2.1 is a very
general form for a production function. All that is known about the function f(x) so far is
that it meets the mathematician's definition of a function.  Given this general form, it is not
possible to determine exactly how much output (y) would result from a given level of input
(x). The specific form of the function f(x) would be needed, and f(x) could take on many
specific forms.

Suppose the simple function

†2.2 y =  2x.

For each value of x, a unique and single value of y is assigned. For example if x = 2, then
y = 4; if x = 6 then y = 12 and so on. The domain of the function is all possible values for
x, and the range is the set of y values corresponding to each x. In equation †2.2, each unit
of input (x) produces 2 units of output (y).

Now consider the function

†23               
It is not possible to take the square root of a negative number and get a real number. Hence
the domain (x) and range (y) of equation †2.3 includes only those numbers greater than or
equal to zero. Here again the function meets the basic definition that a single value in the
range be assigned to each value in the domain of the function. This restriction would be
all right for a production function, since it is unlikely that a farmer would ever use a
negative quantity of input. It is not clear what a negative quantity of an input might be.

Functions might be expressed in other ways. The following is an example:

If x = 10, then y = 25.
If x = 20, then y = 50.
If x = 30, then y = 60.
If x = 40, then y = 65.
If x = 50, then y = 60.

Notice again that a single value for y is assigned to each x. Notice also that there are two
values for x  (30 and 50) that get assigned the same value for y (60).  The mathematician's
definition of a function allows for this. But one value for y must be assigned to each x. It
does not matter if two different x values are assigned the same y value.

The converse, however, is not true. Suppose that the example were modified only
slightly:
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If x = 25, then y = 10.
If x = 50, then y = 20.
If x = 60, then y = 30.
If x = 65, then y = 40.
If x = 60, then y = 50.

This is an example that violates the definition of a function. Notice that for the value x =
60, two values of y are assigned, 30 and 50. This cannot be. The definition of a function
stated that a single value for y must be assigned to each x. The relationship described here
represents what is known as a correspondence,  but not a function. A correspondence
describes the relationship between two variables. All functions are correspondences, but
not all correspondences are functions.

Some of these ideas can be applied  to hypothetical data describing the production of
corn in response to the use of nitrogen fertilizer. Table 2.1 represents the relationship and
provides specific values for the general production function y = f(x).  For each nitrogen
application level,  a single yield is defined. The yield level is sometimes referred to as the
total physical product (TPP) resulting from the nitrogen that is applied.

Table 2.1 Corn Yield Response to Nitrogen Fertilizer
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

Quantity of Yield in
Nitrogen (Pounds/Acre) Bushels/Acre

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
       0 50
      40 75
      80 105
     120 115
     160 123
    200 128
     240 124
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

From Table 2.1, 160 pounds of nitrogen per acre will result in a corn yield or TPP of
123 bushels per acre.  The concept of a function has a good deal of impact on the basic
assumptions underlying the economics of agricultural production. 

Another possible problem exists with the interpretation of the data contained in Table
2.1. The exact amount of corn  (TPP) that will be produced if a farmer decides to apply 120
pounds of nitrogen per acre can be determined from Table 2.1, but what happens if the
farmer decides to apply 140 pounds of nitrogen per acre?  A yield has not been  assigned to
this nitrogen application level. A mathematician might say that our production function  y
= f(x) is discontinuous at any nitrogen application level other than those specifically listed
in Table 2.1. 

A simple solution might be to interpolate between the known values. If 120 pounds per
acre produces 115 bushels of corn, and 160 pounds of nitrogen produces 123 bushels of corn,
the yield at 140 pounds might be (115 + 123)/2 or 119 bushels per acre.  However,
incremental increases in nitrogen application do not provide equal incremental increases in
corn production throughout the  domain of the function.  There is no doubt that some
nitrogen is available in the soil from decaying organic material and nitrogen applied in
previous seasons, and nitrogen need not be applied in order to get back the first 50 bushels
of corn.

The first 40 pounds of nitrogen applied produces 25 additional bushels, for a total of
75 bushels, the next 40 pounds produces 30 bushels of corn, for a total of 105 bushels, but



Agricultural Production Economics16

the productivity of the remaining 40 pound increments in terms of corn production
declines. The next 40 pounds increases yield by only 10 bushels per acre, the 40 pounds
after that by only 8 bushels per acre, and the final 40 pounds by only 5 bushels per acre.

Following this rationale, it seems unlikely that 140 pounds of nitrogen would produce
a yield of 119 bushels, and a more likely guess might be 120 or 121 bushels.  These are
only guesses. In reality no information about the behavior of the function is available at
nitrogen application levels other than those listed in Table 2.1. A yield of 160 bushels per
acre at a nitrogen application level of 140 pounds per acre could result- or, for that matter,
any other yield.

Suppose instead that  the relationship between the amount of nitrogen that is applied
and corn yield is described as

†2.4 y = 0.75x + 0.0042x2 ! 0.000023x3 

where     y = corn yield  (total physical product) in bushels per acre

   x = nitrogen applied in pounds per acre

Equation †2.4 has some advantages over the tabular function presented in Table 2.1.
The major advantage is that it is possible to  calculate the resultant corn yield at any
fertilizer application level. For example, the corn yield when 200 pounds of fertilizer is
applied is 0.75(200) + 0.0042(2002) ! 0.000023(2003) =  134 bushels per acre.  

Moreover, a function such as this is continuous. There are no nitrogen levels where
a corn yield cannot be calculated. The yield at a nitrogen application level of  186.5 pounds
per acre can be calculated exactly. Such a function has other advantages, particularly if the
additional output resulting from an extra  pound of nitrogen is to be calculated. The yields
of corn at the nitrogen application rates shown in Table 2.1 can be calculated and are
presented in Table 2.2.

Table 2.2    Corn Yields at Alternative Nitrogen Application Rates
            for the Production Function y = 0.75x + 0.0042x2 ! 0.000023x3

))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
Quantity of Nitrogen, x       Corn Yield, y or TPP
            (lb/acre)       (bu/Acre)

))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
     0 0.0
   20 16.496

  40 35.248
   60 55.152
   80 75.104 

100 94.000
120 110.736
140 124.208
160 133.312
180 136.944
200 134.000
220 123.376
240 103.968

))))))))))))))))))))))))))))))))))))))))))))))))))))))))) 
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The corn yields (TPP) generated by the production function in Table 2.2 are not the
same as those presented in Table 2.1.  There is no reason for both functions to generate the
same yields.  A continuous function that would generate exactly the same yields as those
presented in Table 2.1 would be very complicated algebraically.  Economists like to work
with continuous functions, rather than discrete production functions from tabular data, in
that the yield for any level of input use can be readily obtained without any need for
interpolation. However, a tabular presentation would probably make more sense to farmers.

The yields generated in Table 2.2 also differ from those in Table 2.1 in another
important way. Table 2.1 states that if a farmer applied no nitrogen to corn, a yield of 50
bushels per acre is obtained. Of course, nitrogen is absolutely essential for corn to grow. As
indicated earlier, the data contained in Table 2.1 assume that there is some residual nitrogen
in the soil on which the corn is grown. The nitrogen is in the soil because of decaying
organic material and leftover nitrogen from fertilizers applied in years past. As a result, the
data in Table 2.1 reveal higher yields at low nitrogen application levels than do the data
contained in Table 2.2.

The mathematical function used as the basis for Table 2.2 could be modified to take this
residual nitrogen into account by adding a constant such as 50. The remaining coefficients
of the function (the 0.75, the 0.0042, and the !0.000023) would also need to be altered as
well. Otherwise, the production function would produce a possible but perhaps unrealistic
corn yield of 50 + 136.944 = 186.944 bushels per acre when 180 pounds of fertilizer were
applied.  For many production processes in agriculture, no input produces no output.
Consider the case of the production of beef using feed as an input. No feed would indeed
produce no beef. In the case of crop production, some yield will normally result without
chemical fertilizers. 

A production function thus represents the relationship that exists between inputs and
outputs.  For each level of input use, the function assigns a unique output level. When a zero
level of input is used, output might be zero, or, in some instances, output might be produced
without the input.

2.2 Fixed Versus Variable Inputs and the Length of Run

So far, examples have included only one input or factor of production. The general form
of the production function was

†2.5 y = f(x)

where y = an output 

x = an input

Equation †2.5 is an ultrasimplistic production function for agricultural commodities. Such
a function assumes that the production process can be accurately described by a function in
which only one input or factor of production is used to produce an output. Few, if any,
agricultural commodities are produced in this manner. Most agricultural commodities require
several, if not a dozen or more, inputs. As an alternative, suppose a production function
where there are several inputs and all but one are assumed to be held fixed at some constant
level.  The production function would thus become

†2.6 y = f(x1, *x2, x3, x4, x5, x6, x7).
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For example, y might be the yield of corn in bushels per acre, and x1 might represent
the amount of nitrogen fertilizer applied per acre. Variables x2, ..., x7 might represent each
of the other inputs used in the production of corn, such as land, labor, and machinery. 

Thus, in this example, the input x1 is treated as the "variable" input, while the remaining
inputs (x2, ..., x7) are assumed to be held constant at some fixed level. The "*" can be read as
the word "given".  As the use of x1 is "varied" or increased, units of the variable input x1 are
added to units of the fixed inputs x2, ..., x7.

How can it be determined if an input should be treated as fixed or  variable? A variable
input is often thought of as an input  that the farm manager can control or for which he or
she can alter the level of use. This implies that the farmer has sufficient time to adjust the
amount of input being used.  Nitrogen in corn production has often been cited as an example
of a variable input, in that the farmer can control the amount to be applied to the field.

A fixed input is usually defined as an input which for some reason the farmer  has no
control over the  amount available. The amount of land a farmer has might be treated as a
fixed input.

However, these distinctions become muddy and confused.  Given sufficient time, a
farmer might be able to find additional land to rent or purchase, or the farmer might sell
some of the land owned. If the length of time were sufficient to do this, the land input might
be treated as a  variable input.

The categorization of inputs as either fixed or variable is closely intertwined with the
concept of time. Economists sometimes define the long run as  time of sufficient length such
that all inputs to the production function can be treated as variable. The very short run can
be defined as a period of time so short that none of the inputs are variable. Other lengths of
time can also be defined. For example, the short run is a period of time long enough such
that a few of the inputs can be treated as variable, but most are fixed. The intermediate run
is long enough so that many, but not all inputs are treated as variable. 

These categories again are somewhat arbitrary. If an economist  were asked "How long
is the short run?", the answer would probably be that the short run is a period of time
sufficiently long that some inputs can be treated as variable, but sufficiently short such that
some inputs can be treated as fixed. Does this imply a length of time of a day, a week, a
month, or  a crop production season? The length of time involved could be any of these.

Once fertilizer has been applied, a farmer no longer has control over application levels.
The input that was previously classified as variable becomes fixed. Seed before planting is
classified as a variable input.  Once it is planted in the ground, seed can no longer be treated
as a variable input.

Some production economists have argued that inputs should not be arbitrarily
categorized as either fixed or variable. These arbitrary categories can be highly misleading.
Production economists argue  that in the case of crop production, prior to planting, nearly
all inputs are variable. Farmers might rent additional land, buy or sell machinery, or adjust
acreages of crops.  Here is where real decision making can take place. Once planting begins,
more and more of the inputs previously treated as variable become fixed. Tractor time and
labor for tillage operations cannot be recovered once used.  Acreages of crops once planted
largely cannot be altered.  Insecticides and herbicides are variable inputs before application,
but must be treated as fixed or "sunk" once they have been applied.  At the start of harvest,
the only variable input is the labor, fuel, and repairs to run the harvesting equipment and  to
move the grain to market.

This view treats the input categories as a continuum rather than as a dichotomy. As
inputs are used,  costs  are treated as sunk. Inputs, once used, can no longer be sold, or used
on the farm for a different enterprise, such as another crop.
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2.3 The Law of Diminishing Returns

The law of diminishing returns is fundamental to all of production economics.  The law
is misnamed. It should be called the law of diminishing MARGINAL returns, for the law
deals with what happens to the incremental or marginal product as units of input or resource
are added. The law of diminishing marginal returns states that as units of an variable input
are added to units of one or more  fixed inputs, after a point, each incremental unit of the
variable input produces less and less additional output. As units of the variable input are
added to units of the fixed inputs, the proportions change between fixed and variable inputs.
The law of diminishing returns has sometimes been referred to as the law of variable
proportions. 

For example, if incremental units of nitrogen fertilizer were applied to corn, after a
point, each incremental unit of nitrogen fertilizer would produce less and less additional
corn. Were it not for the law of diminishing returns, a single farmer could produce all the
corn required in the world, merely by acquiring all of the available nitrogen fertilizer and
applying it to his or her farm.

The key word in the law of diminishing returns  is additional.  The law of diminishing
returns does not state that as units of a variable input are added, each incremental unit of
input produces less output in total. If it did, a production function would need to have a
negative slope in order for the law of diminishing returns to hold.  Rather, the law of
diminishing returns refers to the rate of change in the slope of the production function. This
is sometimes referred to as the curvature of the production function.

Figure 2.1 illustrates three production functions. The production function  labeled A has
no curvature at all.  The law of diminishing returns does not hold here.  Each incremental
unit of input use produces the exact same incremental output, regardless of where one is at
on the function.  An example of a function such as this is

†2.7 y = 2x.

Each incremental unit of x produces 2 units of y, regardless of the initial value for x, whether
it be 0, 24, 100 or 5000. 

A slightly more general form of this function is

†2.8 y = bx.

where b is some positive number. If b is a positive number, the function is said to exhibit
constant marginal returns to the variable input x, and the law of diminishing returns does
not hold. Each incremental unit of x produces bx units of y.

The production function labeled B represents another kind of relationship.
Here each incremental unit of x produces more and more additional y. Hence the law of
diminishing returns does not hold here either.  Notice that as the use of input x is increased,
x becomes more productive, producing more and more additional y. An example of a
function that would represent this kind of a relationship is

†2.9 y = x2.
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Figure 2.1   Three Production Functions

A slightly more general form of the function might be

†2.10 y = axb, 

where both a and b are positive numbers, and b is greater than 1.  Notice that if b = 1, the
function is the same as the one depicted in diagram A of figure 2.1. The value of a must be
positive if the input is to produce a positive quantity of output.

The production function labeled C represents the law of diminishing returns throughout
its range.  Here each incremental unit of x produces less and less additional y. Thus each unit
of x becomes less and less productive. An example of a function that represents this kind of
relationship is
 

†2.11 .

Another way of writing equation †2.11 is
†2.12  y = x0.5.
 
Both are exactly the same thing. For this production function, total product (TPP or y) will
never decline.

A slightly more general form of the function is

†2.13 y = axb, 

where a and b are positive numbers. However, here b must be less than 1 but greater than
zero, if diminishing (marginal) returns are to hold. This function will forever increase, but
at a decreasing rate.
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2.4 Marginal and Average Physical Product

The marginal physical product (MPP) refers to the change in output associated with
an incremental change in the use of an input. The incremental increase in input use is usually
taken to be 1 unit.  Thus MPP is the change in output associated with a 1 unit increase in the
input. The MPP of input xi might be referred to as MPPxi.  Notice that MPP, representing the
incremental change in TPP, can be either positive or negative.

Average physical product (APP) is defined as the ratio of output to input. That is, APP
= y/x. For any level of input use (x), APP represents the average amount of output per unit
of x being used.

Suppose that the production function is 

†2.14 y = f(x).

One way of expressing MPP is by the expression )y/)x, where the ) denotes change. The
expression )y/)x can be read as "the change in y ()y) with respect to a change in x ()x)."
For the same function APP is expressed either as y/x or as f(x)/x.

 For the production function

†2.15 y = 2x, 

MPP is equal to 2. The change in y with respect to a 1 unit change in x is 2 units. That is,
each additional or incremental unit of x produces 2 additional or incremental units of y. For
each additional unit of x that is used, TPP increases by 2 units. In this example APP  equals
y/x, or APP equals 2x/x, or APP equals 2. For this simple production function MPP = APP
= 2 for all positive  values for x.

For the production function

†2.16 y = bx, 

MPP  is equal to the constant coefficient  b. The change in y with respect to a change in x is
b. Each incremental or additional unit of x produces b incremental or additional units of y.
That is, the change in TPP resulting from a 1 unit change in x is b. Moreover, APP = bx/x.
Thus, MPP = APP = b everywhere.

Marginal and average physical products for the tabular data presented in Table 2.1 may
be calculated based on the definition that MPP is the change in output ()y)  arising from an
incremental change in the use of the input ()x) and that APP is simply output (y) divided by
input (x). These data are presented in Table 2.3. MPP is calculated by first making up a
column representing the rate of change in corn yield. This rate of change might be referred
to as )y or perhaps )TPP. Then the rate of change in nitrogen use is calculated. This might
be referred to as )x. Since 40 pound units were used in this example, the rate of change in
each case for x is 40. The corresponding MPP over the increment is )y/)x. MPP might also
be thought of as )TPP/)x.  The corresponding  calculations are shown  under the column
labeled MPP in Table 2.3. For example, if nitrogen use increases from 120 to 160 pounds
per acre, or 40 pounds, the corresponding increase in corn yield will be from 123 to 128
bushels per acre, or 5 bushels. The MPP over this range is approximately 5/40 or 0.125. 

The MPP's are positioned at the midpoint between each fertilizer increment. The MPP's
calculated here are averages that apply only approximately at the midpoints between each
increment, that is at nitrogen application levels of  approximately 20, 60, 100, 140 and 180
pounds per acre. Since no information is available with respect to what corn might have



Agricultural Production Economics22

yielded at these midpoints, the calculated MPP's are at best approximations that might in
certain instances not be very accurate.

Table 2.3 also includes calculations for average physical product.  Average physical
product (APP) is defined as the ratio of output to input. That is, APP = y/x. For any level of
input use (x), APP represents the average amount of output per unit of x being used. In Table
2.3, APP is calculated by dividing corn yield by the amount of nitrogen. These calculations
are presented in the column labeled APP. The values for APP are exact at the specified levels
of input use. For example, the exact APP when 120 pounds of nitrogen is applied is 115/120
or 0.958. 

Table 2.3   MPP and APP for Corn Yield Response to Nitrogen Fertilizer
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
Quantity of          Yield of
Nitrogen           Corn
(lb/acre) )x         (bu/acre)  )y          MPP       APP
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

 0  50 50/0 = undefined
        40  25   25/40 =  0.625

 40  75 75/40 = 1.875
    40  30   30/40 =  0.75
 80     105 105/80 = 1.313 

40  10   10/40 =  0.25
120 115 115/120 = 0.958

 40   8   8/40 =  0.20
160  123     123/160 = 0.769
   40   5   5/40 =  0.125 
200 128     128/200 = 0.640

40  !4 !4/40 = !0.100
240 124     124/240 = 0.517

))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

2.5  MPP and the Marginal Product Function

The procedure described in section 2.4 for calculating MPP's is tedious and time
consuming. There exists a quicker and more accurate means for calculating MPP and APP
if the production function is given.

The MPP ()y/)x) represents the slope or rate of change in the production function. The
production function itself is sometimes referred to as total physical product (or TPP)
function. The MPP function refers to the function representing the rate of change in the TPP
function. If the slope of the TPP function were to be graphed, the result would be the MPP
function, representing the rate of change in the TPP  or the underlying production function
as the use of variable input x is varied. 
 

Given the TPP function (or production function), the MPP function (or marginal
product function) might  easily be obtained. Suppose again that the TPP or production
function is represented by

†2.17 y = 2x

Again, the incremental increase in y associated with a 1 unit increase in the use of x is 2
units. Hence MPP = 2. Moreover, )y/)x = 2. In this case the marginal product function is
equal to the constant 2. 
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Figure 2.2   Approximate and Exact MPP

For functions that do not have a constant slope, the expression )y/)x can only
approximate the slope of the function at a given point (Figure 2.2). The approximation can
be very crude and inaccurate if a large value for )x is chosen for the incremental change in
x. This approximation improves as the value for )x is chosen to be smaller and smaller. If
the exact slope or MPP of a production function is to be found at a specific point, the
magnitude of )x must become infinitely small.  That is, )x must approach zero.

One way for finding the exact slope of a production function at a particular point is
shown in Figure 2.2.  Suppose that the exact MPP at point D is desired. A line is drawn
tangent to the production function at D. which intersects the vertical axis at point B.  The
exact MPP at point D is equal to the slope of this line. This slope can be expressed as
BC/OA. The graphical approach is time consuming,  particularly if the MPP at several points
along the function are to be calculated. A better way might be to find the first derivative of
the production function. The first derivative of the production function is defined as the limit
of the expression )y/)x as )x approaches zero. As )x becomes smaller and smaller, )y/)x
becomes a better and better approximation of the true slope of the function. The first
derivative, dy/dx, represents the exact slope of the production function at a particular point.
In Figure 2.2, at point D, dy/dx = BC/OA.

For the production function

†2.18 y = f(x),  

the first derivative dy/dx  of equation †2.18  is a function that represents the slope, or rate of
change in  the  original production function and is sometimes written as

†2.19 dy/dx = fN(x) or f1, 
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where fN(x) or f1 represents the first derivative of, or the rate of change in the original
function. Another way of expressing these relationships is

†2.20 dy/dx = fN(x) = f1 = dTPP/dx = MPP.

All expressions refer to the rate of change in the original production or TPP function. For
the production function

†2.21 y = 2x

†2.22 dy/dx = dTPP/dx = MPP = 2

Throughout the domain of this production function, the rate of change is a constant 2. Each
additional unit of x produces 2 additional units of y. The first derivative of this production
function  [fN(x) or f1] is 2 for all values of x. Note that in this case dy/dx is exactly the same
as )y/)x. This is because the slope of the function is a constant 2,  not dependent on the
value of x.

Suppose the production function

†2.23 y = bx, 

where b is any positive number.  Again b is the MPP of x. The derivative of the production
function dy/dx is b. Each incremental unit of x will produce b units of y. If x is increased by
1 unit from any initial level, TPP will increase by b units. If b were negative, then TPP
would decrease, but this would be a silly production function because positive amounts of
x would result in negative amounts of y. It is not entirely clear what a negative bushel of corn
would look like. Again, b is constant, and dy/dx will always equal )y/)x.

Now suppose that the production function is represented by the equation

†2.24 y = 50 + 5.93 x 0.5.
 
The MPP of x for this function is not the same for every value of x. To calculate the MPP
at a particular value for x, not only the derivative of the production function is needed, but
also how much x is applied. Two simple rules can be used to find the derivative of any
production function similar to the one above.  

The first rule states that the derivative of any constant value in a function is 0. In this
case, the derivative of 50 is 0. The constant is an intercept term that places the function at
x = 0 on the y axis at 50. A constant does not affect the slope of the function.  The second
rule is that the derivative of any function of the general form

†2.25 y = bxn

can be found by the rule

†2.26 dy/dx = nbxn!1

where n and b are any numbers.  For example, the derivative of the function y = x2 is dy/dx
= 2x; the derivative of the function y = 3x4 is dy/dx = 3A4Ax3 or 12x3. If these functions were
production functions, their corresponding derivatives would be the corresponding marginal
product functions, representing the slopes or rates of change in the original production
functions. The derivative for the production function representing corn yield response to
nitrogen fertilizer [equation †2.26] is dy/dx = 0 + 0.5A5.93Ax!0.5, or dy/dx equals 2.965x!0.5.
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A number raised to a negative power is 1 over the number raised to the corresponding
positive power: for example,

†2.27 x!2 = 1/x2

In this case

†2.28 dy/dx = 2.965/x.5

or
(2.29)     dy/dx = 2.965/ x

If the amount of x to be applied is known, the corresponding TPP is 50 + 5.93x0.5, and
the corresponding MPP is 2.965/x0.5. In this case, MPP is specifically linked to the amount
of x that is used, as x appears in the first derivative. If this is the case, dy/dx will provide the
exact MPP but will not be the same as the approximation calculated by )y/)x.
 

Table 2.4 presents MPP's calculated by two methods from yield data obtained from this
production function [equation †2.24]. The first method computes the rate of change in the
yields for 40!pound fertilizer increments as was done in the earlier example (Table 2.3). The
second method inserts values for nitrogen application levels into the MPP function obtained
by taking the derivative of the original production function. The values chosen are at the
midpoints (20, 60, 100, 140 and 180 pounds of nitrogen per acre).

As is evident from Table 2.4,  the results using the two methods are not the same.
Method 1 provides the approximate MPP at the midpoint. However, for certain fertilizer
application levels (for example at 20 pounds per acre) the MPP using this first method is
very different from the MPP obtained by inserting the actual midpoint value into the MPP
function. This is because the production function is curvilinear, and the slope calculated
using method 1 is only  a crude approximation of the exact slope of the production function
over each 40!pound increment of fertilizer use.  

Table 2.4  MPP of Nitrogen in the Production of Corn 
         Under Two Alternative Approaches

))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
Quantity of Corn Yield   Average MPP      Exact MPP
Nitrogen (y or TPP)   Method Method
(lb/acre)    (bu/acre)      1     2

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
  0   50.0

0.9375   0.6630 (N = 20 lb/Acre)
 40   87.5

    0.3875   0.3827 (N = 60 lb/Acre)
 80  103.0

    0.3000   0.2965 (N = 100 lb/Acre)
120  115.0

    0.2500   0.2506 (N = 140 lb/Acre) 
160  125.0

    0.2225   0.2212 (N = 180 lb/Acre)
200  133.9

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
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As is evident from Table 2.4,  the results using the two methods are not the same.
Method 1 provides the approximate MPP at the midpoint. However, for certain fertilizer
application levels (for example at 20 pounds per acre) the MPP using this first method is
very different from the MPP obtained by inserting the actual midpoint value into the MPP
function. This is because the production function is curvilinear, and the slope calculated
using method 1 is only  a crude approximation of the exact slope of the production function
over each 40!pound increment of fertilizer use.  

The derivative of the function will provide the exact slope of the function at any
selected nitrogen application level.  Therefore, the calculated MPP values from method 2 are
highly accurate for the assumed levels of nitrogen use. Using method 2, the MPP can be
calculated at any selected level of fertilizer use (including the application levels of 40, 80,
140, 160, and 200 pounds per acre). Basic differential calculus is a powerful tool in
agricultural production economics.

Finally, assume that the production function describing corn yield response to
nitrogen fertilizer is the one used as the basis for the data contained in Table 2.5. That
function was

†2.30 y = 0.75x + 0.0042x2 ! 0.000023x3

Following the rules for differentiation, the marginal product function corresponding to
equation †2.30 is
†2.31 dy/dx =0.75 + 0.0084x ! 0.000069x2

Since APP is y/x, the corresponding APP function is

†2.32 y/x = (0.75x + 0.0042x2 ! 0.000023x3)/x 
      = 0.75 + 0.0042x ! 0.000023x2

Table 2.5 illustrates the exact APP and MPP values for equation †2.30 obtained by inserting
the amount of x (nitrogen) appearing in the first column of the Table into the MPP [equation†2.31] and APP †equation †2.32].
Table 2.5 Corn Yields, APP and MPP for y = 0.75x + 0.0042x2 ! 0.000023x3

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
  x  y (Corn)  APP of x,       MPP of x,
(Nitrogen)    or TPP       y/x             dy/dx

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
  0 0.0  undefined  0.7500
 20  16.496  0.8248  0.8904
 40  35.248  0.8812 0.9756
 60  55.152  0.9192  1.0056
 80  75.104  0.9388  0.9804

100 94.000  0.9400  0.9000
120 110.736 0.9228  0.7644
140 124.208 0.8872  0.5736
160 133.312 0.8332  0.3276
180 136.944 0.7608 0.0264
200 134.000 0.6700 !0.3300
220 123.376 0.5608 !0.7416
240 103.968 0.4332 !1.2084

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

2.6 A Neoclassical Production Function

Figure 2.3 illustrates a neoclassical production function that has long been popular for
describing production relationships in agriculture.  With this production function, as the
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Figure 2.3  A Neoclassical Production Function
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use of input x1  increases, the productivity of the  input at first also increases.  The function
turns upward, or increases, at first at an increasing rate.  Then a point called the inflection
point occurs.  This is where the function changes from increasing at an increasing rate to
increasing at a decreasing rate.  Another way of saying this is that the function is convex to
the horizontal axis  prior to the inflection point, but concave to the horizontal axis after the
inflection point. The inflection point marks the end of increasing marginal returns and the
start of diminishing marginal returns. Finally, the function reaches a maximum and begins
to turn downward. Beyond the maximum, increases in the use of the variable input x1 result
in a decrease in total output (TPP). This would occur in an instance where a farmer applied
so much fertilizer that it was actually detrimental to crop yields. 

2.7 MPP and APP for the Neoclassical Function

The MPP function changes as the use of input x1 increases.  At first, as the productivity
of input x1 increases, so  does its marginal product, and the corresponding MPP function
must be increasing (Figure 2.3). The inflection point marks the maximum marginal product.
It is here that the productivity of the incremental unit of the input x1 is at its greatest. After
the inflection point, the marginal product of x1 declines and the MPP function must also be
decreasing. The marginal product of x1 is zero at the point of output maximization, and
negative at  higher levels. Therefore, the MPP function is zero at the point of output
maximization, and negative thereafter.

Average physical product (APP) also changes as the use of x1 increases, although APP
is never negative. As indicated earlier, APP is the ratio of output to input, in this case y/x1
or TPP/x1. Since this is the case, APP for a selected point on the production function can be
illustrated by drawing a line  (ray) out of the origin of the graph  to the  selected point. The
slope of this line is y/x1 and corresponds to the values of y and x1 for the production function.
If the point selected on the function is for some value for x1 called x1*, then the APP at x1* is
y/x1*.

APP reaches a maximum at a point after the inflection point but before the point in
which output is maximized. Figure 2.3 illustrates several lines drawn out of the origin. The
line with the greatest slope is tangent to the production function at that point. Therefore it
also represents the slope of the production function at that point. The slope of each line
drawn from the origin to a point on the production  function represents the APP for the
function at that point, but only one line is tangent to and thus also represents the slope of the
production function at that point. It is here where marginal product must equal average
product, APP must equal MPP, and y/x = dy/dx. 

Call the point  x1° where  y/x = dy/dx.  At any point less than x1°, the slope of the
production function is greater than the slope of the line drawn from the origin to the point.
Hence APP must be less than MPP prior to x1°. As the use of x1 increases toward x1°, APP
increases, as does the slope of the line drawn from the origin. After x1°, the slope of the
production function is less than the slope of the line drawn from the origin to the point.
Hence MPP must be less than APP after x1°. As the use of x1 increases beyond x1°, the slope
of the line drawn from the origin to the point declines, and  APP must decline beyond x1°.
The slope of that line never becomes negative, and APP never becomes negative.

However, a line drawn tangent to the production function represents MPP and will have
a negative slope beyond the point of output maximization. APP is always non-negative, but
MPP is negative beyond the point of output maximization.



Production with One Variable Input 29

Figure 2.3 also illustrates the relationships that exist between the APP and the MPP
function for the neoclassical production function. The MPP function first increases as the use
of the input is increased, until the inflection point of the underlying production function is
reached (point A). Here the MPP function reaches its maximum.   After this point, MPP
declines, reaches zero when output is maximum (point C), and then turns negative. The APP
function increases past the inflection point of the underlying production function until it
reaches the MPP function (point B). After point B, APP declines, but never becomes
negative.

The relationships that hold between APP and MPP can be proven using the composite
function rule for differentiation. Notice that

†2.33 y = (y/x)Ax, or  TPP= APPAx in the original production or TPP function.

†2.34 dy/dx = y/x + [d(y/x)/dx]Ax 

or, equivalently,  MPP  = APP + (slope of APP)x.

If APP is increasing and therefore has a positive slope, then MPP must be greater than APP.
If APP is decreasing and therefore has a negative slope, MPP must be less than APP. If APP
has a zero slope, such as would be the case where it is maximum, MPP and APP must be
equal.

Figure 2.4 illustrates the TPP, MPP, and APP curves that are generated from the data
contained in Table 2.5.  The maximum of the production function corresponds to an output
level of 136.96 bushels of corn per acre, using a nitrogen application rate (x) of 181.60
pounds per acre.  The inflection point of this production function corresponding with the
maximum MPP occurs at an output level of 56.03 bushels of corn (y), with a corresponding
nitrogen application rate of 60.86 pounds per acre,  The APP maximum, where MPP
intersects APP, occurs at an output level of 85.98 bushels of corn per acre, with a
corresponding nitrogen (x) application rate of 91.30 bushels per acre.  The actual production
function illustrated from the data contained in Table 2.5 appears quite similar to the
neoclassical function illustrated in Figure 2.3.

2.8 Sign, Slope and Curvature
By repeatedly differentiating a production function, it is possible to determine

accurately the shape of the corresponding MPP function. For the production function

†2.35 y = f(x)

the first derivative represents the corresponding MPP function

†2.36 dy/dx = fN(x) = f1 = MPP

Insert a value for x into the function fN(x) [equation †2.36].  If fN(x) (or dy/dx or MPP) is
positive, then incremental units of input produce additional output. Since MPP is negative
after the production function reaches its maximum, a positive sign on fN(x) indicates that the
underlying production function has a positive slope and has not yet achieved a maximum.
If fN(x) is negative, the production function is downsloping, having already achieved its
maximum. The sign on the first derivative of the production function indicates if the slope
of the production function is positive or negative and if MPP lies above or below the
horizontal axis. If MPP is zero, then fN(x) is also zero, and the production function is likely
either constant or at its maximum. Figure 2.5 illustrates seven instances where the first
derivative of the TPP function is positive [(a) to (g)] and seven instances where the first
derivative is negative [(h) to (n)].
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Figure 2.4 TPP, MPP, and APP For Corn (y) Response to Nitrogen (x)
                  Based on Data Contained in Table 2.5

.  
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Figure 2.5   MPP’s for the Production Function y = f(x)

f1 = MPP; f2 = slope of MPP; f3 = curvature of MPP
 

The first derivative of the TPP function could also be zero at the point where the TPP
function is minimum. The sign on the second derivative of the TPP function is used to
determine if the TPP function is at a maximum or a minimum. If the first derivative of the
TPP function is zero and the second derivative is negative,  the production function is at its
maximum. If the first derivative of the TPP function is zero, and the second derivative is
positive,  the production function is at its minimum point. If both the first and second
derivatives are zero,  the function is at an inflection point, or changing from convex to the
horizontal axis to concave to the horizontal axis. However, all inflection points do not
necessarily have first derivatives of zero. Finally, if the first derivative is zero and the second
derivative does not exist,  the production function is constant.   

The second derivative of the production function is the first derivative of the MPP
function, or slope of the MPP function.  The second derivative (d2y/dx2 or fO(x) or f2) is
obtained by again differentiating the production function.

†2.37 d2y/dx2 = fO(x) = f2 = dMPP/dx
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If equation †2.37 is positive for a particular value of x, then MPP is increasing at that
particular point.  A negative sign indicates that MPP is decreasing at that particular point.
If fO(x) is zero, MPP is likely at a maximum at that point. In figure 2.4, the first derivative
of the MPP function (second derivative of the TPP function) is positive in (a), (b), and (c),
(l), (m),and (n); negative in (e), (f), (g), (h), (i), and (j), and zero in (d) and (k).

The second derivative of the MPP function represents the curvature of MPP and is the
third derivative of the original production (or TPP) function. It is obtained by again
differentiating the original production function

†2.38 d3y/dx3 = f“(x) = f3 = d2MPP/dx2

The sign on f“(x) for a particular value of x indicates the rate of change in MPP at that
particular point. If MPP is in the postive quadrant and f“(x) is positive,  MPP is increasing
at an increasing rate [(a) in Figure 2.5] or decreasing at a decreasing rate (e). If MPP is in the
negative quadrant, a positive f“(x) indicates that MPP is either decreasing at a decreasing
rate (j) or increasing at a decreasing rate (l).  

When MPP is in the positive quadrant, a negative sign on f“(x) indicates that MPP is
either increasing at a decreasing rate (c), or decreasing at an increasing rate (g).  When MPP
is in the negative quadrant, a negative sign on f“(x) indicates that MPP is decreasing at an
increasing rate (h) or increasing at an increasing rate (n).

If f“(x) is zero,  MPP has a constant slope with no curvature as is the case in (f), (l),
and (m).  If MPP is constant, f“(x) does not exist.

A similar approach might be used for APP. APP equals y/x, and if y and x are positive,
then APP must also be positive. As indicated earlier, the slope of APP is

†2.39 d(y/x)/dx = fN(y/x) = dAPP/dx

For a particular value of x, a positive sign  indicates a positive slope and a negative sign a
negative slope.

The curvature of APP can be represented by

†2.40 d2(y/x)/dx2 = fO(y/x) = d2APP/dx2

For a particular value of x, a positive sign indicates that APP is increasing at an increasing
rate, or decreasing at a decreasing rate. A negative sign on equation †2.40 indicates that APP
is increasing at a decreasing rate, or decreasing at an increasing rate. A zero indicates an APP
of constant slope. The third derivative of APP would represent the rate of change in the
curvature of APP.

Here are some examples of how these rules can be applied to a specific production
function representing corn yield response to nitrogen fertilizer. Suppose the production
function

†2.41 y = 50 + 5.93 x0.5

where
y = corn yield in bushels per acre
x = pounds of nitrogen applied per acre

†2.42 MPP = fN(x) = 2.965 x!0.5 > 0
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For equation †2.41, MPP is always positive for any positive level of input use, as indicated
by the sign on equation †2.42.  If additional nitrogen is applied, some additional response
in terms of increased yield will always result.  If x is positive,   MPP is positive and the
production function has not reached a maximum.

†2.43 dMPP/dx =  fO(x) = !1.48 x!1.5 < 0

If equation †2.43 is negative, MPP is slopes downward.  Each additional pound of nitrogen
that is applied will produce less and less additional corn yield. Thus the law of diminishing
(MARGINAL) returns holds for this production function throughout its range.

†2.44 d2MPP/dx2 = f“(x) = 2.22 x!2.5 > 0

If equation †2.44 holds, the MPP function is decreasing at a decreasing rate, coming closer
and closer to the horizontal axis but never reaching or intersecting it. This is not surprising,
given that incremental pounds of nitrogen always produce a positive response in terms of
additional corn. 

†2.45 APP = y/x = 50/x + 5.93x!0.5

        = 50 x!1 + 5.93x!0.5 > 0

If x is positive,  APP is positive. Corn produced per pound of nitrogen fertilizer is always
positive [equation †2.45].
†2.46 dAPP/dx = d(y/x)/dx = !50 x!2 ! 2.97 x!1.5 < 0

If x is positive, APP is sloped downward. As the use of nitrogen increases, the average
product per unit of nitrogen declines [Equation †2.46].
†2.47 d2APP/dx2 = d2(y/x)/dx2 = 100x!3 + 4.45 x!2.5 >0

If x is positive, APP is also decreasing at a decreasing rate. As the use of nitrogen increases,
the average product per unit of nitrogen decreases but at a decreasing rate [equation †2.47].

2.9 A Single-Input Production Elasticity 

The term elasticity is used by economists when discussing relationships between two
variables.  An elasticity is a number that represents the ratio of two percentages.  Any
elasticity is a pure number in that it has no units. 
 

The elasticity of production is defined as the percentage change in output divided by
the percentage change in input, as the level of input use is changed. Suppose that xN
represents some original level of input use that produces yN units of output. The use of x is
then increased to some new amount called xO, which in turn produces yO units of output. The
elasticity of production (Ep) is defined by the formula

†2.48 Ep =  [(yN ! yO)/y]/[(xN ! xO)/x].

where y, yO, x, and xO are as defined previously, and x and y represent mid values between
the old and new levels of inputs and outputs. Thus

†2.49 x = (xN + xO)/2
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and  y = (yN + yO)/2

Since the elasticity of production is the ratio of two percentages, it does not depend on
the specific units in which the input and output are measured.  For example, suppose that y
represents corn yield in bushels per acre, and x represents nitrogen in pounds per acre. Then
suppose that corn yield is instead measured in terms of liters per hectare, and nitrogen was
measured in terms of kilograms per hectare. If the same amount of nitrogen is applied in both
instances,  the calculated value for the elasticity of production will be the same, regardless
of the units in which y and x are measured. 

Another way of expressing the elasticity of production is

†2.50 Ep = ()y/y)/()x/x)

where )y = yN ! yO 

and   )x = xN ! xO

The elasticity of production is one way of measuring how responsive the production
function is to changes in the use of the input. A large elasticity (for example, an elasticity of
production greater than 1) implies that the output responds strongly to increases in the use
of the input. An elasticity of production of between zero and  1 suggests that output will
increase as a result of the use of x, but the smaller the elasticity, the less the response in terms
of increased output. A negative elasticity of production implies that as the level of input use
increases, output will actually decline, not increase.

The elasticity of production can also be defined  in terms of the relationship between
MPP and APP. The following relationships hold.  First

†2.51 Ep = ()y/y)/()x/x)

Equation †2.51 might also be written as

†2.52 Ep = ()y/)x)A(x/y)

Notice that

†2.53 )y/)x = MPP

and that

†2.54 x/y = 1/APP

Thus

†2.55 Ep = MPP/APP

Notice that a large elasticity of production indicates that MPP is very large relative to
APP. In other words, output occurring from the last incremental unit of fertilizer is very great
relative to the average output obtained from all units of fertilizer. If the elasticity of
production is very small, output from the last incremental unit of fertilizer is small relative
to the average productivity of all units of fertilizer.
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Figure 2.6   MPP, APP and the Elasticity of Production

2.10 Elasticities of Production for a Neoclassical Production Function

A unique series of elasticities of production exist for the neoclassical production
function, as a result of the relationships that exist between MPP and APP. These are
illustrated in Figure 2.6 and can be summarized as follows

1. The elasticity of production is greater than 1 until the point is reached where MPP = APP
(point A). 

2. The elasticity of production is greatest when the ratio of MPP to APP is  greatest. For the
neoclassical production function, this normally occurs when MPP reaches its maximum at
the inflection point of the production function (point B).

3. The elasticity of production is less than 1 beyond the point where MPP = APP (point A).

4. The elasticity of production is zero when MPP is zero. Note that APP must always be
positive (point C).

5.  The elasticity of production is negative when MPP is negative and, of course, output is
declining (beyond point C). If the production function is decreasing, MPP and the elasticity
of production are negative.  Again, APP must always be positive.

6. A unique characteristic of the neoclassical production function is that as the level of input
use is increased, the relationship between MPP and APP is continually changing, and
therefore the ratio of MPP to APP must also vary. Since Ep = MPP/APP, the elasticity of
production too must vary continually as the use of the input increases. This is a characteristic
of the neoclassical production function, which in general is not true for some other
production functions.
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2.11 Further Topics on the Elasticity of Production.

The expression )y/)x is only an approximation of the true MPP of the production
function for a specific amount of the input x. The actual MPP at a specific point is better
represented by inserting the value of x into the marginal product function dy/dx.

The elasticity of production  for a specific level of x might be obtained by determining
the value for dy/dx for that level of x and then obtaining the elasticity of production from the
expression

†2.56 Ep = (dy/dx)Ax/y

Now suppose that instead of the neoclassical production function, a simple linear
relationship exists between y and x.  Thus

†2.57 TPP = y = bx

where b is some positive number. Then dy/dx = b,   but note also that since y = bx, then y/x
= bx/x = b. Thus MPP (dy/dx) = APP (y/x) = b. Hence, MPP/APP = b/b = 1.

The elasticity of production for any such function is 1. This means that a given
percentage increase in the use of the input x will result in exactly the same percentage
increase in the output y. Moreover, any production function in which the returns to the
variable input are equal to some constant number will have an elasticity of production equal
to 1.

Now suppose a slightly different production function
†2.58
Another way of writing equtation †2.58 is
†2.59 y = ax0.5

In this case

†2.60 dy/dx = 0.5 ax!0.5

And

†2.61 y/x = ax!0.5

Thus, (dy/dx)/(y/x) = 0.5

Hence the elasticity of production is 0.5.  This means that for any level of input use MPP
will be precisely one half of APP.  In general, the elasticity of production will be b for any
production function of the form

†2.62 y = axb

where a and b are any numbers.  Notice that

†2.63 dy/dx = baxb!1

and that

†2.64 y/x = axb/x = axbx!1 = axb!1.
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(Another way of writing the expression 1/x is x!1.  Therefore, y/x = yx!1. But y = axb, and, as
a result,  xbx!1 = xb!1.)

Thus the ratio of MPP to APP!the elasticity of production! for such a function is
always equal to the constant b. This is not the same as the relationship that exists between
MPP and APP for the neoclassical production function in which the ratio is not constant but
continually changing as the use of x increases.

2.12 Concluding Comments

This chapter has outlined in considerable detail the physical or technical relationships
underlying the factor-product model. A production function was developed using tabular,
graphical, and mathematical tools, with illustrations from agriculture. The law of diminishing
MARGINAL returns was introduced. Marginal and average physical product concepts were
developed. The rules of calculus for determining if a function is at a maximum or minimum
were outlined, using a total physical product and marginal physical product concepts to
illustrate the application. Finally, the concept of an elasticity of production was introduced,
and the elasticity of production was linked to the marginal and average product functions.

Problems and Exercises

1. Suppose the following production function data. Fill in the blanks.
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

x (Input)        y (Output)  MPP  APP
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

0  0   )))
  )))

10 50  )))
 )))

    25 75  )))
 )))

    40 80  )))
 )))

    50 85  )))
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

2. For the following production functions, does the law of diminishing returns hold?

a.  y = x0.2

b.  y = 3x
c.  y = x3

d.  y = 6x ! 0.10x2

3. Find the corresponding MPP and APP functions for the production functions given in
problem number 2.

4. Assume a general multiplicative  production  function of the form
y = 2xb



Agricultural Production Economics38

Derive the corresponding MPP and APP functions, and draw on a sheet of graph paper TPP,
APP and MPP when the value of b is

a. 5 f. 0.7
b. 3 g. 0.3
c. 2 h. 0
d. 1.5 i. -0.5
e. 1.0 j. -1.0

Be sure to show the sign, slope and curvature of MPP and APP. What is the value for the
elasticity of production in each case?  Notice that the curves remain at fixed proportion from
each other.

5. Graph the production function

y = 0.4x + 0.09x2 ! 0.003x3 

for values of x between 0 and 20. Derive and graph the corresponding MPP and APP. What
is the algebraic expression for the elasticity of production in this case? Is the elasticity of
production constant or variable for this function? Explain.

6. Suppose that the coefficients or parameters of a production function of the polynomial
form are to be found. The production function is

y = ax + bx2 + cx3

where y = corn yield in bushels per acre

 x = nitrogen application in pounds per acre

 a, b and c are coefficients or unknown parameters

The production function should produce a corn yield of 150 bushels per acre when 200
pounds of nitrogen is applied to an acre. This should be the maximum corn yield (MPP = 0).
The maximum  APP should occur at a nitrogen application rate of 125 pounds per acre. Find
the parameters a, b and c  for a production function meeting these restrictions. Hint: First
find the equation for APP and MPP, and the equations representing maximum APP and zero
MPP. Then insert the correct nitrogen application levels in the three equations representing
TPP, maximum APP and zero MPP. There are three equations in three unknowns (a, b,  and
c). Solve this system for a, b,  and c.


