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Linear Programming and
Marginal Analysis
This chapter provides a basic overview of linear programming, and discusses its relationship
to the maximization and minimization techniques used for the factor-factor and
product-product models. The assumptions of linear programming are given. The
fixed-proportion production function, which forms the basis for linear programming, is
compared with the linear production function. A simple linear programming problem is
illustrated using graphics, and solved numerically using the simplex solution algorithm. An
application of linear programming to a small farm resource allocation problem is presented.
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22.1 Introduction

This book has made extensive use of what is sometimes referred to as classical
optimization methods. Classical optimization methods involve the maximization or
minimization of a function subject to one or more constraints. To do this, a new variable
called a Lagrangean multiplier is added for each constraint, and the maximization or
minimization entails setting the partial derivatives of the Lagrangean function with respect to
each variable, including the Lagrangean multipliers, equal to zero. The Lagrangean multipliers
can be interpreted as the increase (or decrease) in the function to be maximized (or minimized)
associated with a relaxation of the constraint by 1 unit. Lagrangean multipliers have
substantive economic interpretation for a diverse array of problems.

Classical optimization methods are but one method for maximizing or minimizing a
function subject to one or more constraints. The field of operations research is broadly
concerned with problems of constrained  maximization or minimization. Operations research
has applications in economics and agricultural economics, as well as in many other areas in
which problems are found that involve  finding the optimal value of a function subject to one
or more constraints.

Mathematical programming is another general term commonly used to describe
problems that involve constrained maximization or minimization. The term algorithm as in
mathematical programming algorithm is used to refer to a method or procedure for solving a
mathematical programming problem.

Students sometimes confuse mathematical programming with computer programming.
The two terms are entirely different. Computer programming refers to the process  of
providing a computer with a set of instructions to tell it what calculations to perform.
Mathematical programming algorithms usually require many calculations, and therefore can
quickly become complicated. A computer is usually used to perform the large number of
complicated calculations, so computer programming is often needed to solve mathematical
programming problems. However, small  mathematical programming problems can be solved
without the aid of a computer. Moreover, computer programs can be written that have nothing
to do with maximizing or minimizing a function subject to constraints.

The problems in this  text that involved maximizing or minimizing a function subject to
a constraint are actually mathematical programming problems. The procedure that involved
setting the partial derivatives of the Lagrangean function equal to zero could be thought of as
the algorithm for solving the problems. The graphic representation could be thought of as the
graphical solution to a specific mathematical programming problem. No computer was needed
to find  a solution.

22.2 Classical Optimization and Linear Programming

Mathematical programming can be divided into two major subcategories, nonlinear
programming and linear programming. The problems that involved constrained maximization
using the Lagrangean function  are examples of nonlinear programming problems. In every
case, either the objective function was nonlinear, or the constraint was nonlinear, or both. The
production function y = f(x1, x2)  can be either a linear or a nonlinear function. The production
function y = A x11

ax22
b is clearly nonlinear. The constraint C = v1x1 + v2x2 is clearly linear.

Becoming familiar with classical optimization methods makes one familiar with a specific
procedure or algorithm for solving certain nonlinear programming problems.
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Linear programming involves the maximization or minimization of a linear function
subject to linear constraints. Unlike classical optimization problems, in which at least one of
the functions was nonlinear, with linear programming, every function is linear.

It may come as a surprise that linear programming has broad application to agricultural
economics. Most of marginal analysis is dependent on relationships that involve nonlinearities.
The most basic example is the law of diminishing returns. Cost and production functions are
seldom linear. Isoquants and product transformation functions are usually curved, meaning
that there is no limit to the number of possible solutions (combinations of inputs or outputs)
as relative prices on inputs and outputs change.

The assumptions underlying linear programming  in some ways are more restrictive and
in other ways are less restrictive than the assumptions inherent in classical optimization
techniques. Classical optimization required at least one of the functions to  be nonlinear. If
isoquants or product transformation functions did not have continuously turning tangents, a
single unique solution to the constrained maximization problem would not exist. Isoquants and
product transformation functions represented in linear programming models never have
continuously turning tangents. Nonlinear functions are approximated with short or piecewise
linear segments.  If an isoquant or product transformation function is nonlinear, any change
in the relative prices will result in a change in the quantities of the inputs used or the products
produced. With certain linear programming problems, even large changes in relative prices
will not lead to a change in the relative quantities of inputs used or products produced.

With classical optimization methods, corner solutions that involved the use of none of
certain of the inputs, or production of none of certain of the outputs were not allowed. All
constraints must hold in strict equality. This  is because derivatives are defined only on open
sets. Corner solutions are commonplace with linear programming. Inputs are not often fully
utilized and therefore constraints need not hold in strict equality. Possible outputs are not
necessarily always produced. Classical optimization methods are therefore more flexible in
that all functions do not have to be linear, but less flexible in not allowing for corner solutions.

 
22.3 Assumptions of Linear Programming

Five basic assumptions underlie any linear programming model. These assumptions are
(1) linearity (2) additivity, (3) divisibility, (4) nonnegativity, and (5) single-valued
expectations. Mathematical programming techniques other than linear programming can
sometimes be used for problems in which one or more of the assumptions of linear
programming have been violated.

Linearity. The objective function  and the constraints in a linear programming problem
are linear. If the linearity assumption does not hold,  one of the nonlinear programming
techniques is required. Classical optimization methods are well known, but many other
advanced techniques are available for solving optimization problems involving one or more
nonlinear functions. A technique called quadratic programming, for example, can be used
when the objective function is quadratic in form.

Additivity. Suppose that in order to produce a unit of y1, 2 units of x1, and 3 units of x2
are required.  Two units of output will require 4 units of x1 and 6 units of x2.  Five hundred
units of y1 will require 1000 units of x1 and 1500 units of x2. Hence constant returns to scale
exist. The additivity assumption is fundamental to the use of linear programming in
production economics.

Divisibility. If 1 unit of y1 can be produced using 1 unit of x1 and 1 unit of x2, then 1/2
unit of y1 can be produced with 1/2 input of x1 and 1/2 unit of x2.  One-tenth of a unit of y1 can
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be produced by using one tenth of a unit of x1 and one-tenth of a unit of x2. The divisibility
assumption becomes silly for certain categories of agricultural inputs. A linear programming
problem might call for a solution that requires 1.457 bulls and 3.567 tractors. A technique
called integer programming will force the solution to contain only integer values for inputs
that cannot be divided, such as a tractor or a bull.

Nonnegativity The solution should not require that negative quantities of an input or
resource be used. The usual solution algorithms for linear programming models do not allow
for negative quantities of inputs to be used nor negative outputs to be produced. Zero
quantities for both outputs and inputs are allowed.

Single-Valued Expectations. Linear programming models assume that coefficients such
as input requirements and prices are known a priori with certainty. For example, if wheat,
corn, and soybeans are to be included as possible enterprises within a linear programming
model, the prices for which these commodities sell must be known in order to construct the
model. If certain coefficients are not known with certainty, one of the stochastic programming
techniques might be used.

22.4 Technical Requirements and Fixed-Proportion 
  Production Functions

The production function underlying a linear programming model is sometime called a
fixed proportion production function. The fixed proportion function is sometimes written as

†22.1 y1 = min(a1x1, a2x2)

Production is determined by the most limiting input. Suppose that a1 = 4 and a2 = 6; and that
10 units of x1 is available and 15 units of x2 is available. The output of y1 is determined by the
smaller of 4 x 10 = 40 or 6 x 15 = 90. In this example, y1 would be 40.

The fixed proportion production function is very different from the linear production
function

†22.2 y1 = a1x1 + a2x2

The linear production function assumes that inputs x1 and x2 can substitute for each other. The
marginal product of x1 is a1 and the marginal product of x2 is a2. The MRSx1x2 is !a1/a2.

With the fixed-proportion production function, one input does not substitute for the
other, but rather, inputs must be used in fixed proportions with each other. The isoquant map
for a fixed proportion production function is a series of right angles with a production surface
similar to that illustrated in case 1 of Figure 12.2. The isoquant map for the linear production
function consists of isoquants with a constant slope of !a1/a2. The surface is as illustrated in
case 5 of Figure 12.2.

22.5 A Simple Constrained Maximization Problem

Suppose that the following objective function is to be maximized subject to constraints

†22.3 Maximize 4y1 + 5y2

where y1 and y2 are two commodities. The 4 and 5 represent the price per unit of y1 and y2,
respectively.
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The constraints are

†22.4  Resource or input x1:   2y1 + 1y2 <_ 12

†22.5  Resource or input x2:   1y1 + 2y2 <_ 16

There are 12 units of resource or input x1 available, and 16 units of resource or input x2
available. Units of commodity y1 each require 2 units of x1 and 1 unit of x2. Units of
commodity x2 each require 1 unit of x1 and 2 units of x2. 

All the available x1 and x2 need not be used, as indicated by the inequality signs. The
matrix

†22.6 y1   y2

2    1  x1

1    2  x2

represents the technical input requirements for x1 and x2  needed to produce 1 unit of y1 and
y2. In this example both x1 and x2 are needed in order to produce either y1 or y2, but this need
not always be the case, and some of the input requirements could be zero. The columns of
matrix  †22.6 are sometimes referred to as the activities while the rows are referred to as
resource constraints. 

This linear programming problem and its solution can be illustrated using  a graph with
y1 on the horizontal axis and y2 on the vertical axis (Figure 22.1).  Suppose that only y1 were
produced. According to the first constraint, 12/2 or 6 units could be produced. Therefore, the
first constraint intersects the y1 axis at 6 units. Now suppose that only y2 were produced.
According to the first constraint, 12/1 units or 12 units could be produced. The first constraint
intersects the vertical axis at 12 units. The slope of the first constraint would be 12/6 or 2:1.

If only y1 were produced, the second constraint would intersect the y1 axis at 16/1  or 16.
If only y2 were produced, the second constraint would intersect the y2 axis at 16/2 or 8. The
slope of the second constraint would be 8/16 or 1:2. If y1 appears on the horizontal axis, and
y2 appears on the vertical axis, the slope of each constraint is equal to the coefficient on y1
divided by the coefficient on y2.

The area inside both constraints represents the feasible solution area. The feasible
solution area looks like a diagram representing a product transformation curve. The product
transformation curve is made up of portions of each constraint that lie inside the other
constraint. Instead of being a smooth, continuously turning curve, this product transformation
curve is approximated with two linear segments, each with a different but constant downward
slope. The constraints intersect at the point where the slope of the linear segments of the
product transformation function change. 

If less than 2 2/3 units of y1 is produced, the slope of the product transformation function
is the same as the slope of the second constraint. If more than 2 2/3 units of y1 is produced,
the slope of the product transformation function is the same as the slope of constraint 1. The
slope of the product transformation function where the two constraints intersect and the output
of y1 is exactly 2 2/3 units is undefined.
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Figure 22.1  Linear Programming Solution in Product Space

The objective function is identical to the revenue function in the product-product model.
The slope of the objective function will also be equal to the coefficient on y1 divided by the
coefficient on y2 or  4:5 in this example.

A small linear programming problem can be solved with  only some carefully drawn
graphics. The solution represents the largest possible revenue consistent with the  specified
constraints. This means that the revenue function must be pushed as far as possible from the
origin of the graph, but still touching the feasible solution area represented by the area inside
both constraints.

For this problem, there are but three possible solutions, not counting 0y1,  0y2.  However,
if the objective function has exactly the same slope as one of the constraints, all y1 can be
produced, all y2 can be produced, or the combination of y1 and y2 that occurs at the  point
where the two constraints intersect can be produced. If the objective function has the same
slope as one of the constraints, an infinite number of combinations of y1 and y2 can be found
that maximize the objective function.

The first solution would to be to produce all y2 and no y1. Constraint number 2  (the
availability of x2) would limit the production of y2 to only 8 units, despite the fact that there
is enough x1 to produce 12 units. The remainder of x1 would be unused, or in disposal. For this
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corner solution to occur, the relative price ratio of y1 and y2 (p1/p2) would have to exceed the
slope of the second constraint, which in this problem is 1:2. This would imply that the price
of y2 would need to be more than twice the price of y1. If all y1 were produced, revenue for this
problem would be 5 x  8 or $40.

The second solution would be to produce all y1 and no y2. In this case, constraint 1 (the
availability of x1) would limit production of y1 to only 6 units, and x2 would be in disposal. For
this solution to occur, the relative price ratio of y1 and y2 (p1/p2)  would have to be less than
the slope of the second constraint, which in this problem is 2:1. This would imply that the
price of y2 would have to be less than half the price of y1, or that y1 is more than twice the
price of y2. If all y1 were produced, revenue for this problem would be 4 x 6 or $24.

The third solution would be to produce the mix represented by the intersection of the two
constraints. A carefully drawn graph will reveal that this mix is 2 2/3 units of y1 and 6 2/3
units of y2. For this solution to occur, the price of y2 would need to be less than twice the price
of y1, but greater than one half the price of y1. This implies a price ratio of

1/2 < p1/p2 < 2/1

The price ratio for this problem of 4/5 falls within this range. If this combination were
produced, revenue would be 4 x 2 2/3 + 5 x 6 2/3 = $44. The $44 represents the maximum
revenue possible given the price ratios and the two constraints. Both of the other possible
solutions yield less revenue.

One final possibility exists. Suppose that the slope of the objective function were exactly
the same as the slope of one of the two constraints. If the slope of the objective function were
exactly 1/2, as would be the case if the relative prices were 4/8, then the solution that
produced all y2 would result in the exact same revenue as the solution that produced  a
combination (8 x 8 = 8 x 6 2/3 + 4 x 2 2/3 = 64). In that case, the linear programming problem
would maximize the function either if all y2 or the combination of y1 and y2 were produced.
Any combination consistent with the constraints that called for the production of more than
6 2/3 units of y2 would also result in the same revenue. In this case there is not a single
solution to the linear programming problem.

If the relative prices were in the ratio 2/1, such as 8/4, then the solution that produced
all y1 would result in the same revenue as that obtained from the combination (8 x 6 = 8 x 2
2/3 + 4 x 6 2/3 = 48). The same problem would result. If this were to occur, computer
routines designed to solve linear programming problems usually warn the user that the
solution is not unique.

22.6  Other Approaches for Solving Linear Programming Models

The graphical presentation of a linear programming problem is useful in establishing the
linkages between linear programming and  the product-product model. However, the
diagrammatic approach cannot be used for problems that involve the production of more than
two outputs. Diagrams become messy for problems involving a large number of constraints.
Numerous algorithms are available for solving linear programming problems. The simplex
algorithm is widely known. For small problems, the simplex algorithm is simple enough that
the needed calculations can be performed by hand. 
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Computer programs based on the simplex algorithm for solving linear programming
problems are available. However, most computerized algorithms used in agricultural
economics make use of algorithms for solving linear programming problems that  are more
complicated to understand than the simplex algorithm but require fewer calculations by the
computer. The problem of developing algorithms that solve various mathematical
programming problems while minimizing the required computer time is a major research effort
at some universities.

Algorithms for solving linear programming problems on a small, personal microcomputer
are available. The size of the problem in terms of the number of columns (or activities) and
the number of rows (or constraints) place limits on the size of  the problem that can readily
be solved on a small computer within a short period. 

Currently available from several vendors are algorithms that will solve linear
programming problems of up to 100 x 200 in matrix size, and within a few minutes on a
personal computer at least 256K in size. Large university computers are able to solve very
large linear programming problems within minutes or even seconds of computer time. 

The solve time for a linear programming problem seems to increase exponentially, rather
than linearly with the addition of rows and columns. A problem with 100 rows and 100
columns would probably take substantially more than twice as much time to solve as one with
a 50 x 50 matrix. Large and complex mathematical programming problems still require large
and fast computers for quick solutions.

22.7 The Simplex Method

The problem presented graphically in Section 22.4 will be solved using hand calculations
with the aid of the simplex method. The problem was

 
Maximize

†22.7 4y1 + 5y2

where y1 and y2 are two commodities. The 4 and 5 represent the price per unit of y1 and y2,
respectively.

The constraints are

†22.8 2y1 + 1y2 <_ 12

†22.9 1y1 + 2y2 <_ 16

    y1, y2 >_ 0

where the coefficients on y1 and y2 represent the technical requirements for x1 and x2 per unit
of output. Input x1 has 12 units available and x2 has 16 units available.
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The first step is to introduce two new variables, called slack variables (s1 and s2). Slack
variables are used to convert the inequalities into equalities. One is required for each
inequality constraint. The slack variables can each be thought of as a garbage dump for
holding  units of input x1 or x2 not being used in the solution. The coefficients on slack
variables are initially zeros in the objective function. The coefficient on a slack variable that
appears in an equation is 1, and the coefficient on the slack variables not appearing in an
equation is zero.   At the start, no y1 or y2 is produced, and therefore the value of the objective
function is zero. The problem is then rewritten as

†22.10  2y1 + 1y2 + 1s1 + 0s2 = 12

†22.11  1y1 + 2y2 + 0s1 + 1s2 = 16

†22.12  4y1 + 5y2 + 0s1 + 0s2 = O

The 12 and 16 in equations †22.10 and †22.11 are sometimes referred to as the
right-hand side (RHS), since they appear on the right hand side. The right hand side represents
the availability of inputs or resources x1 and x2. The problem can be rewritten as follows:

†22.13
  Column

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

Row y1 y2 s1 s2 RHS

x1 2 1 1 0 12

x2 1 2 0 1 16

Objective   4 5 0 0 0
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

The usual place to start is to bring in units of the output or activity with the largest price
or coefficient in the objective function.  This would be y2. However, it  really makes no
difference, and y1 could be chosen. In this example, the conventional rule is followed and y2
is chosen. Thus y2 becomes what is called the pivotal column.

Since the objective function is to be maximized, the most limiting input must be
determined.  Each unit of y2 requires 2 units of x2 and 16 units of x2 are available.  Each unit
of y2 requires 1 unit of x1 and 12 units of x1 are available. Thus x2 is most limiting (16/2 = 8
< 12/1 = 12). The row labeled x2 becomes what is called the pivotal row.

Every element in the x2 row is divided by the coefficient that appears at the intersection
of the pivotal row and the pivotal column, 2 in this case. This results in a table with a new row
x2 labeled nx2
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†22.14
  Column

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

Row  y1 y2 s1 s2 RHS

x1 2 1 1 0 12

nx2                            1/2 = 0.5   2/2 = 1    0/2 = 0    1/2 = 0.5    16/2 = 8

Objective   4 5 0          0 0
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

The new x1 row (nx1)  is found by subtracting from the old x1 row the product of the
element in the nx2 row and the column under consideration  times the element at the
intersection of entering column y2  and the x1 row. Suppose that the element to appear in
column y1 of row x1 is to be found. That number will be 2 ! 0.5 x 1. The number 2 appears
in the old x1 row for column y1, a  0.5 appears in row nx2 for column y1, and 1 appears at the
intersection of the entering y2 column and the x1 row. Following the same rule, the
corresponding new element at row x1 and column y2 is 1 ! 1 x 1 = 0. Similarly, the new
element at row x1 and column s1 is 1 ! 0 x 1 = 1, and so on. This results in the new matrix

†22.15
  Column

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

Row  y1 y2 s1     s2 RHS

nx1  1.5 0 1 !0.5 4    

nx2    0.5 1 0    0.5 8

Objective   4 5 0    0              0
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

A similar approach is used on the objective function row. The new element for the
intersection of the objective row and column y1 is 4 ! 0.5 x 5 = 1.5. The new element for the
intersection of the objective row and the right hand side is 0 ! 8 x 5 = !40. This number is
the negative of the current objective function value. Notice also that 40 was the profit in the
graphical solution when only y2 entered. The completed matrix is
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†22.16
  Column

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

Row  y1 y2 s1    s2 RHS

nx1 1.5 0 1 !0.5 4

nx2 0.5 1 0    0.5 8

nObjective 1.5 0 0  !2.50      !40
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

If all numbers appearing in the columns representing outputs are 0 or negative, the
optimal solution has been found. In this example, the value at the intersection of  the y1
column and the new objective row is positive, indicating that production of y1 will further
increase profits. Following the same procedure, a new table is constructed. However, this time
the entering row is y1. The resultant new table is

†22.17
  Column

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

Row  y1 y2 s1      s2  RHS

nnx1 1 0 .67 !.33 2.67   

nnx2    0 1  !.33    .67 6.67

nnObjective 0 0  !1.00 !2.00     !44.00
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

The optimal solution has been found that maximizes revenue from the sale of y1 and y2
subject to the two constraints. The 2.67 and 6.67 represent the output of y1 and y2,
respectively. The !44.00 is the negative of the objective function value. The solution produces
$44 of revenue. All this information was available from the graphical solution.

However, a new piece of information is also available. The numbers appearing in the
objective function row and the slack columns labeled s1 and s2 are the negatives of the imputed
values of an additional unit of x1 and x2, respectively. If one additional unit of x1 were
available, it would, if allocated properly, contribute 1 additional dollar to revenue. An
additional unit of x2 would contribute 2 dollars to revenue. These are the shadow prices for
x1 and x2. These shadow prices indicate the maximum amount that the manager would be
willing to pay for the next unit of x1 and x2.

The shadow prices obtained from a linear programming model can be interpreted in
exactly same manner as the Lagrangean multipliers obtained using classical optimization
methods. In both cases they represent the change in the objective function associated with a
relaxation of the corresponding constraint by 1 unit.
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If the shadow price for an additional unit of an input is $2.00, 1000 additional units of
the input are not necessarily worth $2000 to the farmer. The shadow prices really apply only
to the next unit of the input. Shadow prices usually  decline in discrete steps as the availability
of the input is increased. To be perfectly accurate, the incremental unit of the input should be
infinitely small, or )x should be dx. The same interpretation problem occurs with Lagrangean
multipliers in a classical optimization model.

If the linear programming solution does not use all available units of an input, its shadow
price, or implicit worth will be zero. Additional units of an input already in excess have an
imputed value of zero and are worth nothing to the farmer.

22.8 Duality

In earlier chapters it was shown that any constrained maximization problem can be
converted into a corresponding constrained minimization problem, and that any constrained
minimization problem can be converted into a corresponding constrained maximization
problem. The use of the inputs becomes  the function to be minimized, the revenue function
becomes the constraint.

Any linear programming problem can be converted to its corresponding dual. The primal
problem might involve either the maximization or minimization of an objective function
subject to constraints. If the primal is a constrained maximization problem, the dual will be
a constrained minimization problem. If the primal is a constrained minimization problem, the
dual will be a constrained maximization problem.

The constrained revenue maximization problem found the combination of outputs y1 and
y2 that maximized revenue subject to the constraints and was similar to a constrained revenue
maximization problem in  product-product space.  The corresponding dual is a constrained
minimization problem. The imputed cost of inputs x1 and x2 is minimized subject to a revenue
constraint. The problem is similar to that of finding the least cost combination of inputs in
factor-factor space.

The dual of the maximization problem is
 †22.18  minimize 12x1 + 16x2

where x1 and x2 are imputed costs of inputs or resources.  The constraints are

†22.19 2x1 + 1x2 >_ 4

†22.20 1x1 + 2x2 >_ 5

    x1, x2 >_ 0

Notice that the rows of the primal are the columns of the dual. The columns of the primal
are the rows of the dual.  The right-hand side is made up of coefficients that formerly were
prices of outputs. The objective function to be minimized has coefficients that formerly were
values for input availability on the right-hand side. Less than or equal to constraints now are
greater than or equal to constraints.
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Figure 22.2  Linear Programming Solution in Factor Space

The dual can also be solved graphically, but the axes are now inputs x1 and x2 rather than
outputs y1 and y2. The first constraint will intersect the x1 axis at 2, and the x2 axis at 4. The
second constraint will intersect the x1 axis at 5 and the x2 axis at 2.5 (Figure 22.2).

This time the feasible solution area lies outside of both constraints. The feasible solution
area is again bounded by the two constraints. The line following the portion of each constraint
outside the other constraint represents an isoquant constructed of two linear segments rather
than a product transformation function.

The objective function is similar to an isocost line in factor-factor space. The slope of
the objective function is !v1/v2, where v1 = 12 and v2 = 16. Again, three solutions are possible.
All x1 can be used, all x2 can be used, or a combination of x1 and x2 can be used. A carefully
drawn diagram indicates that the  combination would be 1 unit of x1 and 2 units of x2. These
numbers look familiar.

The minimization problem can be solved via the simplex method. The procedure is the
same as for the maximization problem with two exceptions. Since the constraints are greater
than or equal, the slack variables must have negative rather than positive signs when they
appear. In the maximization problem, the entering row was selected on the basis of the input
that was most limiting or the smallest ratio of the right hand side value to the corresponding
coefficient for the row in the column selected for entry. In the minimization problem, the row
would be selected on the basis of the largest ratio of the right hand side value to the
corresponding coefficient in the row for the column considered for entry.
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However, it is not necessary to solve the dual if the primal has already been solved. The
value for the objective function will be the same for both problems. The optimal levels of y1
and y2 in the primal are the shadow prices for x1 and x2 in the dual. The optimal values for x1
and x2 (the 1 and 2) in the dual are the shadow prices for the primal problem. The same
solution will result regardless of whether the primal or dual is solved.

22.9 An Application

The use of linear programming in agricultural economics is illustrated with a simple
problem. The problem is purposely kept small in order to shorten the explanation. The
problem illustrates how linear programming might be used as the basis for developing a much
larger farm planning model. The farmer has the choice of the enterprises listed in Table 22.1.
Net revenues per unit of each enterprise over variable costs are listed.

Table 22.1   Enterprises and Net Revenues over Variable Costs
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
Enterprise     Units Revenues Over Variable Costs
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

Corn Acres  $45 per acre

Wheat     Acres  $32 per acre

Oats Acres  $20 per acre

Sows 10 sows    $2400 per 10 sows

Steers    10 steers  $1400 per 10 steers

Layers    10,000 layers   $5400 per 10,000 layers

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

The farmer has 100 acres of land. Steers, sows, and layers are kept in confinement, so
incremental units will not require any more land. The farm has a wheat allotment limiting
wheat acreage to no more than 12 acres. Only 50 of the 100 available acres are suitable for
the production of row crops. The production of grain crops will require access to no additional
capital, but the production of hogs, steers, and layers will require capital for the purchase of
needed animals and feed.  Labor is broken into three periods, January to April, May to August
and September to December. Table 22.2 lists the resource or input availability that will
comprise the right hand side.  Table 22.3 provides the resource or input requirements for each
enterprise.
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Table 22.2  Inputs or Resources on the Farm
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
Input    Amount
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

Total land 100 acres
Row crop land 50 acres
Wheat allotment 12 acres

January April labor   1600 hours
May August labor 2000 hours
September December Labor  1600 hours

Capital $20000 
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

Table 22.3  Input Requirements by Enterprise.
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

Enterprise:     Input Requirement per Enterprise Unit
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

Corn
Total land 1 acre
Row crop land     1 acre
Wheat allotment   None
January April labor 5 hours
May August labor 1 hour
September December labor   3 hours
Additional capital   None

Wheat 

Total land 1 Acre
Row crop land   None
Wheat allotment 1 Acre
January April labor 1 hour
May August labor 2 hours
September December labor 3 hours
Additional capital   None
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Table 22.3  (Continued)
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
Oats 

Total land   1 Acre
Row crop land   None
Wheat allotment   None
January April labor 1 hour
May August labor  2 hours
September December labor 3 hours
Additional capital   None

Sows 

Total land   None
Row crop land   None
Wheat allotment   None
January April labor 300 hours
May August labor  300 hours
September December labor   300 hours
Additional capital $8000

Steers 

Total land   None
Row crop land   None
Wheat allotment   None
January April labor 200 hours
May August labor 20 hours
September December labor 100 hours
Additional capital $6000

Layers 

Total land   None
Row crop land   None
Wheat allotment   None
January April labor 900 hours
May August labor 900 hours
September December labor 850 hours
Additional capital $17,000

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
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The linear programming model was solved with a standard computer algorithm for linear
programming problems. Table 22.4 provides the levels for each enterprise as determined  by
the model and the value of the objective function when the solution was found. Shadow prices
or imputed values for an additional unit of each input are found in Table 22.5.

Table 22.4 Linear Programming Enterprise Solution
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

Corn    50 acres
Wheat   12 acres
Oats    38 acres
Sows    None
Steers  None
Layers  1.17647 units or 11,764.7 layers

Net returns over
variable costs    $9746.94

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

Table 22.5   Imputed Values or Shadow Prices for Inputs
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

Total land $20
Row crop land $25
Wheat allotment $12
January April labor 0 (241.18 hours not used)
May August labor 0 (791.18 hours not used)
September December labor0 (300.00 hours not used)
Additional capital 0.31765

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

The shadow prices in Table 22.5 indicate what the farmer could afford to pay for an
additional unit of an input. These shadow prices are the same as Lagrangean multipliers in
that they give the increase in the objective function (in this case, returns over variable costs)
of an additional unit of the input. This farmer could afford to pay up to $20 to rent an
additional acre of land. If the land were suitable for row crops, it would be worth $25. If
additional wheat allotment could be secured, up to $12 could be paid for an additional acre.
Excess labor is present in all periods, so an additional unit is worth nothing. The shadow price
on additional capital represents the maximum interest rate the farmer could afford to pay for
the next unit of capital, in this case more than 31 percent.

22.10 Concluding Comments

This chapter has illustrated some of the linkages between linear programming and the
marginal analysis models developed earlier in the text, and provided an illustration of a
practical resource allocation problem that can be modeled with linear programming. A
comprehensive linear programming model designed for farm planning would include far more
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detail, breaking down items such as labor into weekly or even daily periods, and including far
more possible enterprises or activities. 

Linear programming models that do a comprehensive and detailed job of allocating
inputs among enterprises have a tendency to quickly become very large and can require a
large computer to solve and/or a substantial amount of computer time. The model presented
here is easy to solve using a PC-based linear programming solver, so it lends itself to
experimentation. The model provides an indication of the types of problems a larger and more
detailed model would be able to solve.

Problems and Exercises

1. Does linear programming tighten or weaken the assumptions underlying classical
optimization methods? Explain.

2. Solve the following linear programming problem by hand, using the simplex method
outlined in the text.

maximize   2y1 + 3y2

subject to

3y1 + 4y2 <_ 20

1y1 + 6y2 <_ 24

Now find a computer program for solving the problem, and solve the problem on the
computer. Compare the results with your hand solution. Now solve the dual with the same
computer program, and compare the results.

3. What happens to the solution if the price of y1 increases to $10? Does the second resource
become more valuable as measured by its shadow price?

4. Are a Lagrangean multiplier obtained from a classical optimization problem and a shadow
price obtained from a linear programming problem the same thing? Explain.

5. Explain why the maximum number of possible solutions to a linear programming problem
can be no greater than one more than the number of constraints.

6. Set up on the computer the farm planning problem contained in this chapter, and solve.
Compare the results with those obtained in the text. Are the results presented in the text
accurate? Now change the prices on one of the outputs and observe what happens to the
optimal solution and the shadow prices on each input or resource.


