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Contemporary Production
Theory: The Factor Side
The purpose of this chapter is to explore some of the implications of recent work dealing with
duality, elasticities of substitution, and translog specifications of production functions for
agricultural research. These theoretical developments have a broad-based applicability to
research in production economics and demand analysis for agricultural problems at varying
levels of aggregation. The duality principles can be illustrated using simple multiplicative
functions of the Cobb-Douglas type. However, the specific focus in this chapter  is on the
development of empirical  estimates of elasticities of substitution by making use of
contemporary production theory, and functional forms more complex than the Cobb-Douglas
type are needed. In this publication, the highly flexible  translog cost and production functions
introduced within the economics literature by  Christensen, Jorgenson, and Lau in the early
1970s are used to provide estimates of elasticities of substitution between major input
categories for U.S. agriculture. 
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24.1  Introduction

Applications of contemporary thought have been made to specific problems within the
agricultural economics literature. Ball and Chambers did a study for meat packing plants at
the firm as the observation level of aggregation. Aoun estimated a translog cost function  from
time series data for all of U.S. agriculture, as a basis for obtaining elasticities of substitution
between input pairs reported in this publication. Furtan and Gray conducted a similar study
for a Canadian Province.  Hoque and Adelaja and Grisley and Gitu used the approach in
conjunction with studies conducted for dairy farms.

The approaches outlined in this chapter have applications to  studies conducted for entire
regions or countries, but are also applicable to studies conducted on data from farm records
for individual firms. Census data on small groups of farms that have been classified according
to major enterprises constitutes another possible data and aggregation level for such research.
Approaches outlined in this publication are useful in situations where cost and input price data
relating to agricultural enterprises are available, regardless of the aggregation level.

Fundamental duality concepts are presented. Some basic algebraic concepts relating to
elasticities and logarithms are reviewed, and the concept of the elasticity of substitution
between input pairs is developed in its various forms. The basic assumptions of contemporary
production theory are outlined. Linkages  between the translog functions and earlier functional
forms are developed. Finally, a contemporary translog model designed to estimate elasticities
of substitution between input pairs is introduced and empirical results for U.S. agriculture are
presented. 

24.2  Fundamentals of Duality

Agricultural economists are perhaps most familiar with the concept of duality as it
relates to linear programming models. Within a linear programming context, duality refers to
the fact that any linear programming problem can be expressed either as a maximization
problem or a corresponding minimization problem subject to appropriate constraints. The
primal problem may be either a maximization or a minimization problem. If the primal is a
maximization problem, the corresponding dual will be a minimization problem, and,
conversely, if the primal is a minimization problem, the corresponding dual will be a
maximization problem. 

The key characteristic of the dual relationship, as illustrated by a linear programming
problem, is that all of the information about the solution to the primal can be obtained from
the corresponding dual, and all of the information with respect to the solution of the dual can
be obtained from the corresponding primal. Either the maximization or the minimization
problem may be solved as the primal, and all  information regarding the solution to the dual
is obtained without resolving the problem.

Production functions have corresponding dual cost functions or perhaps
correspondences. The term dual used in this context means that all of the information needed
to obtain the corresponding cost function is contained in the production function, and,
conversely, the cost function contains all of the information needed to derive the underlying
production function.  A simple example is the single input production function 

†24.1 y = f(x).
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If f(x) is monotonically increasing, and the inverse function exists,  the corresponding dual
cost function expressed in physical terms is the inverse of the production function 

†24.2 x = f!1(y)

where  f!1 = the inverse of f.

A simple example is the production function y = xb. The corresponding dual cost function
expressed in physical terms is x = y1/b. All of the information with respect to the parameters
of the production function is obtained from the corresponding dual cost function. Cost
functions are usually expressed in dollar, rather than physical terms. The cost function
expressed in dollar terms under the constant input price assumption is  

†24.3 vx = vf!1(y)

where  v = the price of the input x.

Not all functions can be inverted. In general, a production function can be inverted to generate
the corresponding dual cost function only if the original production function is monotonically
increasing or decreasing. For example, if the production function is the familiar neoclassical
three stage production function, the resultant dual is a correspondence, but not a function, for
two values of x are assigned to at least some values for y.

Single-input cost functions are not normally thought of as arising from an optimization
procedure. However, it is well known that any point on a single input production function
represents a technical maximum output (y) for the specific level of input use (x) associated
with the point. Each point on the inverse cost function is optimal in the sense that it represents
the lowest cost method of producing the specific amount of output associated with the chosen
point. (However, if the underlying production function is not always  monotonically
increasing, and as a result, the dual is a correspondence, a point on the dual cost
correspondence is not necessarily a least cost point for the chosen level of output.)  

In a multi-factor setting, the duality of the production function and the corresponding
cost function becomes somewhat more complicated.  Suppose that a production function for
an output y is given by  y = f(x), where x is a vector of inputs treated as variable.  Under a
specific set of conditions,  the corresponding dual cost function exists (McFadden, 1978, pp.
8-9).  These conditions are 

(1) Marginal products of the inputs are non-negative. The non-negativity implies free
disposal of inputs. This assumption implies that if there is some input vector denoted as
xO which can produce some output vector called yO, then if there exists a second bundle
called xO which is at least as large as xO in every input, then xO can also produce y. One
implication of this assumption is that isoquant maps consisting of concentric rings are
ruled out, and that positive slopes on isoquants are not allowed.

 
(2) Marginal rates of substitution between input pairs are non-increasing. In the two factor

case, this implies that each isoquant is weakly convex to the origin. However, regions of
constant slope are allowed, and thus the isoquant need not have continuously turning
tangents.
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Figure 24.1  Assumptions (1) and (2) and the Isoquant Map

     Source: Adapted from McFadden

If conditions (1) and (2) are met, the production possibilities set satisfying assumptions
(1) and (2) is termed input conventional (McFadden, 1978, pg. 10). Figure 24.1 illustrates
some examples of isoquant maps fulfilling and violating conditions (1) and (2). Note that the
ring isoquant maps sometimes used in courses in agricultural production economics are ruled
out.

 

The cost function that corresponds to the production function is c(y;v) =
min[vOx:f(x)$y].  If conditions (1) and (2) are met, then this minimum cost function that
corresponds to the production function:

(a) exists. This is true because any continuous function defined on a closed and bounded
set achieves its minimum within the set.

(b) is continuous.
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(c) is non-decreasing for each price in the input price vector.

(d) is homogeneous of degree one in all variable input prices. This implies that if all
input prices double, so also will total variable cost, and

(e) is concave in each input price for a given level of output (y*).

Detailed proofs of (a)-(e) can be found in McFadden, 1978, pp. 10-13. The  isoquant
maps needed for the existence of a corresponding dual cost function are not necessarily more
plausible in an applied setting than other isoquant maps, but rather are a matter of
mathematical convenience. For example, the Cobb-Douglas, CES and Translog production
functions discussed in this publication all generate isoquant maps consistent with these
assumptions, under the usual parameter restrictions, while the Transcendental does not.  

Consider a particular class of production functions known as homothetic production
functions, which include both homogeneous production functions and monotonic
transformations of homogeneous production functions. A key characteristic of the homothetic
production functions is that a line of constant slope drawn from the origin of the
corresponding isoquant map will connect points of constant slope. Hence, homothetic
production functions have linear expansion paths. Moreover, any isocline drawn from the
origin will have a constant slope. An isocline of constant slope represents all points in which
the ratio of the inputs remains fixed or constant, and can be referred to as a factor beam
(Beattie and Taylor p. 42).

Now consider the factor beam for the homothetic production function representing the
expansion path, or least cost combination of inputs. The production surface arising above the
expansion path represents the production function for the use of the optimal bundle as defined
by the least cost combination of inputs according to expansion path conditions. Therefore,
every point on the production surface directly above the expansion path is optimal in that it
represents the minimum cost of producing a given level of output. The production function
represented by the expansion path conditions along the factor beam in an n input setting can
be written as 

†24.4 y* = f(x*1,...,x*n)

where 

x*1,...,x*n the least cost quantities of x1,...,xn

y* = output at each point associated with the expansion path conditions.

The cost function that is dual to †24.4 can be obtained by making use of the expansion path
conditions. 

For example, suppose that the production function is given by  

†24.5 y = Ax1
$1x2

$2 

The input cost function is 
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†24.6 C = v1x1 + v2x2

where A, $1 and $2 are parameters, x1 and x2 are inputs, and v1 and v2 are the respective prices
on x1 and x2

The dual cost function for a Cobb-Douglas type production function is found using the
following procedure.  First, the equation for the expansion path is found by partially
differentiating the production function with respect to x1 and x2, to find the marginal products.
The negative ratio of the marginal products is the MRSx1x2. The MRSx1x2 is equated to the
inverse input price ratio. The result can be written as 

†24.7 $2v1x1 = $1v2x2 

Equation †24.7 defines the points of least cost combination along the expansion path.

Equation †24.7 is solved for x1 to yield 

†24.8 x1 = $1v2x2$2
!1v1

!1

Equation †24.8is inserted into equation †24.6 and x2 is factored out 

†24.9 C = x2($1v2$2
!1 + v2)

Equation †24.9 defines the quantity of x2 that is used in terms of cost (C) and the parameters
of the production function 

†24.10 x2 = C/($1v2$2
!1 + v2)

Similarly, for input x1 

†24.11 x1 = C/($2v1$1
!1 + v1)

Inputs x1 and x2 are now defined totally in terms of cost C, the input prices (v1 and v2) and the
parameters of the production function. Inserting equations †24.10 and †24.11 into the original
production function  (equation †24.5) and rearranging, results in 

†24.12  y = C($1+$2)A($2v1$1
!1 + v1)!$1 ($1v2$2

!1 + v2)!$2

Solving equation †24.12 for C in terms of y, the production function parameters and the input
prices yields the optimal total cost function defined in terms of the expansion path conditions

†24.13         C* = y[1/($1+$2)] A[!1/($1+$2)] ($1
!1$2v1+ v1)[$1/($1+$2)]($2

!1$1v2 + v2)[$2/($1+$2)]

= A!1/($1+$2) ($2/$1 + 1)$1/($1+$2) ($1/$2 + 1)$2/($1+$2)y1/($1+$2) v1
$1/($1+$2) v2

$2/($1+$2)

= Doy1/($1+$2) v1
$1/($1+$2) v2

$2/($1+$2)

=  y[1/($1+$2)] Z

C* is the least cost method of producing the specific output level y as defined by the expansion
path conditions.    
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Equation †24.13 represents the total cost function that is dual to the production function
defined along the expansion path factor beam. Any point on the dual cost function
representing a particular quantity of output designated as y° is optimal in the sense that it
represents the minimum cost, or least cost combination of inputs needed to produce y°.
However, at most only one point on the dual cost function represents global optimality, where
the marginal cost of producing the incremental unit of output using the least cost combination
of factors is exactly equal to the marginal revenue obtained from the sale of the incremental
unit of y. 

For the Cobb-Douglas case, y is raised to the power 1 over the degree of homogeneity
of the original production function.  The value of Z treated as a constant, since it is dependent
only on the assumed constant prices of the inputs and the assumed constant parameters of the
production function. If prices for inputs are available and constant, all of the information
needed to obtain the corresponding dual cost function can be obtained from the production
function. The coefficients or parameters of a Cobb-Douglas type production function uniquely
define a corresponding dual cost function C*. 

Marginal cost associated with the expansion path factor beam (least cost marginal cost)
is 

†24.14 MC* = dC*/dy =  [1/($1+$2)]y[1/($1+$2)-1]Z.

The slope of MC* is positive if the sum of the individual partial production elasticities or
function coefficient is less than 1. If the individual production elasticities sum to a number
greater than 1, then MC* is declining. MC* has a zero slope when the production elasticities
sum exactly to 1.  The least cost supply function for a firm with a Cobb-Douglas type
production function can be found by equating marginal cost (equation †24.14) with marginal
revenue or the price of the product and solving the resultant equation for y. 

Average cost associated with the least cost factor beam is 

†24.15 AC* = C*/y = y[1/($1+$2)!1]Z.

Since Z is positive,  average cost decreases when the partial production elasticities sum to a
number greater than 1. Average cost increases if the partial production elasticities sum to a
number less than 1. If the production function is a true Cobb-Douglas then total cost is given
by 

†24.16 C* = yZ.

In the true Cobb-Douglas case, both marginal and average cost are given by the constant
Z, and therefore both MC* and AC* have a zero slope. For a Cobb-Douglas type production
function, MC* and AC* never intersect, except in the instance where the function coefficient
(or the cost elasticity) is 1, in which case MC and AC are the same everywhere.

The ratio of marginal to average cost along the least cost factor beam, or the dual cost
elasticity (R*) that applies to the expansion path conditions is 

†24.17 R* = [1/($1+$2)].

      = 1/E, 
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where E is the returns to scale parameter, or function coefficient for the underlying production
function for the output arising from the least cost combination of inputs along the expansion
path factor beam.

If total product along the expansion path is increasing at a decreasing rate, then costs are
increasing at an increasing rate. If total product along the expansion path is increasing at an
increasing rate, than costs are increasing at a decreasing rate. If total product along the
expansion path is increasing at a constant rate (the true Cobb-Douglas) then costs are also
increasing at a constant rate. If the product sells for a fixed price, that price is a constant
marginal revenue (MR). Marginal revenue (MR) can be equated to the least cost marginal cost
(MC*) only if MC* is increasing. With fixed input prices and elasticities of production, this
can happen only if the cost elasticity is greater than one, which means that the function
coefficient for the underlying production function is strictly less than 1. 

The profit function representing the least cost method of generating a specific amount
of profit, and corresponding to the dual cost function can be written as  

†24.18 A* = TR ! C*.

If output price (p) is constant 

†24.19 A* = py ! Zy(1/E),

where E is the function coefficient.

Maximum profits occur if 

†24.20 dA*/dy = p ! (1/E)y[(1/E)!1] = 0

MR ! MC* = 0

and 

†24.21 d2A*/dy2 = ! (1/E)@[(1/E)!1]y[(1/E)!2] < 0.

E is positive. The only way the second derivative can be negative is for E to be smaller
than 1. This implies that MC* is increasing. If E is equal to one, the second derivative of the
profit function is zero, and that MC* is constant. If E is greater than 1, the second derivative
of the profit function is positive, and MC is decreasing. 

24.3  Duality Theorems
  

The two most famous theorems relating to duality are Hotelling's lemma and Shephard's
lemma. Both are specific applications of a mathematical theorem known as the envelope
theorem. The proofs of the envelope theorem, Shephard's lemma, and Hotelling's lemma are
adapted from those found in Beattie and Taylor (Chapter 6).  More detailed and rigorous
proofs can be found in McFadden, 1978, pp. 14!15 and appendices.
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24.4  The Envelope Theorem

Consider a function z to be maximized with respect to each wi 

†24.22 z = g(w1,...,wn, ")

where 
z = a value to be maximized

wi = variables   
 

" = a vector of parameters

First order conditions require that for each wi 

†24.23 Mg/Mwi = 0

for a maximum.

Now define the optimal value for each wi  as wi* in terms of the parameter vector ". That is,

†24.23 wi* = wi*(")

for all i = 1, ..., n  

The optimal value for equation †24.22 is 

†24.24 z* = g(w*1,...,w*n,")

The envelope theorem states that the rate of change in z* with respect to a change in ", if all
wi are allowed to adjust, is equal to the change in g with respect to the change in the parameter
"  when all wi are assumed to be constant (Beattie and Taylor, pg 228). That is  

†24.25 Mz*/Mwi* = Mg/M" 

In order to prove that equation †24.25 holds, first find the partial derivative of †24.24
with respect to the parameter vector " 

†24.26 Mz*/M" = E(Mg/Mwi*)(Mwi*/M") + Mg/M"

However, if the first order conditions from equation †24.23 are to hold, then Mg/Mwi* must be
equal to zero for all i = 1, .., n and equation †24.25 holds.

24.5  Shephard's Lemma

Shephard's lemma (1953) is a specific application of the envelope theorem to the cost
function representing the least cost way of producing a particular level of output, as in
equation †24.13.  Suppose that a cost function with characteristics (a)-(e) listed above exists.
Then its corresponding first derivative with respect to the ith variable input is MC*/Mvi.
Shephard has shown that (1) this derivative is equal to the level of xi (xi*) that minimizes total
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cost for a given level of output, and (2) that if xi* exists as the minimum level of xi for a given
level of output, then MC*/Mvi also exists.

Suppose the cost minimizing Lagrangian 

†24.27  L = Evixi + 8[y°-f(x1,...,xn]

The corresponding first order conditions are 

†24.28 ML/Mxi = vi = 8fi 

for all i = 1 ,..., n

The indirect cost function, representing the least cost method of production is 

†24.29 C* = Evixi*

where the xi* represent the quantities of inputs defined by the expansion path factor beam.

Partially differentiating †24.29 with respect to the ith factor price yields

†24.30 MC*/Mvi = Evi Mxi*/Mvi + xi*

Substituting equation †24.28 into equation †24.30 
†24.31 MC*/Mvi = E8fi Mxi*/Mvi + xi* 

Now suppose that the original production function is defined at the cost minimizing level of
input use 

†24.32 y = f(x*1,...,x*n)

Maximizing the production function with respect to a change in the ith input price 

†24.33 My/Mvi = fi Mxi*/Mvi = 0

for all i = 1, ..., n
 
Substituting equation †24.33 into equation †24.31 evaluated at the cost minimizing level of
input use 

†24.34    MC*/Mvi = 8(0) + xi* = xi used in the least cost combination solution

for all i = 1, ..., n

Equation †24.34 is Shephard's lemma. Shephard's lemma thus states that the change in cost
for the cost function arising from the expansion path conditions with respect to the change in
the price of the ith factor, evaluated at any particular point (output level) on the least cost total
cost function,  is equal to the least cost quantity of the ith factor that is used.
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24.6  Hotelling's Lemma

Hotelling's lemma makes use of the envelope theorem with respect to profit, rather than
cost functions. Consider the case of a firm using n different inputs in order to produce m
different outputs. Total revenue (R) is defined as 

†24.35 R = Epjyj 

where y1, ..., ym = outputs

sj = the price of the jth output 

Total cost is given as 

†24.36 C = Evixi.

The output expansion path defines the revenue maximizing combination of outputs for the
firm, in much the same manner as the expansion path defines the least cost combination of
inputs. The indirect revenue function represents the optimal allocation of outputs to maximize
revenue, and can be specified as 

†24.38  R* = Esjyj*.  

The corresponding indirect cost function is 

†24.39  C* = Evixi*.

Indirect profit is the difference between revenue and cost according to the output and input
expansion path conditions given as 

†24.40  A* = R* ! C*.

        = Esjyj* ! Evixi*

The profit-maximizing production function transforming inputs into outputs is written in its
implicit form as 

†24.41 F(y*1,...,y*m;x*1,...,x*n) = 0.

The Lagrangian for maximizing profit subject to the constraint imposed by the production
function is 

†24.42 L = Esjyj ! Evixi + n[F(y1,...,ym;x1,...,xn) ! 0].

First-order conditions on the product side require that 

†24.43  ML/Myj = sj ! nMF/Myj = 0

for all j = 1, ..., m. The optimal yj is yj*.
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First order conditions on the factor side require that 

†24.44  ML/Mxi = vi  ! nMF/Mxi = 0

for all i = 1, ..., n. The optimal xi is xi*.

Now differentiate equation †24.40 with respect to the kth product price 

†24.45  MA*/Msk = yk* + Esj(Myj*/Msk) ! Evi(Mxi*/Msk)

Equations †24.43 and †24.44 are then substituted into †24.45 for the product and factor
prices to yield 

†24.46 MA*/Msk = yk* + n{(EMF/Myj*)(Myj*/Msk) ! (EMF/Mxi*)(Mxi*/Msk)}

Differentiate equation †24.41 with respect to the kth product price 

†24.47 M(0)/Msk = 0 = E(MF/Myj*)(Myj*/Msk) + E(MF/Mxi*)(Mxi*/Msk) 

Substitute †24.47 into †24.46 
†24.48 MA*/Msk = yk*
    
Equation †24.48 is Hotelling's lemma as applied to product supply. The lemma states that the
change in the indirect profit function arising from the output expansion path with respect to
the kth product price is equal to the optimal quantity of the kth output that is produced.

Hotelling's lemma can also be applied to the factor side. Differentiate the indirect profit
function  with respect to the kth input price 

†24.49 MA*/Mvk = Esj(Myj*/Mvk)!Evi(Mxi/Mvk) ! xk. 

Again substitute equations †24.43 and †24.44 for the product and input prices 

†24.50 MA*/Mvk = n{E(MF/Myj*)(Myj*/Mvk)!E(MF/Mxi*)(Mxi*/Mvk)} ! xk* 

Differentiate equation †24.41 with respect to the kth input price

†24.51 M(0)/Mvk = 0 = E(MF/Myj*)(Myj*/Mvk) + E(MF/Mxi*)(Mxi*/Mvk) 

Substitute †24.51 into †24.50 
†24.52  MA*/Mvk = ! xk* 
 
Equation †24.52 is Hotelling's lemma applied to the factor demand side. The lemma states that
the change in the indirect profit function with respect to a change in the kth  factor price is
equal to the negative of the optimal quantity of the kth input as indicated by the expansion
path conditions.

Hotelling's and Shephard's lemmas are of considerable importance for empirical research.
If the firm is operating according to the assumptions embodied in the expansion path
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conditions on both the factor and product sides, then product supply and factor demand
equations can be obtained without any need for estimating the production function from
physical input data. For example, equation †24.13 is the indirect (minimum) cost function
arising from a two input Cobb-Douglas type production function. The conditional factor
demand function for input xj can be found by partially differentiating †24.13 with respect to
vj, treating y as constant, and setting the partial derivative equal to xj* from Shephard's lemma.

Rewriting equation †24.13 
†24.53 C* = Doy*1v1

*2v2
*3

The choice of a Cobb-Douglas type production function to represent a production
process within agriculture is primarily one of mathematical convenience. A Cobb-Douglas
type cost function may also be appropriate so long as certain assumptions with regard to the
parameters are met.

Indirect cost functions should be homogeneous of degree one in all factor prices. A
doubling of all factor prices should exactly double cost. Only relative prices enter the factor
allocation. Since, from Shephard's lemma the factor demand function for each input is the first
derivative of the indirect cost function, then the factor demand equation for each input should
be homogeneous of degree zero in all factor prices. The symmetry condition follows from
Young's theorem, and implies that the elasticity of demand for the ith input with respect to the
jth input price should equal the elasticity of demand for the jth input with respect to the ith
input price.

Indirect profit functions conforming to a Cobb-Douglas type might also be assumed. An
example is 

†24.54 A* = Gos1
21v1

22v2
23

Indirect profit functions should be homogeneous of degree one in all prices, and therefore, a
doubling of all prices will double profit. The corresponding product supply and factor demand
equations based on Hotelling's lemma will be homogeneous of degree zero in all prices.
Restrictions regarding the indirect profit, cost, factor demand and product supply functions
can be readily incorporated within the estimation procedures found in many regression
packages. 

 
24.7  Alternative Elasticity of Substitution Measures

Any elasticity might be written as the derivative of one natural log with respect to
another. For example, the elasticity of demand for good q can be written as 

†24.55 Ed = dlnqd/dlnp

where 

qd = the quantity of the good demanded

p = the price of the good
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This is true, because if 

†24.56 z = lnqd

then 

†24.57 dz/dqd = 1/qd

and 

†24.58 dz = dqd/qd

Similarly, if 

†24.59 r = lnp

†24.60 dr/dp = 1/p

and 

†24.61 dr = dp/p

Hence 

†24.62 Ed = dqd/dp(p/qd) = dlnqd/dlnp.

As indicated in Chapter 12, The elasticity of substitution is a pure number that indicates
the extent to which one input substitutes for another and hence indicates the shape of an
isoquant according to the "usual" definition (Henderson and Quandt). The elasticity of
substitution can be represented by the ratio of two percentages. Suppose that there are two
inputs, x1 and x2. The elasticity of substitution between x1 and x2 is usually defined as   

 †24.63 F = % change in (x2/x1)/% change in MRSx1x2.

Many approximately equivalent expressions for the elasticity of substitution between two
input pairs exist.  For example, it is possible to calculate a point or an arc elasticity of
substitution.  The expression  

†24.64 Fa = [*(x2/x1)/(x2/x1)]/[*(MRSx1x2/MRSx1x2)]

could be thought of as an arc elasticity of substitution in that it represents the proportionate
percentage change in the input ratio (x2/x1) relative to the percentage change in the Marginal
Rate of Substitution as one moves downward and to the right along an isoquant from point
P1 to point P2 (Figure 24.2). As one moves along an isoquant from point P1 to point P2, two
things happen. First, the ratio of the inputs (x2/x1) changes. Second, the slope of the isoquant
as measured by MRSx1x2 at point P2 is different from that at point P1. The ratio of these  two
changes in percentage terms is the arc elasticity of substitution.

A point elasticity of substitution can be defined by the formula 

†24.65 F = [d(x2/x1)/(x2/x1)]/[dMRSx1x2/MRSx1x2]
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Figure 24.2  A Graphical Representation of the Elasticity of Substitution

or with the equivalent definition (Henderson and Quandt, p. 62) 

†24.66 F = [d(x2/x1)/(x2/x1)]/[d(f1/f2)/(f1/f2)]

where f1 and f2 are the marginal products of x1 and x2, respectively. Now define the input ratio
(x2/x1) as x. Then the elasticity of substitution F is given as 

†24.67 F = [dx/x]/[dMRSx1x2/MRSx1x2]

    = dlnx/dlnMRSx1x2

The elasticity of substitution is a very important parameter of a production process
involving a pair of inputs. As indicated in Chapter 12, it provides an important indication of
the shape of an isoquant. By this definition, isoquants forming right angles (the classic
example is tractors and tractor drivers) have zero elasticities of substitution, while diagonal
isoquants have an  elasticity of substitution approaching infinity. Of course, if there is truly
no change in the marginal rate of substitution between points P1 and P2, then the percentage
change in the marginal rate of substitution is zero, and the elasticity of substitution is
undefined. 

The inverse factor price ratio (v1/v2) measures the marginal rate of substitution of x1 for
x2 (dx2/dx1) at the point of least cost combination in competitive equilibrium. Therefore, if
competitive equilibrium is assumed,  the elasticity of substitution in the two factor case at the
point of least cost combination on the isoquant may be rewritten as 
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†24.68 [d(x2/x1)/d(v1/(v2)]/(v1/v2)/(x2/x1)]

or as 
dln(x2/x1)/dln(v1/v2) 

= (dlnx2 - dlnx1)/(dlnv1 ! dlnv2).

Equation †24.68 is the definition attributed to Hicks (See also Varian, pp. 44-45). Notice,
however, that v1/v2 is equal to the MRSx1x2 only in competitive equilibrium.

A large elasticity of substitution indicates that the entrepreneur (such as a farmer) has
a high degree of flexibility in dealing with input price variation. If there existed a large
elasticity of substitution between a pair of factors, the farmer would quickly adjust the input
mix in response to changing relative prices. However, if the elasticity of substitution were
small, the input mix would be hardly altered even in the face of large relative shifts in prices.
The extent to which a farmer adjusts the input mix to changing relative prices thus indicates
the magnitude of the elasticity of substitution between input pairs.

In the two factor case, the elasticity of substitution will lie between zero and plus infinity.
However, if there are more than two inputs, some input pairs may  be complements with each
other, thus leading to a potential negative elasticity of substitution for some of the input pairs.
The definition of an elasticity of substitution in an n factor case is further complicated because
a series of specific assumptions must be made with regard to the prices and input levels for
those factors of production not directly involved in the elasticity of substitution calculation,
and the elasticity of substitution between inputs i and j will vary depending on these
assumptions.

The definition of the elasticity of substitution attributed to Hicks can be generalized to
the n factor case such that 

†24.69 Fij = [dln(xj/xi)]/[(dln(vi/vj)]

     =  (dlnxj ! dlnxi)/(dlnvi ! dlnvj)

Equation †24.68 is sometimes referred to as  the two-input,  two-price or TTES,
elasticity of substitution, or the "usual" definition of the elasticity of substitution in the n
factor case (Fuss, McFadden and Mundlak, p. 241, Ball and Chambers). However, when n
is greater than two, specific assumptions for the calculation need to be made with regard to
prices and quantities of inputs other than i and j.

Moreover, a number of alternative definitions for the elasticity of substitution are
possible.  The one-input, one-price elasticity of substitution (OOES) is proportional to the
cross price input demand elasticity evaluated at constant output 

†24.70 Nij = $(dlnxj)/(dlnvi)

The two input one price form (TOES) involves two input quantities but only one input
price 

†24.71 Tij = (dlnxj ! dlnxi)/(dlnvi)
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Furthermore, each definition can be evaluated based on constant output, cost, or
marginal cost (Fuss, McFadden, and Mundlak, p. 241).  Each of these alternative definitions
can be evaluated assuming the prices on the remaining inputs other than i and j are held
constant.  The quantities of inputs other than i and j can also be held constant or allowed to
vary as vi and vj vary which generates short and long run elasticity of substitution measures.

 

Allen (1938) uses the Hicks definition of the elasticity of substitution (p. 341),  but Allen
also develops an alternative measure of his own, which is linked to the own and cross price
constant output factor demand elasticity (See also Hicks and Allen).  This definition of the
elasticity of substitution attributable to Allen (pg. 504) is 

†24.72 FA
i j = SjEij.

where 
Sj = the share of total cost attributable to the jth input, or vjxj/C*

Eij = (dlnxi)/(dlnvj) evaluated at constant output.  (This is in reality the cross
        price factor demand elasticity.)  

This elasticity of substitution has been dubbed the Allen Elasticity of Substitution (or
AES), and is of the OOES form, since only one price (i) and one input (j) are involved (Ball
and Chambers). Notice, also, that an Allen own price elasticity of substitution can be defined
as 

†24.73    FA
j j = SjEjj

where
     Sj = vjxj/C* the cost share represented by the jth input

      Ejj = (dlnxj)/dlnvj

The AES concept forms the basis for still other elasticity of substitution concepts. For
example, the Morishima elasticity of substitution (Koizumi) is an example of a TOES
elasticity of substitution and is defined in terms of the AES as 

†24.74 FM
i j = Sj(FA

i j ! FA
j j)

      = Eij ! Ejj

This elasticity  is the difference between the cross and own price elasticity of factor demand
evaluated at constant output.  This elasticity of substitution is TOES since 

†24.75 Eij ! Ejj = (dlnxi ! dlnxj)/(dlnvj) 

Notice that the Morishima elasticity of substitution is not symmetric, that is 

†24.76 (dlnxi ! dlnxj)/(dlnvj) … (dlnxj ! dlnxi)/(dlnvi)

and therefore FM
i j … FM

j i
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The Shadow Elasticity of Substitution (McFadden, 1963) is an example of a TTES, and
is therefore closer to the original Hicks definition than is the Morishima or Allen definitions.
The Shadow Elasticity of Substitution allows all inputs not involved in the calculation to vary,
and thus can be thought of as a long run elasticity of substitution.  The shadow elasticity can
be expressed in terms of the Allen measure as 

†24.77 FS
i j = [(SiSj)/(Si+Sj)][(2FA

i j ! FA
i i ! FA

j j]

Thus, if the AES and input cost share data are available, the Shadow Elasticity of Substitution
can be readily calculated.

24.8  Elasticities of Substitution 
         and the Cobb-Douglas Specification

Specific production functions used by researchers in empirical analysis frequently
embody assumptions that come along with the functional form.  Fuss, McFadden and
Mundlak  refer to these assumptions as maintained hypotheses. These maintained hypotheses
frequently are not explicitly recognized by the researcher, but do impose constraints on the
possible outcomes that can be generated by the analysis.

An excellent example of a maintained hypothesis is the assumption with regard to the
Hicksian elasticity of substitution that exists between input pairs when a Cobb- Douglas (CD)
type functional form is chosen to represent the production process. Consider, for example a
CD type specification with no imposition of a particular sum on $1 + $2.

†24.78 y = A x1
$1x2

$2

The marginal rate of substitution of x1 for x2 is given by 

†24.79 MRSx1x2 = ($1/$2)(x2/x1)

                              = MRSx1x2 = $x
where

 $ = $1/$2, and x = x2/x1

Henderson and Quandt (Chapter 3) provide a somewhat messy proof that the TTES
elasticity of substitution for any functional form of the CD type is 1 as a maintained
hypothesis. As was indicated in Chapter 12, equations (20.15) - (20.20), simple proof is 

†24.80 MRSx1x2 = $x

†24.81 lnMRSx1x2 = lnx + ln$

†24.82 lnx = lnMRSx1x2 ! ln$

†24.83 F = dlnx/dlnMRSx1x2  = 1

Equation †24.83 holds even if the production function is not linearly homogeneous, and the
partial production elasticities sum to a number other than 1. Moreover, it can be easily shown
that the relationship holds for any factor pair if the function contains more than two inputs.
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A maintained hypothesis that the elasticity of substitution between labor and capital is
1 may be tolerable in a 1928 study dealing with a production process representing the output
of a society and utilizing capital and labor as inputs. As will be empirically shown, it is clearly
intolerable in a study conducted in the 1980s dealing with the substitutability between energy
and machinery within U.S. agriculture.

Subsequent to the Hicks and Allen publications, the maintained hypothesis regarding the
elasticity of substitution between labor and capital became an issue of some discussion.
Economists have devoted considerable effort aimed at remaking the original Cobb - Douglas
article. 

24.9  The CES, or Constant Elasticity of Substitution Specification

The CES or Constant Elasticity of Substitution production function (Arrow et al.) was
an effort to remake the original CD article without the maintained hypothesis regarding the
elasticity of substitution. A specification for the CES function (without linear homogeneity
imposed ) is 

†24.84 y = A[$1x1
!D + $2x2

!D]!1/D

Suppose that the marginal rate of substitution from some unknown production function is
given by 

†24.85 MRSx1x2 = $x1+D

where 

$ = a constant

x = x2/x1

Taking logs 

†24.86 lnMRSx1x2 = ln$ + (1+D)lnx

†24.87 lnx = [1/(1+D)]lnMRSx1x2 ! [1/(1+D)]ln$

†24.88 dlnx/dlnMRSx1x2 = 1/(1+D) = F

The elasticity of substitution is given by the power to which the input ratio is raised. In
general, for any production function where the marginal rate of substitution is given by 

†24.89 MRS = $x*

where 

†24.90 x = x2/x1

The elasticity of substitution (Hicks) is given by 1/*.  It is easily shown that the MRS for the
CES is of this form 
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†24.91 f1 = !1/DA($1x1
!D + $2x2

!D)!1/D !1 (!D$1x1
!D!1)   

†24.92 f2 = !1/DA($1x1
!D + $2x2

!D)!1/D ! 1 (!D$2x2
!D!1)   

†24.93 dx2/dx1 = ($1x1
!D!1)/($2x2

!D!1)

                             = ($1/n$2)(x2/x1)1+D

                             = $x(1+D)

Henderson and Quandt (Chapter 3) prove that the Cobb-Douglas production function is
a special case of the CES when D = 0. This proof requires L'Hopital's Rule. However, it is
easily seen here that when D assumes a value of 0, 1+D = 1 and the MRSx1x2 = $x, the exact
same form as occurs under the Cobb-Douglas type production function. Debertin, Pagoulatos
and Bradford (1977b, pp. 10-11), Chapter 12  provides a detailed discussion of the
relationship of the value of D and the shape of the isoquants. 

The CES production function was an appropriate improvement if the interest centered
on the elasticity of substitution within a production process that used only two inputs, such
as capital and labor. However, if the function were extended to the n input case, there
remained but one parameter D and, as a result a maintained hypothesis was that the same
elasticity of substitution applied to every input pair (see Revankar and Sato for extensions).
Agricultural economists are usually interested in disaggregating input categories into more
than two inputs. Thus the CES  never was extensively used in agricultural economics
research. A more flexible functional form was clearly needed for agricultural economics
research.

24.10  The Transcendental Production Function and F

Halter, Carter and Hocking (1957) proposed a transcendental production function to
depict the three stage production process as represented by the neoclassical theory familiar to
any undergraduate agricultural economics student. The transcendental production function is
actually a variable elasticity of substitution production function. With proper assumptions
with respect to the parameters, the isoquant map for the transcendental production function,
and the variant proposed by Debertin, Pagoulatos, and Bradford (1977a, 1977b, p. 8),
generate isoquants consisting of concentric rings. This map is quite unlike anything possible
with the CES or Cobb-Douglas specifications, which produce isoquants that are everywhere
downward sloping.

As was indicated in Chapter 11, the HCH transcendental is 

†24.94
The Allen elasticity of substitution for the HCH transcendental is 

†24.95 F = [("2+(1x1)("1+(2x2)]/[("2)("1+(2x2)2 + ("1)("2+(1x1)2]     
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Morishima and Shadow elasticities can be calculated from the Allen measure.  This function
is readily estimable with data from agricultural production processes (Halter and Bradford).
The discussion in Chapter 11 links parameter values to the shape of the function.

Despite some recognition of the HCH functional form in the general economics literature
(e.g. Fuss, McFadden and Mundlak, pg. 242), the HCH function is not widely used by
economists. Its strength, that it can depict the neoclassical three stage production function, is
also its weakness. The fact that, at least for certain parameter values, the function is not
monotonically increasing means that the inverse or dual cost curve associated with it is a
correspondence, not a function. As a result, parameters of the production process represented
by the transcendental cannot be readily derived from the corresponding cost data.
Contemporary production theory involves choosing a functional form to represent the
production process that is monotonically increasing, and can be readily inverted, such that
parameters can be derived from either the cost or the physical input data.

Many agricultural economists continue to emphasize the three stages of the neoclassical
production process in undergraduate classes, and continue to be fascinated with stage three,
where output declines as incremental units of the variable input are added. In order to take
advantage of the duality theorems, contemporary theorists have all but abandoned stage three
and therefore the usual assumption  made by contemporary theorists is free disposal. 

Assuming positive factor prices, no economic conditions could cause the firm to apply
units of a variable input beyond the point where output is maximum. Beattie and Taylor (p.
91) indicate negative factor prices could exist, for example, if a farmer were paid to remove
a waste product which could be used as a fertilizer.  They further contend that a farmer could
operate in stage three if a factor price were negative. However, if the factor price were
negative, under no circumstances would it be more profitable for the farmer to apply
additional units to the crop beyond the point of output maximium, than to dump the waste
product consistent with the free disposal assumption. 

If fertilizer were free, the farmer would be better off to dump units than to apply it to a
crop, if in so doing, yields would be reduced. Again, the free disposal assumption is critical.
Contemporary production functions typically increase but at a decreasing rate throughout their
range for each variable input. The Cobb-Douglas production might be thought of in this
regard as contemporary, rather than neoclassical, but this is also true for the CES and
Translog specifications developed much later.  The duality concepts are closely linked to the
maintained hypothesis of free disposal, and the marginal products that are correspondingly
everywhere positive throughout the range of the function.

24.11  Linear in the Parameters Functional Forms
           and the Translog Production Function

Diewert introduced the concept of linear in the parameters functional forms. While
Diewert recognized that  advances in computing technology made it possible to estimate
functional forms that were non linear in the parameters, little if any new information would
be gained about the production process by the use of  more complex and computationally
burdensome functional forms.

In addition, Diewert recognized the close linkages that exist between various functional
forms. One way of looking at various functional forms is in terms of Taylor's series



Contemporary Production Theory: The Factor Side 387

expansions. For example, the Cobb-Douglas type production function could be written as a
first order Taylor's series expansion of lny in lnxi 

†24.96 lny = ao + E$ilnxi

The CES is a first order Taylor's series expansion of yD in xi
D (Fuss, McFadden and Mundlak,

p. 237).   Similarly, the CES could be written in a multiple input setting as 

†24.97 yD = ao + E$ixi
D

The Translog production function was introduced in 1971 by Christensen,  Jorgenson
and Lau, and was the logical choice given the difficulties posed by other functional forms. The
translog production function is simply a second order Taylor's series expansion of lny in lnxi,
whereas the Cobb-Douglas is a first order expansion. The production function as a Taylor's
Series expansion can be written as 

†24.98 lny = ao + E$ilnxi + EE$ijlnxi lnxj  

The function had a number of other virtues, in addition to its close linkage to the
Cobb-Douglas. It is linear in the parameters, which makes parameter estimation simple. It is
normally monotonically increasing with respect to the use of each input under the usual
parameter assumptions. However, results depend upon the units in which the xi are measured.
If 0<xi<1, ln xi < 0, and under certain positive parameter combinations, the function may not
be increasing with respect to the ith input. That the function does not depict the neoclassical
three stage production process is viewed as a virtue, not a vice, for fundamental concepts of
duality are applicable.

Moreover, there is no maintained hypothesis about the elasticity of substitution between
input pairs, and the various  elasticity of substitution measures can be derived either directly
from the production function, or as is now common, from a dual cost function of the translog
form. Thus, it is the production function of choice for agricultural economists who seek to
estimate elasticities of substitution between input pairs with little information about the
production process other than cost data available to them. If there are both fixed and variable
inputs, the translog production function is given as 

†24.99 y = E$ilnxi + EE$ijlnxilnxj +EE$izlnxilnzk° + E$zlnzk°

where the zk° represent fixed inputs. The $iz represent the assumed interaction between levels
of fixed and variable input use and the assumed constant level of fixed inputs. The term
E$lnzk° is a constant  intercept term that performs a role similar to A in a Cobb-Douglas type
specification.

Alternately, one might instead  rely on duality, and begin with a dual cost function of the
translog form. The translog cost function expresses cost as a function of all input prices and
the quantity of output that is produced. For a given level of output y*, the corresponding point
on the cost function is assumed to be the minimum cost of producing y* arising from the
expansion path conditions.

The least-cost translog cost function is 
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†24.100     lnC* = 2o + E2i lnvi + EE2ij lnvi lnvj

              + 2y lny + EE2iz lnvi lnzk° + E2yz lny lnzk°

              + EE2jk lnzj° lnzk° + E2z lnzk° + E2yi lny lnvi 
where 

(v1,...,vn) = the vector of input prices

(z1,...,zn) =  the vector representing levels of the fixed inputs

           y = output

          2 = the parameter vector to be estimated

Equation †24.100 is normally estimated from cost share equations which are derived as
follows.

The elasticity of total cost with respect to a change in the ith input price is given by 

†24.101    MlnC*/Mlnvi = dC*/dvi vi/C* = >i

Hence 

†24.102    >i = 2i + E2ij lnvj + E2iz lnzk° + 2yi lny.

It was not until the translog production and cost functions were introduced in the early
1970s that the importance of Shephard's Lemma for empirical work became apparent.
Recognize that >i can be written as 

†24.103     MC*/Mvi vi/C*.

But, since Shephard's lemma states that 

†24.104     MC*/Mvi = xi* 

Then  

†24.105     >i = xi*vi/C*

Notice also, that xi*vi = the total expenditures on input xi according to the expansion path
conditions. Thus, the expression xi*vi/C* = >i = Si where Si is the cost share associated with
the ith input. The series of cost share equations thus becomes 
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†24.106 S1 =    21 + E21j lnvj + E21z lnzk + 2y1lny
. . .        .
. . .        .
. . .        .                  

Si =     2i + E2ij lnvj + E2iz lnzk + 2yilny
 . . .        .
 . . .        .
 . . .        .

Sn =    2n + E2nj lnvj + E2nz lnzk + 2ynlny

The cost-share equations are empirically  estimated, and include price and output variables
and levels of fixed inputs that would normally be readily available from farm records or even
census data. If data on the level of fixed inputs are not available, their combined impact is
estimated as part of the intercept term.

24.12  Restrictions and Other Estimation Problems
 

Economic theory imposes a number of restrictions on the estimation process. First, Total
Cost = E Si. Thus, given total cost and any n-1 cost shares, the remaining cost share is known
with certainty. Therefore, one equation is redundant, and mechanically, the choice of the
equation to be omitted is arbitrary, but the empirical results may not be invariant with respect
to the choice of the omitted equation unless an iterative estimation procedure is used (cf.
Humphrey and Wolkowitz; Moroney and Toevs; and Berndt and Wood).

As indicated earlier, any total cost function should be homogeneous of degree 1 in input
prices. This restriction can be imposed by restricting E2i = 1 and E2ij = 0. Since  Young's
theorem states that the order of the differentiation makes no difference and  the 2ij are in
reality partial derivatives, a symmetry restriction must also be imposed such that 2ij = 2ji for
all i and j inputs. Finally, the cost share for the ith input is not unrelated to the cost share for
the jth input,  and a Seemingly Unrelated Regressions approach is the usual choice for
estimation of the cost share equations. 

24.13  Elasticities of Substitution for U.S. Agriculture 

From the parameter estimates of the cost share equations, the corresponding Allen
Elasticities of Substitution between input pairs and the related measures can be derived.
Brown and  Christensen derive  the constant output partial static equilibrium cross price
elasticity of factor demand as 

†24.107     Eij = SjF
A
i j

     = Mlnxi/Mlnvj = (2ij + SiSj)/Si

where

FA
i j = (2ij + SiSj)/(SiSj) 

is the Allen Elasticity of Substitution.
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The AES estimate is readily derived from the parameter estimates of the cost share
equation. The usual approach is to insert the mean of the cost shares for each input category
in the data for the sample period in order to obtain the Allen estimates. Once the Allen
estimates are obtained, the corresponding Morishima and Shadow Elasticities of Substitution
can then be obtained from equations †24.73 and †24.76. Again, the mean of the factor shares
for the sample data is introduced into the formulas along with the estimated Allen measure.
The Shadow Elasticity of Substitution estimate obtained from this model, that is perhaps the
closest to the Hicks' definition,  is not quite the long run measure envisioned by McFadden.
Inputs in the x vector other than i and j are treated as variable in the shadow measure.
However, inputs in the z vector are treated as fixed. The true long run measure suggested by
McFadden could be obtained if all input categories were treated as part of the x vector.

24.14  An Empirical Illustration

The empirical illustration of the application of theory presented in this publication is
from Aoun, who was concerned with the potential changes in elasticities of substitutions
between agricultural inputs over time, particularly energy and farm machinery. Fuss,
McFadden, and Mundlak refer to technological change which impacts the partial elasticities
of substitution between input pairs as substitution augmenting technological change. 

Substitution augmenting technological change that increases the elasticity of substitution
between input pairs is desirable in that the producer is given additional flexibility in dealing
with changes in the relative prices of the inputs that might occur due to shocks within the
factor markets. For example, suppose that the elasticity of substitution between capital and
labor within an economy were near zero. The firm would be faced with a situation in which
capital and labor would be used in nearly fixed proportions to each other irrespective of
relative price levels. Moreover, the firm owner would have little flexibility for dealing with
short run variability in input prices over time.

Estimates of elasticities of substitution among input pairs must necessarily rely on data
series for a number of years. If there exist shifts in elasticities of substitution over time due
to technological change, then the data series for a long period of time can not be relied upon
to measure these shifts. If the data series are too short, degrees of freedom problems,
multicollinearity between input vectors and instability of regression coefficients upon which
the elasticity estimates are derived become issues.

24.15  Theoretical Derivation

Aoun used a translog cost function specified as  

†24.108     lnC* = "o + "ylny +Ei"i lnvi + ½ $yy(lny)2 + ½ EiEj$ijlnvilnvj
                       
                          + E(yilnylnvi + Ntt + ½ Nttt2 + Ntyt lny + EiNtitlnvi

where 
C* = minimum total cost

i, j = n, l, m, f, e
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y = output

n = land

l = labor

m = machinery

f = fertilizer

e = energy

t = annual time trend variable

vi, vj = input prices on n, l, m, f, and e.

The translog cost function is assumed to be continuous, monotonically increasing, concave
and homogeneous of degree one with respect to factor prices. Following the analysis by Brown
and  Christensen, an assumption is made that the translog cost function represents a constant
returns to scale technology. This implies the following restrictions 

†24.109     "y = 1

†24.110     E(yi = 0 for i = 1, 5

†24.111     $yy = 0

†24.112     Nty = 0

Partially differentiating †24.108 with respect to the ith input price, assuming that restrictions†24.109-†24.112 hold   

†24.113     MlnC*/Mlnvi = "i + E $ij lnvj + (yilny + Ntit

i = 1, ..., 5

Invoking Shephard's lemma 

†24.114     MlnC*/Mlnvi = MC*/Mvi vi/C* =(xivi)/C* = Si

where 

Si = the cost share for the ith input i = 1, 5

and 
Si = "i + E $ij lnvj + (yilny + Ntit

i = 1, ..., 5

The restrictions imposed on the estimation were 
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†24.115     E"i = 1

†24.116     E$ij = E$ji = EE$ij = 0 

†24.117     E(yi = 0

†24.118     ENti = 0

†24.119     $ij = MlnC*/(Mlnvilnvj) = $ji = MlnC*/(Mlnvjlnvi)

The Allen measure is derived from the parameter estimates of the cost share equation.
The approach used in Aoun is to insert the mean of the cost shares for each input category in
the data for the sample period into †24.107 in order to obtain the the Allen estimates. Once
the Allen estimates are obtained, the corresponding Morishima and Shadow Elasticities of
Substitution can then be obtained. Again, the mean of the factor shares for the sample data
is introduced into the formulas along with the estimated Allen measure.

24.16  Empirical Results

Estimates of Elasticities of Substitution for the Allen, Morishima, and Shadow
(McFadden) measures were obtained for U.S. agriculture for the three distinct decades
1950-59, 1969-69 and 1970-79, and for the entire period comprising 31 years from 1950 to
1980 (Aoun). Restricted Three Stage Least Squares was the method of estimation. The
standard U.S.D.A price indexes for the various input categories was used, except for land,
where the index was constructed. A detailed discussion of the sources of data and
computational procedures can be found in Aoun. Allen Elasticities are reported for the three
distinct decades (Table 24.1) and the Morishima and Shadow elasticities are reported for the
period 1970-79 (Tables 24.2 and 24.3). Estimates of the Shadow elasticity of substitution for
most input pairs differed significantly from 1, suggesting that the appropriate production
function to represent U.S. agriculture is not Cobb-Douglas.

Moreover, the Allen elasticities varied rather substantially from one decade to the next.
Of particular interest were the estimates of the elasticities of substitution between machinery
(including tractors) And energy for the three distinct decades. The Allen  estimates  went  from
-13.240 for 1950-59, to -0.118   for 1960-69   to +13.583  for 1970-79. The remarkable
conclusion is that energy and machinery were complements in the 1950s but substitutes during
the 1970s according to the Allen measure. The substitution between energy and machinery for
the 1970-79 decade was further confirmed by the estimated value of 2.808 for the shadow
measure (Table 2), and 1.052 or 5.613 for the nonsymmetric Morishima measure (Table 3).
There has been a clear increase in the substitutability between energy and machinery over the
three periods for which the estimates are based. 

Other changes over the three decades, although perhaps not quite as profound, are also
of interest. For example, the elasticity of substitution between labor and energy is clearly
trending downward according to the Allen measure, from + 5.120 (substitute) for 1950-59 to
!10.313 for 1970-79 (complement). Labor and fertilizer, a complement in 1950-59 (!7.950)
is clearly a substitute for 1970-79 (+2.125) according to the Allen measure. The signs are in
agreement with those for the Morishima and Shadow measures. 
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Table 24.1.  Estimates of the Allen Cross Ellasticities of Substitution 
            for the Three Distinct Decades, 1950-59, 1960-69 and 1970-79a

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
        Fnl  Fnm            Fnf          Fne          Flm

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
1950-59 ! 1.737** + 3.789* +8.552**! 2.000 ! 0.327

(0.687) (1.852) (1.745) (1.457) (0.910)

1960-69 ! 1.440 + 8.327 + 2.565 ! 0.366 + 3.865
(2.073) (5.558) (2.308) (2.209) (4.510)

1970-79 !0.071 + 1.484 ! 1.083* ! .350 + 10.962**
(1.268) (1.833) (0.686) (0.999) (2.146)

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
                Flf                Fle             Fmf         Fme          Ffe

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
1950-59 ! 7.950** + 5.120** ! 5.950**! 13.240** + 2.158  

  (0.919) (0.565) (2.823) (1.705) (1.762)

1960-69 ! 1.333 + 4.586** + 1.316 !0.118 ! 0.867
(1.780) (1.740) (4.207) (3.669) (1.700)

1970-79 + 2.125** ! 10.313** ! 1.278* + 13.583** + 0.455
(0.745) (1.210) (0.811) (1.665) (0.350)

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
aStandard errors in parentheses

n = land                     Fij>0 = > factor i and factor j are substitutes
l = labor                     Fij<0 = > factor i and factor j are complements
m = machinery            * 0.10 significance level by a one-tailed t-test
f = fertilizer               **0.05 significance level by a one-tailed t-test
e = energy



Agricultural Production Economics394

Table 24.2  Morishima Elasticities of Substitution for the 1970-79 Decadea

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
Input                  Land              Labor Machinery        Fertilizer        Energy

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
Land 0.0 1.315 3.949  ! 0.356  ! 0.152 

(0.608) (0.840) (0.211) (0.201)

Labor ! 0.007 0.0 5.285 0.063 ! 1.018
(1.009) (0.684) (0.076) (0.120)

Machinery 0.706 2.945 0.0 ! 0.378 1.052
(1.241) (0.335) (0.199) (0.168)

Fertilizer   ! 0.464 1.286 3.567 0.0 ! 0.080
 (.672) (0.402) (0.652) (0.107)

Energy  ! 0.138 ! 0.999 5.613 ! 0.152 0.0
(.902) (0.385) (0.513) (0.045)

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
aStandard errors in parentheses

Table 24.3  Shadow Elasticities of Substitution for the 1970-79 Decadea

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
Input                       Land              Labor        Machinery        Fertilizer       Energy
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

Land 0.0 0.629 3.191 ! 0.380 ! 0.150
(0.654) (0.819) (0.280) (0.286)

Labor 0.0 4.278 0.574 ! 1.012
(0.447) (0.163) (0.132)

Machinery 0.0 1.540 2.808
(0.355) (0.199)

Fertilizer 0.0 ! 0.109
(.030)

Energy
0.0

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
aStandard errors in parentheses
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24.17  Concluding Comments

Contemporary production theory focuses on the duality that exists between the production
function and the cost function along the expansion path.  Although not developed for that
purpose, the Cobb-Douglas production function can be thought of as one of the first forms
consistent with the required assumptions for the development of the dual cost function. But
it had important disadvantages with respect to the maintained hypotheses with respect to the
substitutability of inputs. The CES and Translog specifications represented relaxations of
these maintained hypotheses.

The concept of an elasticity of substitution is highly complex. From the basic and familiar
two input definition, a number of alternative concepts have been presented. At the same time,
this concept is perhaps the most important in all of production economics, and is particularly
useful in an agricultural setting. For example, technological change which increases the
elasticity of substitution between input pairs would give farmers additional flexibility in
dealing with input price variation.

Following the general theoretical approach outlined in this paper, the Aoun study provided
some intriguing results with respect to elasticities of substitution between input pairs for U.S.
agriculture. The elasticity of substitution between energy and machinery within U.S.
agriculture has changed markedly over the three decades from the 1950s to the 1970s. Energy
which was a complement for machinery in the 1950s was a substitute by the 1970s. The
results provide empirical evidence that the form of technological change within agriculture
which increases the elasticity of substitution over time, as suggested by McFadden,  has
indeed taken place within  U.S. agriculture.

This chapter has attempted to show that the premises of contemporary production theory
are important to and do have application to problems in agricultural production.  What is
required is a somewhat different approach than has traditionally been used used in research
in agricultural production. Instead of the estimation of a Cobb-Douglas type specification on
physical input data, a contemporary approach frequently involves the estimation of the factor
share equations from the cost data. But this is an advantage for much agricultural economics
research in that the cost data is usually more readily available than the physical input data,
and is perhaps more reliable as well.  The approach should be applicable to studies conducted
using data from individual farm records, census data representing small groups of farmers,
as well as aggregated studies conducted at a regional or national level. 
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