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Contemporary Production 
Theory: The Product Side
                  
Much of the theory of the firm in product space is not nearly as well developed as the theory
of the firm in factor space. For example, both general and agricultural economists have
devoted considerable effort to developing functional forms representing production processes
in factor space, but the companion effort in product space has been very limited. This chapter
discusses some problems in the modification for use in product space  of functional forms
commonly used in factor space.  Extensions to the theory of the firm in product space are
developed by using factor space and duality theory as the basis. 
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25.1  Introduction 

Much of the theory of the firm in product space is not nearly as well developed as the
theory of the firm in factor space. For example, both general and agricultural economists have
devoted considerable effort to developing functional forms representing production processes
in factor space, but the companion effort in product space has been very limited. This chapter
discusses some problems in the modification for use in product space  of functional forms
commonly used in factor space.  Extensions to the theory of the firm in product space are
developed by using factor space and duality theory as the basis.

An equation for a production process involving n inputs and a single output is:

†25.1 y = f(x1,...,xn)

with an isoquant representing a fixed constant output arising from possible combinations of
the  xi :

†25.2 y° = f(x1,...,xn)

In product space, the analogous equation linking the production of m outputs to the use
of a single input (or bundle of inputs, is

†25.3 x = h(y1,.., ym).

The production possibilities function representing possible combinations of the yi that can be
produced from a fixed quantity of a single input (or input bundle, with the quantities of each
input being held in fixed proportion to each other) is:1

†25.4 x° = h(y1,..., ym)

Considerable effort has been devoted to the development of explict specifications for equation†25.1 (Fuss and McFadden, Diewert, 1971).  Most attempts at developing explicit forms of†25.3 have consisted of simple modifications of explicit forms of †25.1, by  replacing the xi
with yi and y2, and substituting the quantity of x in the product space model, a single input (or
input vector x = {x1°,...,xn°) for y°  in the factor space model.  The standard presentation of
the neoclassical theory of the firm usually specifies isoquants in factor space with a
diminishing (or possibly constant) marginal rates of substitution. The standard presentation
in product space specifies product transformation functions with an increasing (or possibly
constant) rate of product transformation.  This suggests that the parameters of and even the
explicit form of h (equation †25.3) needed to generate product transformation functions
consistent with neoclassical theory might be quite different from the parameters and form of
f (equation †25.1).

25.2  Duality in Product Space

In product space, the total revenue function is analogous to the cost function in factor
space. Suppose that products (a) are either supplemental or competitive but not
complementary with each other for the available resource bundle x°, and (b) rates of product
transformation between output pairs are non-decreasing. These assumptions are analogous
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in product space to the free disposal and non increasing marginal rate of substitution
assumptions (McFadden, pp. 8-9) in factor space. 

In factor space, if there is free disposal of inputs, and non increasing marginal rates of
substitution, then the cost function that is dual to the underlying production function  c(y;v)
= min[vNx:f(x)$y]
  

(i) exists. This is true because any continuous function defined on a closed and
bounded set achieves its minimum within the set.

(ii) is continuous.

(iii) is non-decreasing for each price in the input price vector v.

(iv) is homogeneous of degree one in all variable input prices. This implies that
if all input prices double, so also will total variable cost, and

(v) is concave in each input price for a given level of output (y*).

Detailed proofs of (i)-(v) can be found in McFadden, 1978, pp. 10-13. The  isoquant
maps needed for the existence of a corresponding dual cost function are not necessarily more
plausible in an applied setting than other isoquant maps, but rather are a matter of
mathematical convenience. For example, the Cobb-Douglas, CES and Translog production
functions all are capable of generating isoquant maps consistent with these assumptions, under
the usual parameter restrictions.  

  Given the product space function

†25.27 x = g(y1,y2,...,ym),

the corresponding total revenue function that maximizes total revenue for a given input bundle
x° is:

†25.28 r = max[p'y;g(y)#x°].

If conditions (a) and (b) are met, then equation †25.28
(vi) exists 

(vii) is continuous

(viii) is non-decreasing in each price in the product price vector p

(ix) is linearly homogeneous in all product prices {p1,...,pm} (and in all outputs
{y1,...,ym}). A doubling of all product prices or a doubling of all outputs will
double revenue.
and

(x) is convex in each output price for a given level of input x° (Hanoch, p. 292).

The product transformation functions needed for the existence of a corresponding dual
revenue function are not necessarily more plausible in an economic setting than other product
transformation functions, but are rather a mathematical convenience. A Cobb-Douglas like
funtion in product space will not generate product transfomation functions consistent with (a)
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and (b), while under certain parameter assumptions, a CES-like or translog like function in
product space will generate product transformation functions consistent with these
assumptions.

25.3  Cobb-Douglas-Like Product Space

Consider first a Cobb-Douglas like analogy in product space. A Cobb-Douglas like two
product one input model suggested by Just, Zilberman and Hochman (p. 771) from Klein is:

†25.5 y1y2
* = Ax1

"1x2
"2x3

"3 

Now suppose there is but one input to the production process. That is

†25.6 Ax"1 = y1y2
*

Solving for input x

†25.7 x = (1/A)1/"1y1
1/"1y2

*/"1

The parameters "1 and * would normally be non-negative, since additional units of y1 or y2
can only be produced with additional units of the input bundle, and additional units on the
input bundle produce additional units of outputs y1 and y2.

Rewriting †25.7 in a slightly more general form:

†25.8 x = By1
N1y2

N2

However, with positive parameters, in no case will equations †25.7 and †25.8 generate
product transformation curves concave to the origin, for the Cobb-Douglas like function is
quasi-concave for any set of positive parameter values.

Given the general single-input, two-output product transformation  function:

†25.9  x = h(y1,y2)

For an increasing rate of product transformation:

†25.10 h11h2
2 + h22h1

2 ! 2h12h1h2 >0 

For a Cobb-Douglas like function in product space equation †25.10 with a positive N1 and
N2 is equal to:

†25.11 (!N1N2
2 !N2N1

2)y1
3N1!2y2

3N2!2 < 0

A Cobb-Douglas-like function in product space cannot generate product trans-formation
functions consistent with neoclassical theory and the usual constrained optimization revenue
maximization conditions.
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25.4  CES-Like Functions in Product Space

The CES production function in two input factor space is:

†25.12  y = C[81x1
!D + 82x2

!D]!1/D

Just, Zilberman and Hochman also suggest a possible CES-like function in product space. A
version of this function with one input and two outputs is:

†25.13  x = C[81y1
!n + 82y2

!n]!1/n

The five familiar cases (Chapter 12 and in Henderson and Quandt; and Debertin, Pagoulatos
and Bradford) with respect to the CES production function assume that the parameter D lies
between !1 and + 4. Isoquants are strictly convex when D > !1.  When D = !1, isoquants
are diagonal lines.  When D = + 4, isoquants are right angles convex to the origin.

For a CES-like function in product space, the rate of product transformation (RPT) is
defined as:

†25.14 RPT = !dy2/dy1

†25.15 dy2/dy1 = !(81/82)(y2/y1)(1+n)

The product transformation functions generated from the CES-like function in product space
are downsloping so long as 81 and 82 are positive, irrespective of the value of the parameter
n.

Differentiating †25.15:
†25.16 d2y2/dy1

2 = !(1+n)(!81/82)y2
1+ny1

!(2+n)

Since y1, y2, 81, 82 > 0, the sign on †25.16 is dependent on the sign on !(1+n). In factor
space, the values of D that are of interest are those that lie between !1 and +4, for these are
the values that generate isoquants with a diminishing marginal rate of substitution  on the
input side.  If the value of n is exactly !1, then the product transformation functions will be
diagonal lines of constant slope 81/82 [since (y2/y1)° = 1] and products are perfect substitutes.

However, as was indicated in chapter 15, the CES-like function can generate product
transformation functions with an increasing rate of product transformation. The five CES
cases outlined by Henderson and Quandt in factor space include only values of D that lie
between !1 and +4. In product space, the values of n that lie between !1 and !4  generate
product transformation functions with an increasing rate of product transformation, since
equation †25.16 is negative when n < !1. As n 6 !4, the product transformation functions
approach right angles, concave to the origin. Small negative values for n generate product
transformation functions with a slight bow away from the origin. As the value of n becomes
more negative, the outward bow becomes more extreme. 

In the limiting case, when n 6 !4, y2 is totally supplemental to y1 when y1 exceeds y2;
conversely y1 is totally supplemental to y2 when y2 exceeds y1. This is equivalent to the joint
product (beef and hides) case.2 If n is a fairly large negative number (perhaps < !5) there
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exist many combinations of y1 and y2 where one of the products is "nearly" supplemental to
the other. As n 6 !1, the products become more nearly competitive throughout the possible
combinations, with the diagonal product transformation functions when n = !1 the limiting
case. Regions of product complementarity are not possible with a CES-like product
transformation function.

Product transformation functions exhibiting a constant or an increasing rate of product
transformation must necessarily intersect the y axes. Thus, there is no product space
counterpart to the asymptotic isoquants generated by a Cobb-Douglas type function in factor
space.

25.5  Alternative Elasticity of Substitution Measures in Product Space

Diewert (1973) extended the concept of an elasticity of substitution (which he termed
elasticity of transformation) to multiple product-multiple input space. Hanoch suggests that
the elasticity of substitution in product space can be defined analogously to the elasticity of
substitution in factor space. In the case of product space, revenue is maximized for the fixed
input quantity x°, is substituted for minimization of costs at a fixed level of output y°( p. 292)
in factor space. The  elasticity of substitution in two product one input space (Debertin) is
defined as:

†25.17 ,sp = % change in the product ratio y2/y1 ÷ % change in the RPT

or as

†25.18 Nsp = [d(y2/y1)/dRPT][RPT/(y2/y1)].

Another way of looking at the elasticity of substitution in product space is in terms of
its linkage to the rate of product transformation for  CES-like two-product  space. Suppose
that Y = y2/y1, or the output ratio. The rate of product transformation for  CES-like product
space is defined as

†25.19 RPT = Y(1+n)

The elasticity of substitution in product space (equation †25.18) can be rewritten as:

†25.20 (dlogY)/(dlogRPT).

Taking the natural log of both sides of †25.19 yields

†25.21 logRPT = (1+n)logY

Solving †25.21 for log Y and logarithmically differentiating

†25.22 (dlogy)/(dlogRPT) = 1/(1+n)

Assuming that n <!1, the elasticity of substitution in product space for a CES- like function
is clearly negative, but 6 0 as n 6 !4.
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The concept of an elasticity of substitution in product space is of considerable economic
importance, for it is a pure number that indicates the extent to which the products which can
be produced with the same input bundle  can be substituted for each other. Assuming
competitive equilibrium, the inverse product price ratio p2/p1 can be substituted for the RPT,
and equation †25.18 can be rewritten as: 

†25.23 Nsp = [d(y2/y1)/d(p1/p2)][(p1/p2)/(y2/y1)]

In two-input factor space, Equation †25.23 is rewritten as

†25.24 Ns = [d(x2/x1)/d(w1/w2)][(w1/w2)/(x2/x1)]

As McFadden has indicated, there is no natural generalization of of the of †25.24  when whe
number of factors is greater than 2. The elasticity of substitution will vary depending on what
is assumed to be held constant. However, the Allen, Morishima (Koizumi), and Shadow
(McFadden)  Elasticities of Substitution all collapse  to  †25.23 when n equals 2. Similarly,
there is no natural generalization of product space elasticity of substitution when the number
of products exceeds two.

In the case of farming, the elasticity of substitution in product space is a pure number
that indicates the extent to which the farmer is able to respond to changes in relative product
prices by altering the product mix. An elasticity of substitution in product space near zero
would indicate that the farmer is almost totally unable  to respond to changes in product prices
by altering the mix of products that are produced. An elasticity of substitution in product
space of - 4 indicates that the farmer nearly always would be specializing in the production
one of the two commodities with the favorable relative price. As relative prices change toward
the other commodity, a complete shift would be made to the other commodity.

For most agricultural commodities, the elasticity of substitution in product space would
be expected to lie between 0 and !4, indicating that to a certain degree, farmers will respond
to changes in relative product prices by altering the product mix. Commodities which require
very similar inputs would be expected to have very large negative elasticities of product
substitution. Examples include Durum wheat versus Hard Red Spring wheat in North Dakota,
or corn versus soybeans in the corn belt. Conversely, two dissimilar commodities requiring
very different inputs would be expected to have elasticities of substitution approaching zero,
and a change in relative prices would not significantly alter the output combination.

A representation of equation †25.23 in m product space when m>2 is

†25.25  ,sp = [dlogyk ! dlogyi]/[dlogpi ! dlogpk] 

Equation †25.25 is representative of a two-output, two-price (or TOTP) elasticity of product
substitution analogous to the two input two price (TTES) elasticity of substitution in factor
space, with the quantities of outputs other than i and k held constant.

Other elasticity of product substitution concepts can be defined, each of which is
analogous to a similar concept in factor space.  For example, the one output one price (or
OOOP) concept is Allen-like and symmetric:

†25.26 ,spa = $(dlogyi)/(dlogpk)
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The one-output, one-price (OOOP) concept in factor space is proportional to the cross
price input demand elasticity evaluated at constant output. Similarly, the OOOP concept is
proportional to the cross output price product supply elasticity evaluated at a constant level
of input use. An own price OOOP can also be defined, that is proportional to the own price
elasticity of product supply.  In factor space, the Allen elasticity of substitution is proportional
to the cross price input demand elasticity  evaluated at constant output. Normally, as the price
of the jth input increases, more of the ith input, and less of the jth input would be used in the
production process, as input xi is substituted for input xj, evaluated at constant output. Thus,
the sign on the Allen elasticity of substitution in factor space is normally positive if inputs
substitute for each other.

However, in product space, the Allen like elasticity of substitution is proportional to the
cross output price product elasticity of supply evaluated at a constant level of input use.
Normally, as the price of the jth output increases, the amount of the jth output produced
would increase, and the amount of the ith  output produced would decrease, the opposite
relationship from the normal case in factor space. Thus, while the Allen elasticity of
substitution in factor space would normally have a positive sign, the Allen like elasticity of
substitution would normally have a negative sign in product space. The negative sign is also
consistent with the sign on the product elasticity of substitution for the CES-like function
derived earlier.  

In the n input setting, Hanoch (p. 290) defines the optimal (cost minimizing) share for
input xj as a share of total variable costs as:

†25.27 Sj = wjxj/C

where

C = Ewixi

wi = the price ofthe ith input

 y = a constant

Invoking Shephard's lemma,

†25.28 MC/Mwj = xj.

Equation †25.27 representing the optimal share of total cost for the jth input can then be
rewritten as:

†25.29 Sj = dlogC/dlogwj 

In the n input case, the Allen elasticity of substitution (Aij) between input xi and xj evaluated
at a constant input price wj is defined as:

†25.30 Aij = (1/Sj)(Eij)

where

 Eij = dlogxi/dlogwj, the cross-price elasticity of demand for input xj with
respect to the jth input price.    
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By substituting †25.29 into †25.30, equation †25.30 may be rewritten as (Hanoch, p. 290):

†25.31 Aij = dlogxi/dlogC = Aji = dlogxj/dlogC, 

since the inverse of the Hessian matrix for the underlying production function f is symmetric.
In this contect the Allen elasticity of substitution is the elasticity of xi with respect to total cost
C for a change in another price pj (Hanoch). 

These relationships may be derived analogously on the product side. Define the revenue
maximizing revenue share (Rk*) for output yk treating the input x° (or input vector bundle x°)
constant as

†25.32 Rk* = pkyk*/R,

where
 pk = the price of the kth output

 R = Epiyi, i = 1, ..., m

yk* = the revenue-maximizing quantity of output yk from the 
fixed input bundle x°.

Invoking the revenue counterpart to Shephard's lemma (Beattie and Taylor, p. 235)

†25.33 MR/Mpk = yk.

Equation †25.33 representing the share of total revenue for optimal quantity of the kth output
can then be rewritten as:

†25.34 Rk = dlogR/dlogpk 

In the m output case, the Allen like elasticity of substitution (or transformation) (Aik
p) in

product space between input xi and xj evaluated at a constant input price wj is defined as:

†25.35 Aik
p = (1/Rk)(Eij

p)

where

 Eij
p = dlogyi/dlogpk, 

the cross-price elasticity of supply for output yi with respect to the kth product price.    

By substituting †25.34 into †25.35, equation †25.35 may be rewritten as 

†25.36 Aij
p = dlogyi/dlogR = Aki = dlogyk/dlogR, since the inverse of the Hessian

matrix for the underlying function h in product space is symmetric. In this context the Allen
like  elasticity of substitution in product space  is the elasticity of yi with respect to total
revenue R, for a change in another price pk, holding the quantity of the input (or input bundle)
constant. 

Yet another way of looking at the Allen like elasticity of substitution in product space
is by analogy to the Allen elasticity of substitution defined in factor space defined in terms of
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the cost function and its partial derivatives. The Allen elasticity of substitution between the
ith and jth input (Aij

f) in factor space can be defined as in terms of the cost function and its
partial derivatives:

†25.37 Aij
f = (CCij)/(CiCj)

where

C = h(w1, ..., wn, y*)

Ci = MC/Mwi

Cj = MC/Mwj

Cij = M2C/MwiMwj

The corresponding revenue function definition in product space is:

†25.38 Aij
p = (RRij)/(RiRj)

where

R = h(p1,...,pn, x*)

Ri = MR/Mwi

Rj = MR/Mwj

Rij = M2R/MwiMwj

The two-output, one-price (or TOOP) elasticity of product substitution is analogous to
the two-output, one-price, or Morishima elasticity of substitution in factor space. The
Morishima like elasticity of substitution in product space (Koizumi) is:

†25.39 ,spm = (dlogyi ! dlogyk)/dlogpk.

Like its factor-space counterpart, the Morishima-like elasticity of substitution in product
space is nonsymmetric.

Fuss and McFadden (p. 241) note that in factor space, each elasticity of substitution can
be evaluated based on constant cost, output or marginal cost. In product space, the total
revenue equation is analogous to the cost equation in factor space. Hence, each elasticity of
substitution in factor space may be evaluated based on constant total revenue, marginal
revenue, or level of input bundle use. 

Generalization of the various product elasticity of substitution measures to m outputs
involves making assumptions with regard to the prices and/or quantities of outputs other than
the ith and jth output. A shadow-like elasticity of substitution in product space is, like its
factor space counterpart (McFadden), a long-run concept, but in this case, all quantities of
outputs other than i and j are allowed to vary.
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25.6  Translog-Like Functions in Product Space

The second-order Taylor's series expansion of log y in log xi, or translog production
function (Christensen Jorgenson and Lau), has received widespread use as a basis for the
empirical estimation of elasticities of substitution in factor space. The slope and shape of the
isoquants for the translog production function are dependent on both the estimated parameters
of the function and the units in which the inputs are measured. Given the two input translog
production function:

†25.40 y = Ax1
"1x2

"2e(12logx1logx2 + (11(logx1)² + (22(logx2)²

The important parameter in determining the convexity of the isoquants is (12. Imposing the
constraint that (11= (22 = 0, equation †25.29 may be rewritten as:

†25.41 y = Ax1"1x2"2e(12logx1logx2

or as:

†25.42 logy = logA+ "1logx1 + "2logx2 + (12logx1logx2

Berndt and Christensen (p. 85) note  that when (ij… 0, there exist configurations of
inputs such that neither monotonicity or convexity is satisfied. In general, the isoquants
obtained from †25.42 will be convex only if (12 $ 0. In addition, since the natural log of xi
is negative when 0< xi<1, so the isoquants may have regions of positive slope even when
(12>0, depending on the units in which the xi are measured. It is also possible to obtain convex
isoquants for the translog production function when (12 < 0, depending on the magnitude of
x1 and x2, which is units dependent.

The parameter (12 is closely linked to the elasticity of substitution in factor space. If (12
= 0, the function is Cobb-Douglas. Small positive values of (12 will cause the isoquants to
bow more sharply inward than is true for the Cobb-Douglas case.

Imposing the same constraint that 2ii = 0, a two-output translog function in product
space can be written as

†25.43 logx = logB + $1logy1 + $2logy2 + 212logy1logy2

In two-product space, the parameter 212 would normally be expected to be negative, just as
in factor space, (12 would be expected to be normally  positive. 

25.7  Translog Revenue Functions

The indirect two output translog revenue function that represents the maximum amount
of revenue obtainable for any specific quantity of the input x°, allowing the size of the input
bundle to vary is:

†25.44 logR* = logD + *1logp1 + *2logp2 + *11 (log p1)2 + *22(logp22)2 

  + *12logp1logp2 +n1xlogp1logx + n2xlogp2logx +nxlogx + nxx(logx)2 
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Every point on the translog revenue function in product space is optimal in the sense that
every point is a point on the output expansion path, which represents the maximum amount
of revenue obtainable from a given level of resource use x°.

Beattie and Taylor (p. 235-6) derive the revenue counterpart to Shephards lemma. They
show that

†25.45 MR*/Mpj = yj.

Thus, if the firm's revenue function is known, systems of product supply equations can be
derived by differentiating the revenue function and performing the substitution indicated by†25.45.  Factor prices are treated as fixed constants in such an approach.

Differentiating †25.44 with respect to the jth product price, say p1, yields:

†25.46 dlogR*/dlogp1 = *1 + 2*11logp1 +  *12logp2 + n1xlogx.

Economic theory imposes a number of restrictions on the values that the parameters of
equation †25.46 might assume in the m output case. These restrictions are  similar to those
imposed on the parameters of cost share equations in factor space. 

First, total revenue from the sale of m different products is

†25.47 R = ERi i = 1, ..., m

Thus, if the revenue from m!1 of the revenue share equations is known, the remaining
revenue share is known with certainty, and one of the revenue share equations is redundant.

Young's theorem holds in product just as it does in factor space. Thus, *ij = *ji, which
is the same as the symmetry restriction in factor space.

Any revenue function should be homogeneous of degree one in all product prices. The
doubling of all product prices should double total revenue. This implies that

†25.48 E*i = 1

and

†25.49 E*ij = 0

One might also draw the analogy to the Brown and Christensen assertion that in factor
space, the cost function represents constant returns to scale technology. In product space, the
corresponding assumption is that there is a constant increase in revenue associated with an
increase in the size of the input bundle. This implies

†25.50  dR*/dx  = *x = 1

†25.51 E*ix = 0 for i = 1, ..., n

†25.52 *xx = 0
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These assumptions are as plausible in product space as the analogous assumptions are with
regard to indirect cost functions in factor space.

It is also possible to think in terms of an analogy to  a Hicks' like technological change
in product space. In product space, technological change occurring over time may favor the
production of one commodity at the expense of another commodity. If, as the state of
technology improves over time, and no shift is observed in the proportions of the yi to yj over
time, then the technology is regarded as Hicks like neutral in product space. Technology that
over time shifts the output-expansion path toward the production of the jth commodity, then
the technology is regarded as Hicks like favoring for product yj. If technological change causes
the output expansion path to shift away from the production of commodity yi, then the
technological change could be referred to as yi inhibiting technological change.  

Brown and Christensen derive the constant-output Allen elasticities of substitution in
factor space from the formula:

†25.53 Fij = (2ij + SiSj)/SiSj

where

Si, Sj = the cost shares attributed to factors i and j, respectively.

2ij = the restricted regression coefficient from the logrilogrj term in the cost
        share equation, where ri and rj are the corresponding factor prices for
         inputs i and j.

The estimated parameter 2ij is usually positive, indicating that inputs i and j are substitutes,
not complements within the n dimensional factor space.

The analogous formula for deriving the Allen-like elasticities of substitution in product
space is

†25.54 Fijp = (*ij ! RiRj)/RiRj

As indicated earlier, the parameter *ij will usually be negative, and the Allen-like elasticity of
substitution in product space (Fijp) for most commodities is negative.

25.8  Empirical Applications

Many possibilities exist for empirical analysis linked to agriculture based on the models
developed in this chapter.  One of the simplest approaches would be to estimate revenue share
equations for major commodities in U.S. agriculture for selected time periods (following  the
approach used by Aoun for estimating cost share equations for agricultural inputs in factor
space) and derive various elasticity of substitution measures in product space. These revenue
share parameter estimates would be used to estimate product elasticity of substitution
measures for the various major agricultural commodities in the United States.  Such an
empirical analysis could stress  the implications for current agricultural policy in terms of
determining how farmers alter their product mix over time in the face of changing government
price support programs such as those contained in the 1986 farm bill.  
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The Hicks-like technological change approach appears to be promising as well. As
technological change occurs for a specific agricultural commodity, presumably that
commodity is favored relative to others in a product space model. For example,  has
technological change over the past thirty years tended to favor the production of soybeans
relative to other grains? Such an approach might be useful in assessing the economic impacts
of genetic improvements in specific crops or classes of livestock.  

Another possibility is to estimate changes in the product space elasticity of substitution
measures over time. Some thirty years ago Heady and others discussed the impacts of
specialized versus flexible facilities using a product space model. One way of looking at a
facility specialized for the production of a specific commodity is that it represents product
space in which the elasticity of substitution is near zero. A flexible facility is represented by
a product space elasticity of substitution that is strongly negative. 

Note
1 There is considerable disagreement in the literature with regard to terminology relating to the
firm capable of producing more than one product. Henderson and Quandt argue that the term
joint product should be used in any instance where a firm produces more than one output, even
in instances where the products can be produced in varying proportions. The convention
followed in many agricultural production economics texts is to use the term joint product to
refer only to those products that must be produced in fixed proportions with each other such
as beef and hides. If products must be produced in fixed proportions with each other, then
relative prices will not infuence the output mix. The term multiple products is used to refer
to any situation where more than one output is produced, regardless of whether or not the
outputs are produced only in fixed proportion with each other. 2 The concept of an elasticity
of substitution in product space is one mechanism for resolving the problems with the joint
and multiple product terminology. The output elasticity of substitution is zero when outputs
must be produced in fixed proportions (joint) with each other. The output elasticity of
substitution is -4 when products are perfect substitutes for each other.  A CES-like product
space function encompasses a series of intermediate cases for which the product
transformation function is downsloping but concave to the origin and the value for the product
space elasticity of substitution lies between 0 and -4. 
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