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Production with Two Inputs
This chapter introduces the basics of the technical relationships underlying the  factor-factor
model, in which two inputs are used in the production of a single output. The concept of an
isoquant is developed from a simple table containing data similar to that which might be
available in a fertilizer response trial. The  slope of the isoquant is defined as the marginal rate
of substitution. Isoquants with varying shapes and slopes are illustrated. The shape of an
isoquant is closely linked to the characteristics of the production function that transforms the
two inputs into the output. The linkages between the marginal rate of substitution and the
marginal products of each input are derived.

Key terms and definitions:

Isoquant
Marginal Rate of Substitution (MRS)
Diminishing Marginal Rate of Substitution
Constant Marginal Rate of Substitution
Increasing Marginal Rate of Substitution
Convex to the Origin
)x2/)x1
Asymptotic to the Axes
Concentric Rings
Synergistic Effect
Tangency
Infinite Slope
Zero Slope
Ridge Line  
Family of Production Functions
Change in Output
Change in Input
Limit
Infinitesimally Small
Partial Derivative
Total Derivative
Total Differential
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5.1 Introduction

The discussion in Chapters 2 to  4 centered on the problems faced by a farmer who
wishes to determine how much of a single input should be used or how much of a single
output should be produced to maximize profits or net returns to the farm. The basic
assumption of this chapter is that two inputs, not one inputs, are allowed to vary. As a result,
some modifications need to be made in the basic production function. The production function
used in Chapters 1 to 4 was

†5.1 y = f(x).

Suppose instead that two inputs called x1 and x2 are allowed to vary. The resulting
production function is

†5.2 y = f(x1, x2) 

if there are no more inputs to the production process. If there are more than two, or n different
inputs, the production function might be written as

†5.3 y = f(x1, x2* x3, ..., xn)

The inputs x3, ..., xn will be treated as fixed and given, with only the first two inputs allowed
to vary. 

In the single-input case, each level of input used produced a different level of output, as
long as inputs were being used below the level resulting in maximum output. In the two-input
case, there may be many different combinations of inputs that produce exactly the same
amount of output.  Table 5.1 illustrates some hypothetical relationships that might exist
between phosphate (P2O5) application levels, potash (K2O) application levels, and corn yields.
The nitrogen application rate was assumed to be 180 pounds per acre.

The production function from which these data were generated is

†5.4 y = f(x1, x2* x3)

where  y = corn yield in bushels per acre

x1 = potash in pounds per acre
x2 = phosphate in pounds per acre
x3 = nitrogen in pounds per acre assumed constant at 180

Notice from Table 5.1 that potash is not very productive without an adequate availability
of phosphate, The maximum yield with no phosphate is but 99 bushels per acre and that
occurs at comparatively low levels of potash application of 20 to 30 pounds per acre. The
production function for potash in the absence of any phosphate is actually decreasing at
potash application rates of over 30 pounds per acre. In the absence of phosphate fertilizer,
stage III for potash begins quite early.
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Table 5.1  Hypothetical Corn Response to Phosphate and Potash Fertilizer
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

Potash (lb/acre)
              ))))))))))))))))))))))))))))))))))))))))))))))))))))
Phosphate
(lb/acre) 0 10 20 30 40 50 60 70 80
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

0 96 98 99 99 98 97 95 92 88

10 98     101    103    104    105    104    103    101      99

20 101     104    106    108    109    110    110    109     106

30 103     107    111    114    117    119    120    121     121

40 104     109    113    117    121    123    126    128     129

50 104     111    116    121    125    127    129    131     133

60 103     112    118    123    126    128    130    131     134

70 102     111    117    123    126    127    131    136     135

80 101     108    114    119    119    125    129    131     134

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

Phosphate in the absence of potash is more productive, but only slightly so. The
maximum yield without any potash  is 104 bushels per acre at between 40 and 50 pounds of
phosphate. Stage III for phosphate begins at beyond 50 pounds per acre if no potash is
applied. 

Each of the rows of Table 5.1 represents a production function for potash fertilizer with
the assumption that the level of phosphate applied is fixed at the level given by the application
rate, which is the first number of the row.  As the level of phosphate is increased, the
productivity of the potash increases. The marginal product of an additional 10 pounds of
potash is usually larger for rows near the bottom of the table than for rows near the top of the
table. Moreover, production functions for potash with the larger quantities of phosphate
typically achieve their maximum at higher levels of potash use.

Each of the columns of Table 5.1 represents a production function for phosphate
fertilizer with the assumption that the level of potash remains constant as defined by the first
number in the column. Again the same phenomenon is present.  The productivity of phosphate
is usually improved with  the increased use of potash, and as the assumed fixed level of potash
use increases, the maximum of each function  with respect to phosphate occurs at larger levels
of phosphate use. 

These relationships are based on a basic agronomic or biological characteristic of crops.
A crop would not be expected to produce high yields if an ample supply of all nutrients were
not available. To a degree, phosphate can be substituted for potash, or potash for phosphate.
In this example, there are several different combinations of phosphate and potash that will all
produce the same yield.  
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But if the crops are to grow, some of both nutrients must be present, and the highest
yields are obtained when both nutrients are in ample supply. This concept in economics is
closely linked to Von Liebig's "Law of the Minimum," which states that plant growth is
constrained by the most limiting nutrient. 

Notice also that it is possible to use too much of both potash and phosphate. Yields using
70 pounds of each are greater than when 80 pounds of each are used. The law of diminishing
returns applies to units of phosphate and potash fertilizer taken together when other inputs are
held constant, just as it applies to each individual kind of fertilizer. 

Table 5.1 contains data from nine production functions for phosphate, under nine
different assumptions with regard to potash use.  Table 5.1 also contains data from nine
production functions for potash, each obtained from a different assumption with regard to the
level of phosphate use.

Due to the biology of crop growth, a synergistic effect is present. This means that the
presence of ample amounts of phosphate makes the productivity of potash greater. Ample
amounts of potash makes the productivity of phosphate greater. The two fertilizers, taken
together, result in productivity gains in terms of increased yields greater than would be
expected by looking at yields resulting from the application of only one type of fertilizer.

This effect is not limited to crop production. The same phenomenon may be observed if
data were collected on the use of the inputs grain (concentrate) and forage used in the
production of milk. A cow that is fed all grain and no forage would not be a good milk
producer.  Similarly, a cow fed all forage and no grain would not produce much milk. Greatest
milk production would be achieved with a ration containing a combination of grain and forage.

Each possible ration represents a particular combination or mix of inputs grain and
forage. Some of these rations would be better than others in that they would produce more
milk. The particular ration chosen by the farmer would depend not only on the amount of milk
produced, but also on the relative prices of grain and forage. These ideas are fully developed
in Chapter 7.

Figure 5.1 illustrates the production surface arising from the use of phosphate and
potash. The x1 and x2 axes form a grid (series of agronomic test plots) with the vertical axis
measuring corn yield response to the two fertilizers.  The largest corn yields are produced
from input combinations that include both potash and phosphate.

Data for yet another production function are contained in Table 5.1. From Table 5.1 it
is possible to determine what will happen to corn yields if fertilizer application rates for
potash and phosphate are increased by the same proportion. Suppose that 1 unit of fertilizer
were to consist of 1 pound of phosphate and 1 pound of potash and that this proportion did
not change. A table was constructed using numbers found on the diagonal of Table 5.1. These
data points are illustrated on the production surface in Figure 5.1.
 

These data appear to be very similar to the data in the earlier chapters for single input
production functions, and they are. The only difference here is that two types of fertilizer are
assumed be used in fixed proportion to each other. Under this assumption, the amount of
fertilizer needed to maximize profits could be found in a manner similar to that used in earlier
chapters, but there is uncertainty as to whether or not the 1:1 ratio in the use of phosphate and
potash is the correct ratio. 
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Figure 5.1  Production Response Surface Based on Data Contained in Table 5.1
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Table 5.2   Corn Yield Response to 1:1 Proportionate Changes in 
                   Phosphate and Potash
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

      Units of Fertilizer
       (1 Unit = 1 lb of  
       Phosphate and 1 lb Corn Yield
             of Potash)    (bu/acre)

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
 0     96
10    101
20    106
30    114
40    121
50    127
60    130
70    136
80    134

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

What would happen, for example, if phosphate were very expensive and potash were
very cheap? Perhaps the 1:1 ratio should be changed to 1 unit of phosphate and 2 units of
potash to represent a unit of fertilizer. Data for a production function with a 1:2 ratio could
also be derived in part from Table 5.1. These data are presented in Table 5.3.

Table 5.3   Corn Yield Response to 1 : 2 Proportionate Changes 
                   in Phosphate and Potash
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

Units of Fertilizer  
(1 unit = 1 lb   
phosphate and 2   Corn Yield
lb. potash) (bu/acre)

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
 10 !! 20   103
 20 !! 40   109
 30 !! 60   120
 40 !! 80   129
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

Much of the next several chapters is devoted to the basic principles used for determining
the combination of two inputs (such as phosphate and potash fertilizer) that represents
maximum profit for the producer. Here the proper proportions are  closely linked to the
relative prices for the two types of fertilizer.

5.2  An Isoquant and the Marginal Rate of Substitution

Many combinations of phosphate and potash all result in exactly the same level of corn
production. Despite the fact that Table 5.1 includes only discrete values, a bit of interpolation
will result in additional combinations that produce the same corn yield.  Take, for example,
a corn yield of 121 bushels per acre (Table 5.1). This yield can be produced with the
following input combinations:30 pounds of phosphate and 70 pounds of potash; 30 pounds
of phosphate and 80 pounds of potash; 40 pounds of phosphate and 40 pounds of potash; and
50 pounds of phosphate and 30 pounds of potash.

Moreover, there are many more points that might also achieve approximately 121
bushels per acre-60 pounds of phosphate and approximately 27 pounds of potash; 70 pounds
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Figure 5.2  Isoquants for the Production Surface in Figure 5.1 
                   Based on Data Contained in Table 5.1

of phosphate and approximately 27 pounds of potash; and 80 pounds of phosphate and
approximately 43 pounds of potash to name a few. All these combinations share a common
characteristic in that they produce the same yield.

A line can be drawn that connects all points on Table 5.1 representing the same yield.
This line is called an isoquant. The prefix iso comes from the Greek isos meaning equal.
Quant is short for quantity. An isoquant is literally a line representing equal quantities. Every
point on the line represents the same yield or output level, but each point on the line also
represents a different combination of the two inputs. As one moves along an isoquant, the
proportions of the two inputs vary, but output (yield) remains constant.    

An isoquant could be drawn for any output or yield that one might choose. If it is
possible to draw an isoquant for a yield of 121 bushels per acre it is also possible to draw one
for a yield of 125.891 bushels per acre, if the data were sufficiently detailed, or an isoquant
could be drawn for a yield of 120.999 bushels per acre, or any other plausible yield.

If isoquants are drawn on graph paper, the graph is usually drawn with  the origin (0y,
0x) in the lower left-hand corner. The isoquants are therefore bowed toward the origin of the
graph. 

Figure 5.2 illustrates the isoquants based on the data contained in Table 5.1.  These are
the "contour lines" for the production surface illustrated in Figure 5.1.  Notice that the
isoquants are convex to the lower left hand corner, or origin, of Figure 5.2.
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Figure 5.3  Illustration of Diminishing MRSx1x2

The slope of an isoquant is referred to by some economists as the marginal rate of
substitution (MRS).1 Other authors refer to it as the rate of technical substitution (RTS) or the
marginal rate of technical substitution (MRTS). This text uses the terminology MRS.

The MRS is a measurement of how well one input substitutes for another as one moves
along a given isoquant. Suppose that the horizontal axis is labeled x1, and the vertical axis is
labeled x2. The terminology MRSx1x2 is used to describe the slope of the isoquant assuming that
input x1 is increasing and x2 is decreasing. In this example, x1 is the replacing input and x2 is
the input being replaced, moving down and to the right along the isoquant. 

Figure 5.3 illustrates an isoquant exhibiting a diminishing marginal rate of substitution.
As one moves farther and farther downward and to the right along the isoquant representing
constant output, each incremental unit of x1 ()x1) replaces less and less x2 ()x2). The
diminishing marginal rate of substitution between inputs accounts for the usual shape of an
isoquant bowed inward, or convex to the origin. The shape is also linked to the synergistic
effect of inputs used in combination with each other. An input is normally more productive
when used with ample quantities of other inputs.

The MRS might also measure the inverse slope of the isoquant. Suppose that the use of
x2 is being increased, while the use of x1 is decreased. The terminology MRSx2x1 is used to
describe the inverse slope of the isoquant. In this example, x2 is the replacing input, and x1 is
the input being replaced, as one moves up and to the left along the isoquant. The MRSx2x1 is
equal to 1/MRSx1x2.
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The slope of an isoquant can also be defined as )x2/)x1.

 Then2

†5.5 MRSx1x2 = )x2/)x1 

and

†5.6 MRSx2x1 = )x1/)x2 = 1/MRSx1x2

Isoquants are usually downward sloping, but not always. If the marginal product of both
inputs is positive, isoquants will be downward sloping. It is possible for isoquants to slope
upward if the marginal product of one of the inputs is negative. 

Isoquants are usually bowed inward,  convex to the origin, or exhibit diminishing
marginal rates of substitution, but not always. The diminishing marginal rate of substitution
is normally a direct result of the diminishing marginal product of each input. There are some
instances, however, in which the MPP for both inputs can be increasing and yet the isoquant
remains convex to the origin (see specific cases in Chapter 10). 

Figure 5.4 illustrates the isoquants for a three-dimensional production surface derived
from a polynomial production function that produces a three-dimensional surface illustrating
all three stages of production, the two-input analog to the neoclassical production function
employed in Chapter 2.  To illustrate, horizontal cuts are made at varying output l

evels. In panel A, the entire three-dimensional production surface is illustrated.  Panels C, D,
E and F represent cuts at successively lower output levels.  Note that in panel E, the isoquant
is concave, rather than convex to the origin. Panel F illustrates an example isoquant beneath
the production surface.

Figure 5.5 illustrates some possible patterns for isoquant maps and their corresponding
production surfaces. Diagrams A  and B illustrate isoquants as a series of concentric rings.
The center of the series of rings corresponds to the input combination that results in maximum
output or product. In Table 5.1, this would correspond with an input combination of 70
pounds of phosphate and 70 pounds of  potash, for a yield of 136 bushels per acre.  This
pattern results when output is actually reduced because too much of both inputs have been
used.

Diagrams C and D illustrate another common isoquant map and its corresponding
production surface. The isoquants are not rings; rather they approach both axes but never
reach them. These isoquants are called asymptotic to the x1 and x2 axes, since they approach
but do not reach the axes. A diminishing marginal rate of substitution exists everywhere on
these isoquants. These isoquants appear to be very similar to the average fixed-cost curve
discussed in Chapter 4. However, depending on the relative productivity of the two inputs,
these isoquants might be positioned nearer to or farther from one of the two axes. In this
example, more of either input, or both inputs taken in combination, will always increase
output. There are no maxima for the underlying production functions.
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Figure 5.4  Isoquants and a Production Surface
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A The Production Surface 
B  The Isoquants

D  The Isoquants

E  The Production Surface F  The Isoquants

C  The Production Surface
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K  The Production Surface
L  The Isoquants

G  The Production Surface

J  The Isoquants

I  The Production Surface

H  The Isoquants

Figure 5.5  Some Possible Production 
Surfaces and Isoquant Maps
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Another possibility is for a concave surface with isoquants bowed outward (concave to the
origin (diagrams E and F).   This pattern represents an increasing rather than diminishing marginal
rate of substitution between input pairs. As the use of x1 increases and the use of x2 decreases along
the isoquant, less and less additional x1 is required to replace units of x2 and maintain output.  This
shape is not very likely, because the pattern would suggest that the two inputs used in combination
results in a decrease in relative productivity rather than the synergistic increase that was discussed
earlier.

It is possible for isoquants to have a constant slope (diagrams G and H).  The corresponding
production surface is a hyperplane.  In this instance, one input or factor of production substitutes for
the other in a fixed proportion.  Here, there is a constant, not a diminishing marginal rate of
substitution. For example, if inputs substituted for each other in a fixed proportion of 1 unit x1 to 2
units of x2, the following input combinations would all result in exactly the same output!4x1, 0 x2;
3x1, 2x2; 2x1, 4x2; 1x1, 6x2; 0x1, 8x2.

It is also possible for isoquants to have a positive slope (Diagrams I and J). This can occur in
a situation where additional amounts of one of the inputs (in this instance, input x1) reduces output.
Diagram B also includes some points where the isoquants have a positive slope.

Finally, isoquants might be right angles, and the corresponding production surface is shaped
like a pyramid (diagrams K and L). This can occur when two inputs must be used in fixed proportion
with each other.  The classic example here is tractors and tractor drivers. A tractor without a driver
produces no output. A driver without a tractor produces no output. These inputs must be used in a
constant fixed proportion to each other one tractor driver to one tractor.

5.3 Isoquants and Ridge Lines

Two families of production functions underlie every isoquant map. Figure 5.6 illustrates this
relationship.  Assume x2 to be fixed at some predetermined level x2*. A horizontal line is drawn from
x2* across the diagram. A production function for x1  holding x2 constant at x2* can then be drawn by
putting x1 on the horizontal axis, and noting the output obtained from the intersection of the line
drawn at x2* with each isoquant.

Now choose another level of x2. Call this level x2*. The process can be repeated over and over
again for any level of x2. Each alternative fixed level for x2 generates a new production function for
x1 assuming that x2 is held constant at the predetermined level.

Moreover, the same process can be repeated by holding x1 constant and tracing out the
production functions for x2. Every time x1 changes, a new production function is obtained for x2. As
one moves from one production function for x2 to another, different quantities of output from x2 are
produced,  despite the fact that neither the quality or quantity of x2 has changed. This is because the
varying assumptions about the quantity of x1  either enhance or reduce the productivity of x2. Another
way of saying this is that the marginal productivity (or MPP) of x2 is not independent of the
assumption that was made about the availability of x1, and  the MPP of x1 is not independent of the
assumption that is made about the availability of x2.

Now suppose that a level for x2 is chosen of x2* that is just tangent to one of the isoquants.  The
point of tangency between the line drawn at x2* and the isoquant will represent the maximum possible
output that can be produced from x1 holding x2 constant at x2*. The production function derived by
holding x2 constant at x2* will achieve its maximum at the point of tangency between the isoquant and
the horizontal line drawn at x2*. The point of tangency is the point of zero slope on the isoquant and
marks the dividing point between stages II and III for the production function

†5.7 y = f(x1* x2 = x2*)
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Figure 5.6  Ridge Lines and a Family of Production Functions for Input x1

This process could be repeated over and over again by selecting alternative values for x2 and
drawing a horizontal line at the selected level for x2. Each isoquant represents a different output
level, just as each horizontal line represents a different assumption about the magnitude of x2. An
infinite number of isoquants could be drawn, each representing a slightly different output level. An
infinite number of horizontal lines could be drawn across the isoquant map, each representing a
slightly different assumption about the value for x2. For each horizontal line,  there would be a point
of tangency on one (and only one!) of the isoquants. This point of tangency is a point of zero slope
on the isoquant. Each isoquant would have a corresponding horizontal line tangent to it. The point
of tangency represents the maximum for the underlying production function for x1 under the
predetermined assumption with regard to the fixed level of x2.

The choice of the input to be labeled x1 and x2 is quite arbitrary. However, if x2 remains on the
vertical axis, the same process could be repeated by drawing vertical lines from the value chosen on
the x1 axis (the assumption with respect to the value for x1) and finding the points of tangency
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between the vertical line and its corresponding isoquant. In this case however, the point of tangency
will occur at the point where the isoquant assumes an infinite slope. Each point of tangency marks
the division between stages II and III for the underlying production function for x2 with x1 set at some
predetermined level x1*. The production function is

†5.8 y = f(x2;x1=x1*)  

A line could be drawn that connects all points of zero slope on the isoquant map. This line is
called a ridge line and marks the division between stages II and III for input x1, under varying
assumptions with regard to the quantity of x2 that is used. This line is designated as ridge line 1 for
x1.

A second line could be drawn that connects all points of infinite slope on the isoquant map.
This is also a ridge line, and marks the division between stages II and III for input x2, under varying
assumptions with regard to the quantity of x1 that is used. This might be designated as ridge line 2
for x2.

The two ridge lines intersect at the single point of maximum output. The neoclassical diagram,
drawn from an isoquant map that consists of a series of concentric rings, appears not unlike a
football. The ridge lines normally assume a positive slope. This is because the level of x1 that results
in maximum output increases as the assumption with regard to the fixed level for x2 increases.
Moreover, the level of x2 that results in maximum output increases as the assumption with regard
to the fixed level for x1 is increased.  The football appearance is the result of the underlying
single-input production functions that assume the neoclassical three-stage appearance.

Notice that ridge line 1 connects points where the MRS is zero. Ridge line 2 connects points
where the MRS is infinite. Finally, note that ridge lines can be drawn for only certain types of
isoquant patterns or maps. For a ridge line to be drawn, isoquants must assume either a zero or an
infinite slope. Look again at figure 5.5.  Ridge lines can be drawn only for isoquants appearing in
diagram B. For diagrams D, F, L, H and  J , there are no points of zero or infinite slope. This
suggests that the ridge lines do not exist.  Moreover, this implies that the underlying families of
production functions for x1 and x2 never achieve their respective maxima. Diagram L presents a
unique problem. The  right angle isoquants have either a zero or an infinite slope everywhere on
either side of the angle. This would imply "thick" ridge lines. In this example, the underlying
production functions for each input are but a series of points that represent the respective maximum
output at each level of input use.

5.4 MRS and Marginal Product

The slope or MRS of an isoquant and the underlying productivity of the two families of
production functions used to derive an isoquant map are closely intertwined.  An algebraic
relationship can be derived between the MRS and the marginal products of the underlying production
functions.

Suppose that one wished to determine the change in output (called )y) that would result if the
use of x1 were changed by some small amount (called )x1) and the use of x2 were also changed by
some small amount (called )x2). To determine the resulting change in output ()y), two pieces of
information would be needed. First, the exact magnitude of the changes in the use of each of the
inputs x1 and x2. It is not possible to determine the change in output by merely summing the
respective change in the use of the two inputs.  An additional piece of information would also be
needed. That information is the rate at which each input can be transformed into output. This rate
is the marginal physical product of each input  x1 and x2 (MPPx1 and MPPx2).

The total change in output can be expressed as

†5.9 )y = MPPx1 )x1  + MPPx2 )x2 

The total change in output resulting from a given change in the use of two inputs is the change in
each input multiplied by its respective MPP.

By definition, an isoquant is a line connecting points of equal output. Output does not change
along an isoquant. The only way that output can change is to move on the isoquant map from one
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isoquant to another. Along any isoquant, )y is exactly equal to zero. The equation for an isoquant
can then be written as

†5.10 )y = 0 = MPPx1 )x1 + MPPx2 )x2

Equation †5.10 can be rearranged such that

†5.11 MPPx1 )x1 + MPPx2 )x2 = 0

†5.12 MPPx2 )x2 = ! MPPx1 )x1

Dividing both sides of equation †5.12 by )x1 gives us:

†5.13 MPPx2 )x2/)x1 = ! MPPx1

Dividing both sides by MPPx2 yields:

†5.14 )x2/)x1 = ! MPPx1/MPPx2

or3

†5.15 MRSx1x2 = ! MPPx1/MPPx2 

The marginal rate of substitution between a pair of inputs is equal to the  negative ratio of the
marginal products. Thus the slope of an isoquant at any point is equal to the negative ratio of the
marginal products at that point, and if the marginal products for both inputs are positive at a point,
the slope of the isoquant will be negative at that point. The replacing input (in this example, x1) is
the MPP on the top of the ratio. The replaced input (in this example, x2) is  the MPP on the bottom
of the ratio.  By again rearranging, we have

†5.16 MRSx2x1 = !MPPx2/MPPx1

The inverse slope of the isoquant is equal to the negative inverse ratio of the marginal products.
Thus the slope (or inverse slope) of an isoquant is totally dependent on the MPP of each input.

In Section 5.3,  a ridge line was defined as a line that connected points of zero or infinite slope
on an isoquant map. Consider first a ridge line that connects points of zero slope on an isoquant map.
This implies that MRSx1x2 = 0. But MRSx1x2 = !MPPx1/MPPx2.  The only way for MRSx1x2 to equal 0 is
for MPPx1 to equal zero. If MPPx1 is zero, then the TPPx1 (assuming a given value for x2 again of x2*)
must be maximum, and  thus the underlying production function for x1 holding x2 constant at x2* must
be at its maximum. 

Now consider a ridge line that connects points of infinite slope on an isoquant map. This
implies that MRSx1x2 is infinite. Again MRSx1x2 = !MPPx1/MPPx2. MRSx1x2 will become more and more
negative  as MPPx2 comes closer and closer to zero. When MPPx2 is exactly equal to zero, the MRSx1x2

is actually undefined, since any number divided by a zero is undefined. However, note that when
MPPx2 = 0, then MRSx2x1 = 0, since MPPx2 appears on the top, not the bottom of the ratio. A ridge line
connecting points of infinite slope on an isoquant map connects points of zero inverse slope where
the inverse slope is defined as )x1/)x2.

5.5  Partial and Total Derivatives and the Marginal Rate of Substitution

Consider again the Production function

†5.17 y = f(x1,x2)

For many production functions, the marginal product of x1 (MPPx1) can be obtained only by making
an assumption about the level of x2. Similarly, the marginal product of x2 cannot be obtained without
making an assumption about the level of x1. The MPPx1 is defined as
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†5.18 MPPx1 = Mf/Mx1 * x2 = x2*

The expression My/Mx1 is the partial derivative of the production function  y = f(x1, x2), assuming
x2 to be constant at x2*. It is the MPP function for the member of the family of production functions
for x1, assuming that x2 is held constant at some predetermined level x2*.

Similarly, the MPPx2, under the assumption that x1 is fixed at some predetermined level x1*, can
be obtained from the expression

†5.19 MPPx2 = Mf/Mx2 * x1 = x1*

In both examples the f refers to output or y.

The big difference between dy/dx1 and My/Mx1 is that the dy/dx1 requires that no assumption be
made about the quantity of x2 that is used. dy/dx1 might be thought of as the total derivative of the
production function with respect to x1, with no assumptions being made about the value of x2. The
expression My/Mx1 is the partial derivative of the production function, holding x2 constant at some
predetermined level called x2*.

A few examples better illustrate these differences.  Suppose that the production function is

†5.20 y = x1
0.5x2

0.5

Then

†5.21 MPPx1 = My/Mx1 = 0.5x1
!0.5x2

0.5

Since differentiation takes place with respect to x1, x2 is treated simply as if it were a constant in the
differentiation process, and

†5.22 MPPx2 = My/Mx2 = 0.5x2
!0.5x1

0.5

Since differentiation takes place with respect to x2, x1 is treated as if it were a constant in the
differentiation process.

Note that in this example, each marginal product contains the other input. An assumption
needs to be made with respect to the amount of the other input that is used in order to calculate the
respective MPP for the input under consideration. Again, the MPP of x1 is conditional on the
assumed level of use of x2. The MPP of x2 is conditional on the assumed level of use of x1.

Now consider a slightly different production function

†5.23 y = x1
0.5 + x2

0.5

In this production function, inputs are additive rather than multiplicative. The corresponding MPP
for each input is

†5.24 MPPx1 = My/Mx1 = 0.5x1
!0.5 

†5.25 MPPx2 = My/Mx2 = 0.5x2
!0.5 

For this production function, MPPx1 does not contain x2, and MPPx2 does not contain x1. No
assumption needs to be made with respect to the level of use of the other input in order to calculate
the respective MPP for each input. Since this is true, this is an example where

†5.26 My/Mx1 = dy/dx1

and

†5.27 My/Mx2 = dy/dx2

The partial and the total derivatives are exactly the same for this particular production function.
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Consider again the expression representing the total change in output

†5.28 )y = MPPx1 )x1  + MPPx2 )x2 

A ) denotes a finite change, and the respective MPP's for x1 and x2 are not exact but rather, merely
approximations over the finite range.

Suppose that )x1 and )x2 become smaller and smaller. At the limit, the changes in x1 and x2
become infinitesimally small.  If the changes in x1 and x2  are no longer assumed to be finite, at the
limit, equation †5.28 can be rewritten as

†5.29 dy = MPPx1 dx1 + MPPx2 dx2

or

†5.30 dy = My/Mx1 dx1 + My/Mx2 dx2.

Equation †5.30 is the total differential for the production function y = f(x1,x2).

Along an isoquant,  there is no change in y, so dy = 0. An isoquant by definition connects
points representing the exact same level of output. The total differential is equal to zero. The exact
MRSx1x2 at x1 = x1* and x2 = x2* is 

†5.31 MRSx1x2  = dx2/dx1 = ! MPPx1/MPPx2 = ! (My/Mx1)/(My/Mx2) 
 

Similarly, the exact MRSx2x1 is defined as

†5.32 MRSx2x1  = dx1/dx2 = ! MPPx2/MPPx1 = ! (My/Mx2)/(My/Mx1) 

The total change in the MPP for x1 can be obtained by dividing the total differential of the
production function by dx1. The result is

†5.33 dy/dx1 = My/Mx1 + (My/Mx2)(dx2/dx1)

Equation †5.33 is the total derivative of the production function y = f(x1, x2). It recognizes
specifically that the productivity of x1 is not independent of the level of x2 that is used.

The total change in output  as a result of a change in the use of x1 is the sum of two effects. The
direct effect (My/Mx1) measures the direct impact of the change in the use of x1 on output.  The
indirect effect measures the impact of a change in the use of x1 on the use of x2(dx2/dx1), which in
turn affects y (through My/Mx2).

The shape of the isoquant is closely linked to the production functions that underlie it. In fact,
if the underlying production functions are known, it is possible to determine with certainty the exact
shape of the isoquant and its slope and curvature at any particular point.  The marginal rate of
substitution, or slope of the isoquant at any particular point,  is equal to the negative ratio of the
marginal products of each input at that particular point. If the marginal product of each input is
positive but declining, the isoquant normally will be bowed inward or convex to the origin. 

The curvature of an isoquant can be determined  by again differentiating the marginal rate of
substitution with respect to x1.4 If the sign on the derivative is positive, the isoquant is bowed inward
and exhibits a  diminishing marginal rate of substitution. It is also possible for isoquants to be bowed
inward in certain instances where the marginal product of both inputs is positive but not declining.
Examples of this exception are contained in Chapter 10.  

Diagrams B to D of Figure 5.2 all represent isoquants that are downward sloping, and hence
dx2/dx1 is negative in each case. In diagram B, d(dx2/dx1)/dx1 is positive, which is consistent with a
a diminishing marginal rate of substitution. Diagram C illustrates a case in which d(dx2/dx1)/dx1 is
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negative, resulting in isoquants concave to the origin, while for diagram D, d(dx2/dx1)/dx1 is zero,
and the isoquants have a constant slope with no diminishing or increasing marginal rates of
substitution. 

The derivative   dx2/dx1 is positive in diagram E and undefined in diagram F. In diagram A,
the isoquants have both positive and negative slopes, and the sign on   dx2/dx1 depends on the
particular point being evaluated.

Thus the concept of an isoquant with a particular marginal rate of substitution at any particular
point and the concept of a production function with marginal products for each input are not separate
and unrelated. Rather the slope, curvature and other characteristics of an isoquant are uniquely
determined by the marginal productivity of each input in the underlying production function.

5.6 Concluding Comments

This chapter has been concerned with the physical and technical relationships underlying
production in a setting in which two inputs are used in the production of a single output. An isoquant
is a line connecting points of equal output on a graph with the axes represented by the two inputs.
The slope of an isoquant is referred to as a marginal rate of substitution (MRS). The MRS indicates
the extent to which one input substitutes for another as one moves from one point to another along
an isoquant representing constant output. The marginal rate of substitution is usually diminishing.
In other words, when output is maintained at the constant level represented by the isoquant, as units
of input x1  used in the production process are added, each additional unit of x1 that is added replaces
a smaller and smaller quantity of x2. 

A diminishing marginal rate of substitution between two inputs  normally occurs if the
production function exhibits positive but  decreasing marginal product with respect to incremental
increases in the use of each input, a condition normally found in stage II of production. Thus the
marginal rate of substitution is closely linked to the marginal product functions for the inputs. This
chapter has illustrated how the marginal rate of substitution can be calculated if the marginal
products for the inputs are known.  

Notes
1. Not all textbooks define the marginal rate of substitution as the slope of the isoquant. A number
of economics texts define the marginal rate of substitution as the negative of the slope of the
isoquant. That is, MRSx1x2 = ! )x2/)x1 (or ! dx2/dx1). Following this definition, a downward-sloping
isoquant exibits a positive marginal rate of substitution.
2. or ! )x2/)x1.
3 If the marginal rate of substitution is defined as the negative of the slope of the isoquant, it is equal
to the ratio of the marginal products, not the negative ratio of the marginal products.
4 Let the Marginal rate of Substitution (MRS) of x1 for x2 be defined as dx2/dx1. Then  the total
differential of the MRS is defined as

dMRS = (MMRS/Mx1)dx1 + (MMRS/Mx2)dx2

The total derivative with respect to x1 is

   dMRS/dx1 = (MMRS/Mx1) + (MMRS/Mx2)(dx2/dx1)

or

   dMRS/dx1 = (MMRS/Mx1) + (MMRS/Mx2)AMRS

As units of x1 are increased, the total change in the marginal rate of substitution (dMRS/dx1) is the
sum of the direct effect of the change in the use of x1 on the MRS  [(MMRS/Mx1)] plus the indirect
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effect [(MMRS/Mx2)MRS]. The indirect effect  occurs because if output is to remain constant on the
isoquant, an increase in x1 must be compensated with  a decrease in x2. 

Problems and Exercises

1. The following combinations of x1 and x2 all produce 100 bushels of corn. Calculate the MRSx1x2 and
the MRSx2x1 at each midpoint.
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
Combination   Units of x1  Units of x2  MRSx1x2   MRSx2x1 
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

A   10 1
  )))))))   )))))))

B    5 2
     )))))))   )))))))

C    3 3
  )))))))   )))))))

D    2     4
  )))))))   )))))))

E    1.5     5  
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

2. For the production function

y = 3x1 + 2x2 

find

a. The MPP of x1.
b. The MPP of x2.
c. The marginal rate of substitution of x1 for x2.

3. Draw the isoquants for the production function given in Problem 1.

4. Find those items listed in Problem 2 for a production function given by

y = ax1 + bx2

where a and b are any constants.  Is it possible for such a production function to produce
isoquants with a positive slope? Explain.

5. Suppose that the production function is given by

y = x1
0.5x2

0.333 

find

a. The MPP of x1.
b. The MPP of x2.
c. The Marginal rate of substitution of x1 for x2.

d. Draw the isoquants for this production function. Do they lie closer to the x1 or the x2 axis?
Explain. What relationship does the position of the isoquants have relative to the productivity of each
input? 
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6. Suppose that the production function is instead

y = 2x1
0.5x2

0.333 

find

a. The MPP of x1.
b. The MPP of x2.
c. The Marginal rate of substitution of x1 for x2.

d. What happens to the position of the isoquants relative to those drawn for Problem 5?
Compare your findings with those found for problem 5.

 


