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6
Maximization in the
Two-Input Case
This chapter develops the fundamental mathematics for the maximization or minimization of
a function with two or more inputs and a single output. The necessary and sufficient
conditions for the maximization or minimization of a function are derived in detail.
Illustrations are used to show why certain conditions are required if a function is to be
maximized or minimized. Examples of functions that fulfill and violate the rules are
illustrated. An application of the rules is made using the yield maximization problem. 
 
Key terms and definitions:

Maximization 
Minimization
First-Order Conditions
Second-Order Conditions
Young's Theorem
Necessary Conditions
Sufficient Conditions
Matrix
Matrix of Partial Derivatives
Principal Minors
Local Maximum
Global Maximum
Saddle Point
Determinant
Critical Value
Unconstrained Maximization and Minimization
Constrained Maximization and Minimization
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6.1 An Introduction to Maximization

An isoquant map might be thought of as a contour map of a hill. The height of the hill
at any point is measured by the amount of output that is produced. An isoquant connects all
points producing the  same quantity of output, or having the same elevation on the hill. In
general, isoquants consist of concentric rings, just as  there are points on all sides of the hill
that have the same elevation. Similarly, there are many different combinations of two inputs
that would all produce exactly the same amount of output. 

An infinite number of isoquants can be drawn. Each isoquant represents a slightly
different output level or elevation on the hill. Isoquants never intersect or cross each other, for
this would imply that the same combination of two inputs could produce two different levels
of output. The quantity of output produced from each combination of the two inputs is unique.
If one is standing at a particular point on a side of a hill, that particular point has one and only
one elevation. 

If the isoquants are concentric rings, any isoquant drawn inside another isoquant will
always represent a slightly greater output level than the one on the outside (Figure 5.1,
diagram A). If the isoquants are not rings, the greatest output is normally associated with the
isoquant at the greatest distance from the origin of the graph. No two isoquants can represent
exactly the same level of output. Each isoquant by definition represents a slightly different
quantity of output from any other isoquant.

If an isoquant map is drawn as a series of concentric rings, these rings become smaller
and smaller as one moves toward the center of the diagram. At comparatively low levels of
output, the possible combinations of the two inputs x1 and x2 suggest a wide range of options:
a large quantity of x2 and a  small quantity of x1: a small quantity of x2 and a large quantity
of x1, or something in between. At higher levels of output, the isoquant rings become smaller
and smaller, suggesting that the range of options becomes more restricted, but there remains
an infinite number of possible combinations on a particular isoquant within the restricted
range, each representing a slightly different combination of x1 and x2. 

The concentric rings finally become a single point. This  is the global point of maximum
output and would be the position where the farm manager would prefer to operate a farm if
inputs were free and there  were  no other restrictions on the use of the inputs. This single
point is the point where the two ridge lines intersect. The MRS for an isoquant consisting of
a single point is  undefined, but this point represents the maximum amount of output that can
be produced from any combination of the two inputs x1 and x2.

If one were standing on the top of a hill, at the very top, the place where one would be
standing would be level. Moreover, regardless of the direction that one looked from the top
of a hill, the hill would slope downward from its level top. If one were standing on the hilltop,
no other point on the hill would slope upward. If it did, one would not be on the top of the hill.
Every other point on the hill would be at a somewhat lower elevation.

The top of the highest hill represents the greatest possible elevation, or global maximum.
However, hills that are not as high are also level at the top. The tops of these hills represent
local, but not global maxima.  

Minimum points can be defined similarly.  The bottom of a valley is also level. The
bottom of the deepest valley represents a global minimum, while the bottom of other valleys
not as deep represent local but not global minima. If one were to draw contour lines for a
valley, they would be indistinguishable from the contour lines for a hill.
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The slope at both the bottom of a valley and at the top of the hill is zero in all directions.
It is not possible to distinguish the bottom of  a valley from the top of a hill simply by looking
at the slope at that point, because the slope for both is zero. Much of the mathematics of
maximization and minimization is concerned with the problem of distinguishing bottoms of
valleys from tops of hills based on second derivative tests or second order conditions.

6.2 The Maximum of a Function

The problem of finding the combination of inputs x1 and x2 that results in the true
maximum output from a two-input production function is the mathematical equivalent of
finding the top of the hill, or the point on a hill with the greatest elevation. Two conditions
need to be checked. First, the point under consideration must be level, or have a zero slope,
which is a necessary condition,  but level points are found not only at the top of hills but at
the bottom of valleys. 

The saddle for a horse provides another example and problem for the mathematician. The
saddle is level in the middle,  but it slopes upward at both ends and downward at both sides.
A saddle looks like neither a hill nor a valley, but is a combination of both. So an approach
needs to be taken that will separate the true hill from the valley and the saddle point.

Suppose again the general production function

†6.1 y = f(x1, x2)

The first-order or necessary conditions for the maximization of output are

†6.2 My/Mx1 = 0, or f1 = 0

and

†6.3 My/Mx2 = 0 or f2 = 0

Equations †6.2 and †6.3 ensure that the point is level  relative to both the x1 and the x2 axes.

The second order conditions for the maximization of output require that the partial
derivatives be obtained from the first order conditions. There are four possible second
derivatives obtained by differentiating the first equation with respect to x1 and then with
respect to x2. The second equation can also be differentiated with respect to both x1 and x2.

These four second partial derivatives are

†6.4 M(My/Mx1)/Mx1 = M2y/Mx1
2 = f11

†6.5 M(My/Mx1)/Mx2 = M2y/Mx1Mx2 = f12

†6.6 M(My/Mx2)/Mx1 = M2y/Mx2Mx1 = f21

†6.7 M(My/Mx2)/Mx2 = M2y/Mx2
2 = f22

Young's theorem states that the order of the partial differentiation makes no difference and
that f12 = f21. 1

The second order conditions for a maximum require that

†6.8 f11 < 0
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and 

†6.9 f11f22  > f12f21.

Since f12f21 is non!negative, f11f22 must be positive for equation  †6.9 to hold, and f11f22 can
be positive only if f22 is also negative.  Taken together, these first- and second-order conditions
provide the necessary and sufficient conditions for the maximization of a two-input production
function that has one maximum.

6.3 Some Illustrative Examples

Some specific examples will further illustrate these points.  Suppose that the production
function is

†6.10 y = 10x1 +10x2 ! x1
2 ! x2

2

The first order or necessary conditions for a maximum are

†6.11 f1 = 10 ! 2x1 = 0

†6.12 x1 = 5

†6.13 f2 = 10 ! 2x2 = 0

†6.14 x2 = 5

The critical values for a function is a point where the slope of the function is equal to
zero.  The critical values for this function occur at the point where x1 = 5, and x2 = 5. This
point could be a maximum, a minimum or a saddle point.

For a maximum, the second order conditions require that

†6.15 f11 <0 and f11f22 > f12f21

For equation †6.10
†6.16 f11 = !2 < 0

†6.17 f22 = !2

†6.18 f12 = f21 = 0, since x2 does not appear in f1, nor x1 in f2.

Hence

†6.19 f11f22 ! f12f21 = 4 > 0

The necessary and sufficient conditions have been met for the maximization of equation†6.10 at x1 = 5, x2 = 5. This function and its contour lines are illustrated in  panels A and B
of Figure 6.1.

Now consider a production function

†6.20 y = !10x1 ! 10x2 + x1
2 + x2

2
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B  The Contour LinesA  The Surface

D  The Contour Lines
C  The Surface

E  The Surface F  The Contour Lines
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L  The Contour Lines

H  The Contour Lines

I  The Surface J  The Contour Lines

G The Surface

K  The Surface

Figure 6.1  Alternative Surfaces and Contours Illustrating Second-Order Conditions
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The first-order conditions are

†6.21  f1 = !10 + 2x1 = 0

†6.22  x1 = 5

†6.23  f2 = !10 + 2x2 = 0

†6.24  x2 = 5

The second order conditions for a minimum require that

†6.25 f11 > 0

†6.26 f11 f22 > f12 f21

For equation †6.20 the second order conditions are

†6.27 f11 = 2 > 0

†6.28 f22 = 2

Moreover

†6.29 f11f22 ! f12f21  = 4 > 0

The necessary and sufficient conditions have been met for the minimization of equation†6.20 at x1 =5, x2 = 5. This function and its contour lines are illustrated in panels C and D of
Figure 6.1.

Now consider a function

†6.30 y =  10x1  ! 10x2 ! x1
2 + x2

2

The first order conditions are

†6.31  f1 = 10 ! 2x1 = 0

†6.32  x1 = 5

†6.33  f2 = !10 + 2x2 = 0

†6.34  x2 = 5

For equation †6.30, the second order conditions are

†6.35 f11 = !2 < 0

†6.36 f22 = 2

Moreover

†6.37 f11f22 ! f12f21  = !4 < 0
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The necessary and sufficient conditions have not been met for the minimization or
maximization of equation †6.30 at x1 = 5, x2 = 5. This function is the unique saddle point
illustrated panels E and F of Figure 6.1 that represents a maximum in the direction parallel
to the x1 axis, but a minimum in the direction parallel to the x2 axis.

The function 

†6.38 y = ! 10x1 +10x2 +x1
2 !x2

2

results in a very similar saddle point with the axes reversed. That is, a minimum occurs
parallel to the x1 axis, but a maximum occurs parallel to the x2 axis. The surface of this
function is illustrated in panels G and H of Figure 6.1.

Now consider a function

†6.39 y = !2x1 ! 2x2 ! x1
2 ! x2

2 + 10x1x2

The first order conditions are

†6.40  f1 = !2 ! 2x1 + 10x2 = 0

 †6.41  f2 = !2 ! 2x2 + 10x1 = 0

Solving for x2 in equation †6.41 for f2 gives us
 †6.42 !2x2 = 2 ! 10x1

†6.43 x2 = 5x1 ! 1

Inserting equation †6.43 x2 into equation †6.40 for f1 results in

†6.44 x1 = 0.25

Since x2 = 5x1 ! 5, x2 also equals 0.25.

In this instance the second order conditions are

†6.45 f11 = !2  < 0

†6.46 f22 = !2  < 0

However

†6.47 f12 = f21 = 10

Thus

†6.48 f11f22 ! f12f21  = 4 ! 100 = !96 < 0

Although these conditions may at first appear to be sufficient for a maximum at x1 =x2
= 0.25, the second order conditions have not been fully met. In this example, the product of
the direct second partial derivatives f11f22 is less than the product of the second cross partial
derivatives f12f21, and therefore f11f22 !f12f21 is less than zero. In the earlier examples, the
second cross partial derivatives were always zero, since an interaction term such as 10x1x2 did
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not appear in the original production function. 

As a result, another type of saddle point occurs, as illustrated in panels I and J of Figure
6.1, which appears somewhat like a bird with wings outstretched. Like the earlier saddle
points, a minimum exists in one direction and a maximum in another direction at a value for
x1 and x2 of 0.25, but the saddle no longer is parallel to one of the axes, but rather lies along
a line running between the two axes. This is the result of the product of the second cross
partials being greater than the second direct partials.  By changing the function only slightly
and making the coefficient 10 on the product of x1 and x2 a -10 results in the surface and
contour lines illustrated in panels K and L of Figure 16.1. Compare these with panels I and
J.

In the preceding examples, care was taken to develop polynomial functions  that  had
potential  maxima or minima at levels for x1 and x2 at positive but finite amounts. If a true
maximum exists, the resultant isoquant map will consist of a series of concentric rings
centered on the maximum with ridge lines intersecting at the maximum.

One is sometimes tempted to attempt the same approach for other types of functions. For
example, consider a function such as

†6.49 y = 10x1
0.5x2

0.5

In this instance

†6.50 f1 = 5x1
!0.5x2

0.5

And

†6.51 f2 = 5x1
0.5x2

!0.5

These first partial derivatives of equation †6.49 could be set equal to zero, but they would
each assume a value of zero only at x1 = 0 and x2 = 0. There is no possibility that f1 and f2
could be zero for any combination of positive values for x1 and x2. Hence the function never
achieves a maximum.

6.4 Some Matrix Algebra Principles

Matrix algebra is a useful tool for determining if a function has achieved a maximum or
minimum.A matrix consists of a series of numbers (also called values or elements) organized
into rows and columns.  The matrix

†6.52 a11  a12  a13

a21  a22  a23
  

a31  a32  a33   

is a square 3 x 3 matrix, since it has the same number of rows and columns.  For each
element, the first subscript indicates its row, the second subscript its column.  For example
a23 refers to the element or value located in the second row and third column.

Every square matrix has a number associated with it called its determinant.  For a 1 x
1 matrix with only one value or element, its determinant is a11. The determinant of a 2 x 2
matrix is a11a22 ! a12a21.  The determinant of a 3 x 3 matrix is a11a22a33 + a12a23a31 + a21a32a13
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! a31a22a13 ! a11a32a23 ! a33a21a12. Determinants for matrices larger than 3 x 3 are very
difficult to calculate, and a computer routine is usually used to calculate them. 

The principal minors of a matrix are obtained by deleting first all rows and columns of
the matrix except the element located in the first row and column (a11) and finding the
resultant determinant. In this example, the first principal minor is a11. Next, all rows and
columns except the first two rows and columns are deleted, and the determinant for the
remaining 2 x 2 matrix is calculated. In this example, the second principal minor is a11a22 !
a12a21. The third principal minor would be obtained by deleting all rows and columns with row
or column subscripts larger than 3, and then again finding the resultant determinant.

The second order conditions can better be explained with the aid of matrix algebra. The
second direct and cross partial derivatives of a two input production function could form the
square 2 x 2 matrix

†6.53 f11  f12

f21  f22

The principal minors of equation †6.53 are

†6.54 H1 = f11

H2 = f11f22 ! f12f21

Assuming that the first-order conditions have been met, The second-order condition for
a maximum requires that the principal minors H1 and H2 alternate in sign, starting with a
negative sign. In other words, H1 < 0; H2 > 0.

For a minimum, all principal minors must be positive. That is, H1, H2 > 0.

A saddle point results for either of the remaining conditions

H1 > 0; H2 < 0

or, H1 < 0; H2 < 0

6.5 A Further Illustration

A further illustration of second-order conditions is obtained from the two input
polynomial

†6.55 y = 40x1 ! 12x1
2 + 1.2x1

3 ! 0.035x1
4 + 40x2 ! 12x2

2 + 1.2x2
3 ! 0.035x2

4

This function has nine values where the first derivatives are equal to zero. Each of these
values, called critical values,  represents a  maximum, a minimum, or  a saddle point. Figure
6.2 illustrates the function. Table 6.1 illustrates the corresponding second order conditions.
In this example, H1 is f11 and H2 is f11f22 ! f12f21.

This function differs from the previous functions in that there are several combinations
of x1 and x2 that generate critical values where the slope of the function is equal to zero. There
is but one global maximum for the function, but several local maxima. A global maximum
might be thought of as the top of the highest mountain, whereas a local maximum might be
considered the top of a nearby hill. There are also numerous saddle points. The second-order
conditions can be verified by carefully studying figure 6.2.
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6.6 Maximizing a Profit Function with Two Inputs

The usefulness of the criteria for maximizing a function can be further illustrated with
an agricultural example using a profit function for corn. Suppose that the production function
for corn is given by

†6.56 y = f(x1, x2)

where y = corn yield in bushels per acre
    x1 = pounds of potash applied per acre
    x2 = pounds of phosphate applied per acre

Table 6.1   Critical Values for the Polynomial y = 40x1 ! 12x1
2 + 1.2x1

3 ! 0.035x1
4

           + 40x2 ! 12x2
2 + 1.2x2

3 ! 0.035x2
4 

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
 x1

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
   2.54 6.93   16.24

                               )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
x2  local saddle global

  maximum point maximum 

  y = 232.3 y = 209.5 y = 378.8
   16.24     H1 < 0 H1 > 0 H1 < 0

  H2 > 0 H2 < 0 H2 > 0
))))))))))))))))))))))))))))))

  saddle     local         saddle
  point minimum point

  y = 61.9 y = 39.1 y = 209.5
     6.93     H1 < 0 H1 > 0 H1 < 0

  H2 < 0 H2 > 0 H2 < 0
))))))))))))))))))))))))))))))

   local    saddle      local
  maximum  point maximum

  y = 84.8 y = 61.9 y = 232.3
     2.54     H1 < 0 H1 > 0 H1 < 0

  H2 > 0 H2 < 0 H2 > 0
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))



Maximization in the Two-Input Case 113

Figure 6.2   Critical Values for the Polynomial y = 40x1 ! 12x1
2 + 1.2x1

3 ! 0.035x1
4

      + 40x2 ! 12x2
2 + 1.2x2

3 ! 0.035x2
4 
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All other inputs are presumed to be fixed and given, or already owned by the farm manager.
The decision faced by the farm manager is how much of the two fertilizer inputs or factors of
production to apply to maximize profits to the farm firm.

The total revenue or total value of the product from the sale of the corn from 1 acre of land is

†6.57 TVP = py  

where
p = price of corn per bushel

    y = corn yield in bushels per acre 

The total input or factor cost is

†6.58 TFC = v1x1 + v2x2

where v1 and v2 are the prices on potash and phosphate respectively in cents per pound. The profit
function is

†6.59 A = TVP ! TFC

Equation †6.59 can also be expressed as

†6.60 A = py ! v1x1 !v2x2 

or

†6.61 A = pf(x1,x2) ! v1x1 !v2x2 

The first order, or necessary conditions for a maximum are

†6.62 A1 = pf1 ! v1 = 0

†6.63 A2 = pf2 ! v2 = 0

Equations †6.62 and †6.63 require that the slope of the TVP function with respect to each input equal
the slope of the TFC function for each input, or that the difference between the slopes of the two
functions be zero for both inputs, or as

†6.64 pf1 = v1

†6.65 pf2 = v2

The value of the marginal product must equal the marginal factor cost for each input. If the
farmer is able to purchase as much of each type of fertilizer as he or she wishes at the going market
price, the marginal factor cost is the price of the input, v1 or v2. This also implies that at the point
of profit maximization the ratio of VMP to MFC for each input is 1. In other words

†6.66 pf1/v1 = pf2/v2 = 1

The last dollar spent on each input must return exactly $1, and most if not all previous units
will have given back more than a dollar. The accumulation of the excess dollars in returns over costs
represents the profits or net revenues accruing to the farm firm.

Moreover, the equations representing the first order conditions can be divided by each other:

†6.67 pf1/pf2  = v1/v2.

Note that the output price cancels in equation †6.67 such that

†6.68 f1/f2 = v1/v2



Maximization in the Two-Input Case 115

Recall from Chapter 5 that f1 is the MPP of x1 and f2 is the MPP of x2. The negative ratio of the
respective marginal products is  one definition of the marginal rate of substitution of x1 for x2 or
MRSx1x2.  Then at the point of profit maximization

†6.69 MRSx1x2 = v1/v2

or

†6.70 dx2/dx1 = v1/v2

As will be seen later, equation †6.70 holds at other points on the isoquant map in addition to the
point of profit maximization.

The second order conditions also play a role. Assuming fixed input prices (v1 and v2), the
second order conditions for the profit function are

†6.71 A11 = pf11

†6.72 A22 = pf22

†6.73 A12 = A21 = pf12 = pf21 (by Young's theorem)

Or in the form of a matrix

†6.74
pf11  pf12

pf21  pf22

For a maximum

†6.75 pf11 < 0

and

†6.76 pf11pf22 ! pf12pf21 > 0

The principal minors must alternate in sign starting with a minus. Equations †6.75 and †6.76
require that the VMP functions for both x1 and x2 be downsloping. With fixed input prices, the input
cost function will have a constant slope, or the slope of MFC will be zero.

The conditions that have been outlined determine a single point of global profit maximization,
assuming that the underlying production function itself has but a single maximum. This single
profit-maximization point will require less of both x1 and x2 than would be required to maximize
output, unless one or both of the inputs were free.

6.7 A Comparison with Output- or Yield-Maximization Criteria

A comparison can be made of the criteria for profit maximization versus the criteria for yield
maximization.  If the production function is

†6.77 y = f(x1,x2)

Maximum yield occurs where

†6.78 f1 = MPPx1 = 0

†6.79 f2 = MPPx2 = 0
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or

†6.80 f1 = f2 = 0

The second-order conditions for maximum output require that f11 <0; and f11f22 > f12f21.  The
MPP for both inputs must be downward sloping. 

The first- and second-order conditions comprise the necessary and sufficient conditions for the
maximization of output or yield and are the mathematical conditions that define the center of an
isoquant map that consists of a series of concentric rings.

Since zero can be multiplied or divided by any number other than zero, and zero would still
result, when MPP  for x1 and x2 is zero,

†6.81 pf1/v1 = pf2/v2 = 0

To be at maximum output, the last dollar spent on each input must produce no additional
output,  yield, or revenue.

Recall that the first-order, or necessary conditions for maximum profit  occur at the point where

†6.82 pf1 ! v1 = 0

†6.83 pf2 ! v2 = 0

†6.84 pf1/v1 = pf2/v2 = 1

and the corresponding second order conditions for maximum profit require that

†6.85 pf11 < 0

†6.86 pf11pf22 ! pf12pf21 > 0

†6.87 p2(f11f22 !f12f21) > 0

Since p2 is positive, the required signs on the second-order conditions are the same for both profit
and yield maximization.

6.8 Concluding Comments

This chapter has developed some of the fundamental rules for determining if a function is at
a maximum or a minimum.  The rules developed here are useful in finding a solution to the
unconstrained maximization problem. These rules also provide the basis for  finding the solution to
the problem of constrained maximization or minimization.  The constrained maximization or
minimization problem makes it possible to determine the combination of inputs that is required to
produce a given level of output for the least cost, or to maximize the level of output for a given cost.
The constrained maximization problem is presented in  further detail in Chapters 7 and 8.  
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Notes
1.   A simple example can be used to illustrate that Young's theorem does indeed  hold in a

specific case.  Suppose that a production function

y = x1
2x2

3

Then

f1 = 2x1x2
3

f2 = 3x1
2x2

2

f12 = 6x1x2
2

f21 = 6x1x2
2

A formal proof of Young's theorem in the general case can be found in most intermediate
calculus texts.

Problems and Exercises

1. Does the function y = x1x2 ever achieve a maximum? Explain.  

2. Does the function y = x1
2  ! 2x2

2 ever achieve a maximum? Explain.

3. Does the function y = x1 + 0.1x1
2 ! 0.05x1

3 + x2 + 0.1x2
2 ! 0.05x2

3 ever achieve a maximum? If so,
at what level of input use is output maximized.

4. Suppose that price of the output is $2. For the function given in Problem 3, what level of input use
will maximize the total value of the product?

5. Assume that the following conditions exist

f1 = 0

f2 = 0

Does a maximum, minimum, or saddle point exist in each case?

a. f11 > 0

   f11Af22 ! f12Af21 < 0

b. f11 < 0

   f11Af22 ! f12Af21  > 0

c. f11 > 0

   f11Af22 ! f12Af21  > 0

d. f11 < 0

   f11Af22 ! f12Af21  < 0

6. Suppose that the  price of the output is $3,  the price of the input x1 is $5, and the price of input
x2 is $4. Is it possible to produce and achieve a profit? Explain. What are the necessary and sufficient
conditions for profit maximization?


