
REVIEWARTICLE

Expertise Reversal Effect and Its Implications
for Learner-Tailored Instruction

Slava Kalyuga

Published online: 13 September 2007
# Springer Science + Business Media, LLC 2007

Abstract The interactions between levels of learner prior knowledge and effectiveness of
different instructional techniques and procedures have been intensively investigated within
a cognitive load framework since mid-90s. This line of research has become known as the
expertise reversal effect. Apart from their cognitive load theory-based prediction and
explanation, patterns of empirical findings on the effect fit well those in studies of Aptitude
Treatment Interactions (ATI) that were originally initiated in mid-60s. This paper reviews
recent empirical findings associated with the expertise reversal effect, their interpretation
within cognitive load theory, relations to ATI studies, implications for the design of learner-
tailored instructional systems, and some recent experimental attempts of implementing
these findings into realistic adaptive learning environments.
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Learner-tailored instruction

Although advantages of individualized learner-tailored instruction have been recognized for
long time and continue to be aspired (e.g., see VanLehn et al. 2007 for the most recent
manifestation) it still remains a mainly unrealized dream for the majority of educators. Most
instructional materials are designed in a fixed, one-for-all fashion, and by default, implicitly
if not explicitly, assume novices as intended learners. Unavailability of suitable real-time
(online) diagnostic assessment techniques has also impeded the development of learner-
tailored environments. Because of the involvement of many complex factors, issues of
managing cognitive load by adapting instructions to individual learners, although recognized
as important, have been mostly avoided by recent research projects in the field. On the other
side, specific developmental projects in adaptive e-learning have been focused mostly on
technical issues of tailoring instructional content to learner preferences, interests, choices,
history of previous on-line behavior etc. and not based on fundamental cognitive character-
istics of learners and evidence-based principles of instructional design.
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Studies of expert–novice differences in recent decades have clearly demonstrated that
learner knowledge base is a single most important cognitive characteristic that influences
learning and performance. Recent studies within the cognitive load framework, as well as
some older results of research in Aptitude Treatment Interactions (ATI), have demonstrated
that designs and techniques that are effective with low-knowledge individuals can lose their
effectiveness and even have negative consequences for more proficient learners (see Kalyuga
et al. 2003; Kalyuga 2005, 2006b; Tobias 1976, 1989 for previous overviews). The reversal
in the relative effectiveness of instructional methods as levels of learner knowledge in a
domain change has been referred as an expertise reversal effect. The major instructional
design implication of these studies is the need to adjust instructional methods and pro-
cedures as learners acquire more expertise in a specific domain.

The following sections of the paper will review major characteristics of our cognitive
architecture that underlie the expertise reversal effect, main empirical findings associated
with the effect, their interpretation within cognitive load theory, relations to ATI studies,
implications for the design of learner-tailored instructional systems, and some recent studies
in implementing these findings into realistic adaptive learning environments. Some directions
for future studies are identified in the conclusion.

Main Features of our Cognitive Architecture

Current theoretical model of human cognition within the cognitive load perspective includes
several major characteristics that could be associated with wider principles that may govern
all natural information processing systems (see Sweller 2003, 2004; 2007; van Merriënboer
and Sweller 2005, for recent reviews of cognitive load theory, descriptions of the above
principles, and their implications for the design of instruction). Firstly, our cognitive
architecture (a general cognitive system that underlies human performance and learning) is
essentially a knowledge-based one. Its operation is founded on a large store of organized
knowledge structures in long-term memory with effectively unlimited capacity and duration.
Such organized generic knowledge structures (or schemas) are used for mentally categorizing
and representing concepts and procedures, and governing our behavior. They effectively
determine our capabilities to function successfully in complex environments.

Secondly, our cognitive architecture has a mechanism that limits the scope of immediate
changes to the knowledge base. This mechanism is usually associated with the concept of
working memory as a conscious processor of information within our focus of attention that
is responsible for constructing and updating our mental representations. It is severely
limited in capacity and duration when dealing with novel elements of information (Baddeley
1986; Cowan 2001; Miller 1956). Processing limitations of working memory and associated
cognitive load represent a major factor influencing the effectiveness of instruction.

Thirdly, our cognitive architecture can make sense of complex situations and coordinate
different cognitive activities in conditions of severe working memory limitations. Knowledge
structures held in long-term memory allow us to effectively reduce limitations of our cog-
nitive system by encapsulating many elements of information into larger, higher-level units
that could be treated as elements in working memory. Similar cognitive load reduction effects
could also be achieved by practicing skills until they can operate under automatic rather than
controlled processing (Kotovsky et al. 1985; Shiffrin and Schneider 1977). A cognitive
architecture with limited processing resources would operate most efficiently when basic
lower-level mental processes occur automatically preventing the system from an overload
by processing demands and leaving cognitive resources for more sophisticated higher-level
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mental operations involved in thinking, learning, and problem solving. Intensive training on
certain routine procedural elements of a task can make them more automatic and free
cognitive capacity for enabling more creative cognitive processes of applying knowledge in
unfamiliar situations or transferring of training (Cooper and Sweller 1987).

The characteristics of learning and performance alter significantly with the development
of learner expertise in a domain. In the absence of relevant knowledge, novices are dealing
with many new elements of information that may easily overload working memory. These
learners require considerable external support to build new knowledge structures in a rel-
atively efficient manner. In contrast, experts may rely on their available long-term memory
knowledge structures for handling situations and tasks within their area of expertise.

High-level professional expertise requires years of extensive learning and practice in a
specific domain (Ericsson et al. 1993) and involves many essential attributes in addition
to the relevant knowledge base. However, one of the most important characteristics of
expertise in any domain is the availability of a large number of domain-specific organized
knowledge structures (schemas). High-level professional experts are in most cases also
experts in solving specific routine tasks in their domains. Task-specific expertise is the
ability to perform fluently in a specific class of tasks. A typical indicator of such expertise
is performing rapidly advanced stages of solution by skipping some (or all) intermediate
steps. Developing task-specific expertise is an important and necessary prerequisite for
becoming a higher-level expert in a broader domain. According to this ‘narrow’ definition
of expertise, even preschool children could be experts in solving some specific classes of
tasks, for example, paper-folding tasks. The “expert” knowledge base in this case consists
of structures and procedures used in performing this specific class of tasks. In this paper,
such a ‘narrow’ view of expertise is used when describing occurrences of the expertise
reversal effect in specific task domains.

Executive Function of the Knowledge Base

Within a cognitive architecture that is based on interacting working and long-term memory
components, the available knowledge base in long-term memory represents a natural source
of internal guidance for cognitive activities. It is assumed that knowledge structures in long-
term memory perform an organizing and governing (or executive) role in complex cognitive
processes (Sweller 2003). Appropriate knowledge structures are activated, retrieved from
long-term memory, and combined to perform a function of managing specific incoming
information streams (Kalyuga and Sweller 2005). When performing a complex cognitive
task, we construct and continuously update a cognitive representation for the task situation
based on our prior schemas for the task and incoming information. This situation model
appropriately directs our attention and governs our performance in real time. In the absence
of relevant knowledge, we would use random search processes by trying to fit different
performance patterns or operations in trial-and-error attempts to handle the task. Alter-
natively, direct instructional guidance can perform an executive role by providing a partial
substitute for the missing knowledge-based executive function for novices by telling them
exactly how to handle the situation.

The concept of long-term working memory (Ericsson and Kintsch 1995) that includes
structures created by long-term memory schemas associated with currently active com-
ponents of working memory, may provide a specific mechanism for the executive role of
our knowledge base. Thus, during performance of knowledge-based tasks, organized
knowledge structures in long-term memory effectively determine the content and
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characteristics of working memory and govern complex cognitive activities. It is possible to
determine the content of an individual’s long-term working memory in a specific task
situation by analyzing the content of concurrent (think-aloud) verbal reports. An alternative
rapid diagnostic approach will be considered later.

In learning, the executive role of long-term memory knowledge is essential for providing
cognitively efficient guidance for the construction of new knowledge structures in working
memory and their integration (encoding) into available knowledge base in long-termmemory.
When no specific knowledge suitable for a task is available, we approach the task using
mostly random search processes followed by tests of their effectiveness (Newell and Simon
1972). Such search processes require considerable resources of limited working memory
and often result in cognitive overload and slow or negligible learning (Sweller 1988).

Our knowledge-based cognitive architecture may tend to minimize cognitive resources
involved in performance (‘cognitive economy principle’) by using available knowledge
structures as a more resource-efficient and, therefore, preferable means for governing
cognitive activities than relying on alternative search procedures. As a by-product of such a
generally efficient cognitive system, the ‘cognitive economy’ trend may sometimes result in
selecting wrong, although well-entrenched, knowledge components for the executive role
(for example, using simplistic folk beliefs in place of available scientific knowledge). They
would be more ‘economical’ than extending significant mental resources on searching,
reasoning, or trying to accommodate more comprehensive knowledge structures.

The relative share of internal long-term memory structures and external guidance in a
learner’s executive function for a task depends on her/his level of task-specific expertise.
For low-knowledge learners, externally provided guidance may be the only available source
of this function. Unless external instructional support substitutes for missing knowledge
base, these learners would need to resort to cognitively inefficient search strategies. For
experts in the domain, all necessary knowledge structures could be available in long-term
memory and there would be no need in an additional instructional support. At intermediate
levels of expertise, these two sources of information may be complementary. In an ideal and
well-balanced situation, an executive function is based on long-term memory knowledge
when dealing with familiar components of incoming information, and on direct guidance
when dealing with unfamiliar units of information.

Unbalanced Executive Function and the Expertise Reversal Effect

There could be two major reasons for an unbalanced executive function. Firstly, in a
situation where no guidance is provided for dealing with new units of information, learners
have to apply general search strategies to cover the gap (for example, novice learners in an
unguided discovery learning environment). If challenges of the task exceed the available
knowledge structures, the task could cause a cognitive overload. Secondly, if external
guidance is provided to learners who have sufficient knowledge base for dealing with the
same units of information, learners would have to relate and reconcile the related components
of available long-term memory base and externally provided guidance. Such integration
processes may impose an additional working memory load and reduce resources available for
learning new knowledge.

Presenting knowledgeable learners with detailed external guidance may hinder their
learning and performance relative to the levels they could achieve with minimal instructional
support. Therefore, as levels of learner expertise in a domain increase, relative effectiveness
of learning tasks with different levels of instructional support may reverse. Instructional
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formats, techniques, and procedures that are optimal for novices may hinder relative
performance of learners who are more experienced in a specific task domain by distracting
them from fluent execution of appropriate cognitive processes and causing an expertise
reversal effect.

Even though knowledge is the most critical characteristic of expertise that influence
performance and learning processes, a non-optimal selection of learning tasks and associated
levels of instructional guidance, as well as specific representational formats, may not allow
experts to take a full advantage of their knowledge base. Mayer (1989) noted that the prior
knowledge structures that a learner brings to the learning situation may trigger a cognitive
conflict between this knowledge and presented information. Experts’ well learned and
refined cognitive models may conflict with models presented in instructional materials.
Mental effort required to reconcile this conflict could cause a cognitive overload resulting
in the expertise reversal effect.

Well ordered and balanced (optimized) executive function assumes that the learning task
fits available knowledge-based executive structures and provides challenges just above the
level of learner expertise. Unguided effortful search for solutions, as well as paying
unnecessary attention to information that could otherwise be processed automatically and
effortlessly, would reduce or prevent cognitive resources required for learning meaningful
patterns of the task domain. Cognitive load associated with an unbalanced executive function
may also de-motivate learners and thus further strengthen the effect (Paas et al. 2005).

The expertise reversal effect was predicted within the cognitive load theoretical frame-
work as a form of redundancy effect that could occur when some presented information that
was beneficial (and non-redundant) for novice learners became redundant for learners with
higher levels of knowledge in a task domain (Kalyuga et al. 1998). For example, when
related text and pictures are separated in space, their mental integration is expected to
increase cognitive load. Physically integrating verbal and pictorial representations may
reduce or eliminate this load (split-attention effect). However, for more advanced learners,
eliminating non-essential redundant representations was expected to be more effective. For
these learners, processing the redundant material may overload working memory relative
to information without redundancy.

The effect was then extended to different presentation modalities and levels of instruc-
tional guidance, and became dissociated from the traditional redundancy effect (Chandler
and Sweller 1991). In the expertise reversal effect, external information becomes redundant
relative to a particular learner’s internal knowledge structures. Additional cognitive resources
are required for cross-referencing overlapping external and internal sources of information
rather than only different external sources of information in the redundancy effect. Therefore,
although the expertise reversal effect is a form of redundancy in a wider sense (when the
learner knowledge base is included in the list of sources of information), it is not an example
of a redundancy effect in the narrow sense.

Types of Cognitive Load Contributing to the Expertise Reversal Effect

Cognitive load is the demand for working memory resources of a specific person that are
required for achieving goals of a particular cognitive activity or learning task when the
individual is fully committed to the task. Actually invested resources obviously depend on
motivation and other individual characteristics. Cognitive load always relates to cognitive
processes of a specific person. Therefore, it depends not only on objective, depersonalized
features of external information presentations or tasks, but also on cognitive characteristics
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of the learner. For example, the complexity of a task (e.g., the level of interactivity between
its elements) is always relative to the learner knowledge base that determines what the
elements are in the first place. The subjective nature of cognitive load needs to be emphasized
when classifying and describing its sources and categories, especially intrinsic cognitive load.

Intrinsic cognitive load is associated with establishing connections between related
elements of information or tasks in working memory and integrating them into available
knowledge base. This load is essential for learning and is caused by internal intellectual
complexity of the task or material relative to the level of learner task-specific expertise.
Intrinsic load is often explicitly or implicitly related only to characteristics of learning
materials or tasks (as a number of information elements and their interactivity). However, as
soon as we use the term ‘cognitive’, we refer to human processes and not only to external
characteristics of materials. The material only-based definition does not make much cog-
nitive sense without considering cognitive activities of a learner who actually identifies
elements of information and establishes patterns of their interactions using effortful
conscious processes in working memory. These cognitive activities signify the compre-
hension of a situation and result in modified or new knowledge structures in long-term
memory. Because intrinsic cognitive load is essential for achieving specific learning goals
(comprehending a situation, performing a task, constructing new higher-level knowledge
structures, achieving flexibility of such structures sufficient for transfer to relatively new
task situations, etc.), it is vital to provide all the necessary resources to accommodate this
load without exceeding limits of working memory capacity.

In order for the essential cognitive load not to exceed the cognitive capacity of a learner,
it needs to be appropriately managed. For example, the initial learning goal could be divided
into a series of sub-goals that require less processing resources, with instructional materials
and tasks segmented or partitioned into smaller units. Alternatively, some of the essential
interactions between elements of information could be excluded from consideration in order
to artificially reduce structural complexity of the task on initial stages of learning followed
by the fully interactive materials later (an isolated-interactive elements effect; Pollock et al.
2002). On the other hand, the management procedures may also involve increasing essen-
tial cognitive processing if it is at low levels and much cognitive capacity remains unused,
for example, setting more challenging learning goals that require more complex cognitive
activities with higher levels of element interactivity. It may also involve preventing un-
controlled reduction of essential cognitive processing, for example, when learners attempt
to spontaneously rely on available simplistic knowledge structures (e.g., folk beliefs,
scientific misconceptions) in guiding their cognitive activities.

An intentional increase in essential cognitive processing is referred to as an increase in
germane cognitive load. It is sometimes difficult to separate intrinsic and germane types of
load, since both of them represent useful forms of cognitive load. The concept of germane
load was introduced to distinguish useful, learning-relevant demands on working memory
from irrelevant and wasteful forms of cognitive processing (Sweller et al. 1998). Although
intrinsic load is the most important part of learning-relevant cognitive demands, traditionally
germane load has been associated with various additional cognitive activities designed to
further foster learning or increase levels of learner motivation (e.g., explicitly self-explaining
solution steps, imagining procedures described in worked examples, or varying situational
features of learning tasks).

In contrast to essential, extraneous (unproductive, irrelevant) cognitive load is associated
with a diversion of cognitive resources on activities irrelevant to learning goals because
of design-related factors, such as a poor presentation design, inappropriate selection and
sequencing of learning tasks, or inadequate instructional support. The expertise reversal
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effect is associated with two types of situations that cause extraneous cognitive load: 1)
insufficient external guidance that does not compensate for limited knowledge base and
forces novice learners to search for answers using cognitively inefficient procedures; 2)
expert learner knowledge base overlaps with provided external guidance thus forcing
learners to waste limited resources on co-referring internal and external representations of
the same information. Both these forms of extraneous cognitive load can leave inadequate
resources to sustain essential processing. It should be noted that the difference between
extraneous and intrinsic cognitive load is relative to levels of learner expertise: some com-
ponents of cognitive load that are essential for novice learners could become extraneous
(irrelevant) for relatively more experienced learners, and vice versa.

It is also possible that the level of intrinsic load that is acceptable for more knowl-
edgeable learners could be overwhelming for novices and exceed their capacity limits. This
excessive intrinsic load would cause the disruption of learning processes and effectively
become a form of extraneous load. Some previously mentioned techniques and procedures
were developed for managing the exceeding levels of intrinsic load for novices. However,
such techniques and procedures could become redundant for experts who would unnec-
essarily divert their resources on performing the required activities. Similarly, instructional
methods for enhancing levels of germane load may produce cognitive overload for less
experiences learners, thus effectively converting germane load for experts into extraneous
load for novice learners. Such situations could also be associated with the expertise reversal
effect.

The next sections describe empirical findings related to the expertise reversal effect.
Mayer (2001) suggested computing effect size differences by subtracting the effect size for
high-knowledge learners from the effect size for low-knowledge learners. Table 1 provides
the effect sizes for less and more knowledgeable learners (novices and experts), numbers of
participants in each category, and effect size differences for the reviewed studies. In each
study, the compared instructional methods are ordered so that effect sizes for novices are
positive. Then negative values for experts would indicate actual reversal of the effects
(disordinal interactions). In some cases, even though no actual reversals were obtained,
there were still notable differences in the magnitudes of the effects.

When sufficient data was not available in a source paper, effect sizes were computed
using higher standard deviation values, thus providing conservative estimates. In two
papers that did not contain sufficient data for making such estimates, textual description of
the results was provided. Most of the reviewed studies used cross-sectional designs with
different participants as low- and high-knowledge learners. For this reason, few available
longitudinal studies are described in a separate section first.

Longitudinal Studies of Interactions Between Learner Levels of Expertise
and Cognitive Load Effects

Kalyuga, Chandler, and Sweller conducted a series of longitudinal studies that were
specifically designed to investigate interactions between different cognitive load effects and
changing levels of learner expertise in controlled experimental conditions (a detailed
overview could be found in Kalyuga 2006b). The general design of those studies included
training the same samples of participants from novice to more expert states in specific task
areas. Levels of performance and mental effort were measured at different stages along
the way to see changes in relative effectiveness and efficiency of different instructional
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Table 1 Expertise Reversal Effect: Summary of Results

Source Experimental conditions Effect size
for novices
(N)

Effect size
for experts
(N)

Effect
size
diff.

Longitudinal studies of interactions between learner levels of expertise and cognitive load effects
Kalyuga et al. (1998) Diagram with embedded text vs.

diagram-only:
(17) (30)

Operation and troubleshooting test 1.67 −0.44 2.11
Fault-finding test 1.89 −0.88 2.77

Kalyuga et al. (2000) Animated diagram with narrated
text vs. diagram-only

1.18 (30) −0.62 (38) 1.80

Kalyuga et al. (2001b) Worked examples vs. problem-solving
Experiment 1 Writing programs for relay circuits 0.90 (24) 0.23 (24) 0.67
Experiment 2 Writing switching equations for circuits − 0.26 (24) −0.75 (24) 0.49
Kalyuga et al. (2001a)
Experiment 2

Worked examples vs. exploratory
learning

0.69 (17) −0.33 (17) 1.02

Expertise reversal for verbal and pictorial representation formats
Mayer (2001), medians for
a series of studies
(1990–2000)

Text and illustrations vs text only
Retention questions n/a n/a 0.60
Transfer questions n/a n/a 0.80

Lee et al. (2006) Iconic vs symbolic representations in
instructional simulations

1.60 (64) −1.39 (63) 2.99

Yeung et al. (1998) Text with integrated vocabulary vs. text
with separate vocabulary

Experiments 2–3 Primary school vs. university students 0.30 (48) −0.53 (28) 0.83
Experiments 4–5 Low- vs. high-ability secondary school

students
0.13 (56) −0.53 (57) 0.66

Yeung (1999) Text with integrated vocabulary vs. text
with separate vocabulary

1.08 (84) −0.79 (17) 1.87

Expertise reversal for instructional guidance and sequencing of learning tasks
Tuovinen and Sweller
(1999)

Worked examples vs. exploratory-based
instruction

0.91 (17) −0.31 (15) 1.22

Kalyuga and Sweller
(2004) Experiment 3

Worked examples vs. problem-solving 1.20 (21) −0.36 (21) 1.56

Reisslein et al. (2006) Example-problem pairs vs. problem-
example pairs

0.33 (62) −0.37 (60) 0.70

Example-problem pairs vs. faded
worked examples

0.28 (63) −0.26 (61) 0.54

Reisslein (2005) Slow vs. fast transitioning to problem
solving

1.30 (39) −0.47 (44) 1.77

Slow vs. immediate transitioning 0.51 (38) −0.42 (45) 0.93
Seufert (2003) Directive help for coherence formation

vs. no help
1.32 (17) −0.15 (16) 1.47

Non-directive help for coherence
formation vs. no help

0.95 (15) −0.55 (19) 1.50

Lambiotte and
Dansereau (1992)

Visual aids to lectures: (37) (37)
Knowledge map vs. list of terms
Recall of central ideas 0.61 −0.85 1.46
Recall of details 0.27 −0.41 0.68
Outline vs. list of terms
Recall of central ideas 0.29 −1.05 1.34
Recall of details 0.19 −0.53 0.72

Pollock et al. (2002) Isolated-interacting elements vs.
interactive-only elements instruction
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Table 1 (continued)

Source Experimental conditions Effect size
for novices
(N)

Effect size
for experts
(N)

Effect
size
diff.

Experiments 1–2 (22) (25)
Low-element interactivity test 0.63 0.06 0.57
High-element interactivity test 0.86 0.11 0.75
Test of the practical application 0.71 −0.16 0.87

Experiments 3–4 (18) (18)
Low-element interactivity test 0.64 −0.20 0.84
High-element interactivity test 1.13 −0.56 1.69

Clarke et al. (2005) Sequential vs. concurrent learning of
technology skills and subject domain
knowledge

1.47 (8) −0.30 (12) 1.77

Expertise reversal for dynamic visual representations
Ollerenshaw et al. (1997) Text with computer simulation labeling

parts and operating stages vs. text-only
0.62 (23) 0.00 (18) 0.62

Text with computer simulation labeling
parts and operating stages vs. text with
diagram labeling parts

0.92 (23) 0.41 (17) 0.51

Kalyuga (2007) Static vs. animated diagrams (worked
examples)

0.82 (17) −0.46 (16) 1.28

Schnotz and Rasch (2005) Static vs. animated pictures: (20) (20)
Study 1 Study time 0.58 −0.58 1.16

Circumnavigating posttest questions 1.07 0.00 1.07
Study 2 Simulation vs. manipulation pictures: (13) (13) 1.60

Time-difference posttest questions 0.38 −1.22

Expertise reversal for instructional hypertext and hypermedia
Shin et al. (1994) Limited-access hypertext (with restricted

navigation) vs. full access hypertext
0.53 (52) −0.13 (58) 0.66

Calisir and Gurel (2003) Hierarchical hypertext vs. linear text 1.66 (10) −0.17 (10) 1.83
Mixed hypertext vs. linear text 1.01 (10) −0.90 (10) 1.91

Potelle and Rouet (2003) Content recall questions:
Structured hierarchical maps vs. semantic
network maps

0.84 (18) −0.73 (15) 1.57

Alphabetical lists of topics vs. semantic
network maps

0.60 (16) −0.53 (15) 1.13

Shapiro (1999) Text with structuring interactive overviews
vs. text without structuring interactive
overviews

1.17 (46) 0.38 (46) 0.79

Expertise reversal for methods of enhancing germane cognitive load
Cooper et al. (2001) Studying vs. imagining worked-out

proceduresExperiments 2–3 0.99 (22) −1.24 (20) 2.23
Experiment 4 0.91 (36) −0.75 (36) 1.66
Ginns et al. (2003) Studying vs. imagining worked examples (20) (26)
Experiments 1–2 Retention scores 0.45 0.00 0.45

Transfer scores 0.39 −1.14 1.53
Leahy and Sweller (2005) Studying vs. imagining instructions:
Experiment 1 Low element interactivity 0.38 (30) −0.37 (30) 0.75

High element interactivity 0.71 (30) −0.80 (30) 1.51
Experiment 2 Low element interactivity 0.55 (30) −0.45 (30) 1.00

High element interactivity 0.97 (30) −0.79 (30) 1.76
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techniques at different levels of learner expertise. Intensive training sessions, identical for
all participants, were conducted between the experimental stages to increase learner expertise
in corresponding task domains (Fig. 1). The task areas were restricted to relatively narrow
classes of tasks to allow noticeable increases in learner expertise within several weeks. On
the other hand, they had to be sufficiently expandable to allow a gradual increase in task
complexity levels from stage to stage.

When different sources of information that require mental integration for understanding
are separated in space or time, the process of integration (including visual search-and-match
or cross-referencing) may substantially increase the burden on working memory and inhibit
learning. Physically integrated or embedded formats were demonstrated to be an effective
alternative to “split-source” instructions (split-attention effect; e.g., Mayer and Gallini 1990;
Sweller et al. 1990; Tarmizi and Sweller 1988). Since working memory is likely to include
partially independent subsystems for processing visual and auditory information (Baddeley
1986; Robinson and Molina 2002), split-attention situations may also be managed by using
different modalities. Integration of the verbal auditory and pictorial visual information may
not overload working memory if its capacity is effectively expanded by using a dual-mode
presentation (modality effect; e.g., Mayer 1997; Mousavi et al. 1995; Tindall-Ford et al.
1997). However, if sources of information are intelligible in isolation, elimination rather
than integration of a redundant source is preferable (redundancy effect; e.g., Chandler and
Sweller 1991; Mayer et al. 2001).

Whether information is redundant depends on the level of expertise of the learner: what
is essential for novices could be redundant for more knowledgeable learners or for the same
learners at later stages of instruction. As a consequence, integrated formats that are effective
for novices could be ineffective for more expert learners. Similar to visual, auditory
explanations may also become redundant when presented to more experienced learners.
Kalyuga et al. (1998) demonstrated that the relation between the split-attention and
redundancy effects reversed as learner gains more expertise. With novice learners, the split-
attention effect was obtained: trainees learned best from textual explanations that were
embedded into the electrical wiring diagrams. After extensive training in the domain, the
effectiveness of the integrated diagram and text condition decreased while the effectiveness
of the diagram alone condition increased. After additional intensive training, substantial

Fig. 1 Experimental sequence for studying interactions between levels of learner expertise and cognitive
load effects
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differences were observed between the conditions (Fig. 2). Diagram-alone materials were
easier to process (according to subjective ratings of learning difficulty) and generated a
higher level of performance on the subsequent tests. Textual explanations that were essential
for novices became redundant for more knowledgeable learners.

In subsequent longitudinal studies (Kalyuga et al. 2000, 2001a, b), more evidence was
obtained for an interaction between different instructional methods and levels of learner
task-specific expertise. Patterns of results were similar to those shown in Fig. 2. The tech-
niques for reducing extraneous cognitive load that were effective for novice learners (e.g.,
integrating sources of information or using dual-modality formats in split-attention situations,
or using worked examples instead of conventional problem solving) became ineffective and
often resulted in negative rather than positive or neutral effects for more knowledgeable
learners.

For example, detailed narrated explanations of how to use a specific type of diagrams in
mechanical engineering presented concurrently with on-screen animated diagrams that were
effective for novices (modality effect), became redundant and reduced relative learning
outcomes as learners became more knowledgeable in the task domain (Kalyuga et al. 2000).
Explanations designed to support construction of knowledge that had already been acquired,
needed additional cognitive resources for cross-referencing with available knowledge
structures. The relative advantage of the narrated diagrams gradually disappeared while the
diagram-alone condition became more effective. After several intensive training sessions,
the diagram-only group outperformed the diagram with narrated text group, effectively
reversing the results of the first stage. Subjective ratings of learning difficulty supported a
cognitive load explanation of the results.

Kalyuga et al. (2001b) demonstrated that the superiority of worked examples in pro-
gramming logic controllers over problem-solving practice (worked example effect; e.g.,
Cooper and Sweller 1987; Sweller 1988) disappeared as trainees acquired more experience
in the task domain. In another experiment with tasks on writing switching equations for
relay circuits, there was no difference between conditions initially (the trainees had some
familiarity with the task domain), however, after intensive training in the domain, the
learning of relatively more complex tasks (with greater numbers of elements in the circuits)
was supported better by problem solving practice than by worked examples.

Kalyuga et al. (2001a, Experiment 2) compared worked examples with an exploratory-
based instruction on writing switching equations for relay circuits. Learners designed
different circuits first by using an interactive on-screen template and then wrote equations
for those circuits. Although initially the worked examples group outperformed the explor-

Fig. 2 An interaction between
instructional formats and levels of
learner expertise according to
Kalyuga et al. (1998)
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atory one, as the level of learner expertise increased after a series of intensive example- and
problem-based training sessions, the exploratory group progressed better and eventually
outperformed the worked examples group.

The integration of subjectively redundant (relative to the learner knowledge base)
instructional support with available knowledge structures may cause an additional cognitive
load and interfere with learning compared to minimally guided instruction that relies on
learner pre-existing knowledge, especially if more knowledgeable learners cannot avoid
processing the redundant components of information. Therefore, as levels of learner prior
knowledge in a domain increase, relative effectiveness of different instructional methods
may reverse. Methods optimal for low-knowledge learners may hinder learning performance
of high-knowledge learners. Using essential and removing redundant information and pro-
cedures as learner gains more task-specific expertise, thus reducing or eliminating interfering
cognitive processing, is important for optimizing cognitive resources.

Expertise Reversal for Verbal and Pictorial Representation Formats

R. Mayer and his associates conducted a series of studied in learning from text and graphics.
The experiments indicated that using graphics usually enhanced learning outcomes for
students with low prior knowledge levels, but not those with higher knowledge levels (e.g.,
Mayer and Gallini 1990; Mayer et al. 1995). In a review of those studies, the effect was
called an individual differences principle and attributed to the ability of high-knowledge
learners to use their knowledge base to compensate for missing instructional guidance
(Mayer 2001). Advantages of pictorial representations disappeared with increases in learner
levels of expertise.

Lee et al. (2006) investigated an interaction between two different modes of visual
representations in a gas law simulation for middle-school chemistry students and different
levels of learner prior science knowledge. Essential gas characteristics were presented either
a symbolic form only (words ‘temperature’, ‘pressure’, and ‘volume’ with corresponding
numerical values) or by adding iconic information to the symbolic representations (e.g.,
burners for temperature, weighs for pressure). The study indicated that whereas low prior
knowledge learners benefited more from added iconic representations than from symbolic
formats only, high prior knowledge learners benefited more from symbolic only
representations than from added iconic ones. Iconic representations were redundant for
these learners and interfered with their knowledge-based cognitive processes. It should be
noted that the expertise reversal effect was observed only with materials that considered
only two parameters at a time and, therefore, had manageable levels of intrinsic cognitive
load. For high complexity materials that considered all three parameters concurrently and
required excessive levels of intrinsic load for all participants, iconic representations were
beneficial for both novices and experts.

A number of studies investigated relative effectiveness of different forms of textual
representations. Based on the proportion of correct answers to three types of questions
(problem solving, bridging inference, and elaborative inference questions) on the posttest
for the maximally and minimally coherent texts as a function of readers’ background
knowledge, McNamara et al. (1996) found that adding additional explanations to an
instructional science text in order to increase its coherence were beneficial only for low-
knowledge readers. High-knowledge readers benefited more from using the minimally
coherent text format. It should be noted that both low- and high-knowledge readers
benefited from high-coherence text on reproductive text-based questions. (Since data
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provided in that paper is insufficient for calculating effect sizes, it is not included in
Table 1). Although McNamara’s et al. (1996) interpretation of their results was based on the
experts’ more active engagement in the processing of the minimal text format, this study
could also be considered as an example of the expertise reversal effect. In similar situations
involving extended vs. minimal explanations (e.g., Kalyuga et al. 1998; Yeung et al. 1998),
experts reported lower estimates of cognitive load in the minimal instructional formats in
comparison with formats that contained redundant instructional explanations.

Yeung et al. (1998) compared two instructional formats of incorporating definitions of
unfamiliar words into textual material. One was a traditional glossary placed at the end of
the whole text. Another format integrated unfamiliar words’ definitions into the text directly
above the defined word. According to cognitive load theory, traditional separate glossaries
could produce a split-attention effect due to extra effort necessary for locating the required
definition in the glossary, comprehending and remembering it while finding the way back
to the original word in the text. Secondary school students (5th grade) learned better from
the integrated definition format than from the traditional glossary format (as measured by
comprehension scores). However, the university students demonstrated better comprehension
with the separate glossary format. The increased cognitive load caused by the need for more
knowledgeable learners to process redundant for them information was supported bymeasures
of time students spent on referencing definitions. Thus, the use of integrated definitions could
have a positive or negative effect on learning depending on levels of learner expertise.

In another set of experiments, Yeung et al. (1998; Experiments 4–5) compared the above
two instructional formats with 8th grade students. However, in one experiment, low knowl-
edge students (from remedial ESL classes) were involved in the study. In another experiment,
higher knowledge-level students were selected. The same reversed pattern of results was
obtained: low knowledge students benefited from the integrated instruction, while more
experienced learners achieved better results from the traditional separate glossary format. In a
replication study with secondary school and university students, Yeung (1999) again
demonstrated that novices learned better from the integrated definition format than from the
traditional one, and the university students achieved better comprehension scores with the
separate glossary format.

Overall, the reviewed studies that demonstrated expertise-related reversals in effective-
ness of different verbal and pictorial representation formats indicated that low prior
knowledge learners benefited more from integrated multiple (verbal–verbal, verbal–pictorial,
or symbolic–iconic) representations than from separated or single representation formats. On
the other hand, more knowledgeable learners benefited more from minimal single
representations. While integrated instructional formats provided well balanced guidance for
novices, additional representations were redundant for more knowledgeable learners and
interfered with their learning processes (see also a relevant study of Seufert 2003 described in
the next section, for an expertise reversal effect for verbal semantic support when learning
from text and pictures).

Expertise Reversal for Instructional Guidance and Sequencing of Learning Tasks

A number of studies investigated the learning effects of different levels of instructional
guidance for learners with different levels of expertise in a domain. Tuovinen and Sweller
(1999) compared well-guided worked examples with a minimally-guided exploratory-based
instruction on how to use a database program. Novice students benefited more from worked
examples, with no differences found between conditions for higher-knowledge students.
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Kalyuga and Sweller (2004 Experiment 3) studied an interaction between levels of learner
expertise in the task domain of calculating distances and projections in coordinate geometry
and levels of instructional guidance. Participants (high school students) were divided into
two groups of more and less knowledgeable learners based on a median split using scores
obtained in a pretest (a rapid diagnostic method was used for evaluating levels of expertise;
see a corresponding section below). Posttest results indicated that less knowledgeable high-
school students benefited significantly more from well guided worked examples. For more
knowledgeable learners, there was a clear indication of problem solving benefits. A sig-
nificant interaction between knowledge levels and instructional formats demonstrated that
the most efficient instructional format depended on the level of learner expertise. As this
level increased, performance of the problem solving group improved more than performance
of the worked examples group.

Reisslein et al. 2006) compared effectiveness of three different sequencing approaches to
example-based instructional procedures in the area of serial and parallel electrical circuit
analysis for learners (university engineering students) with different levels of prior knowl-
edge in the domain. One approach used traditional example-problem pairs with worked
examples followed by isomorphic practice problems. Another approach provided practice
problems first with accompanying worked examples for reference if needed (problem-
example pairing). The third condition included backward faded worked examples in which
increasingly more steps at the end of the solution procedure were omitted. The study
demonstrated that novices benefited more from example–problem pairs, whereas experts
benefited more from problem–example pairs and faded examples sequences.

In her doctoral dissertation, Reisslein (2005) examined the effect of the pace of tran-
sitioning from worked examples to independent problem solving for learners with different
levels of prior knowledge in electrical circuit analysis (engineering college freshmen). Under
the immediate transitioning condition, learners started practicing problems immediately after
the introduction. Under the fast fading condition, worked solution steps were backward
faded at a rate of one step with each example. Under the slow fading condition, the rate was
halved (one step for every second example). The results on retention posttest indicated
significant interactions between levels of learner prior knowledge and the pace of tran-
sitioning. More knowledgeable learners performed significantly better in the fast and
immediate transitioning groups than in the slow transitioning group, indicating that detailed
guidance could be redundant for these learners. On the other hand, learners with low levels of
prior knowledge benefited more from slow transitioning condition, thus demonstrating the
importance of detailed guidance for novice learners.

Seufert (2003) studied the effect of verbal semantic help for coherence formation in
mapping the structure of material when learning from scientific text and pictures (see also
Seufert and Brünken 2006). Two kinds of assistance were investigated: directive help
(specific direct support) and non-directive help (questions to students providing non-
specific hints). Although three levels of learner prior knowledge (low, middle, and high)
were considered in this study, the low-level students did not have sufficient prerequisite
knowledge (basic concepts of the domain) for learning new material and were not able to
use the provided help. Therefore, for the purpose of expert–novice comparisons in this
situation, it is more appropriate to consider middle-level participants as novices in the
specific task area. The analysis indicated that for these novice learners, both directive and
non-directive help conditions were significantly better (with relatively more benefits from
the direct help) than the no-help condition based on comprehension posttest results. On the
other hand, for experts, the results reversed although there were no significant differences
between conditions.
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Lambiotte and Dansereau (1992) investigated the effects of three types of visual
overhead aids to audiotaped lectures in college-level biology: knowledge maps, topic
outlines, and lists of key terms. Tests of free recall of central ideas and details demonstrated
that students with low prior knowledge in the domain benefited most from the knowledge
maps and least from the lists of key terms. For more knowledgeable learners, the results
reversed with the lists of key terms as the most effective learning aid (at both levels of prior
knowledge, the effects were stronger for the recall of central ideas than details). Knowledge
maps provided required instructional support for novices but were redundant for more
knowledgeable learners.

In all of the above studies, novice learners benefited most from well guided low-paced
instructional procedures that reduced extraneous cognitive load for these learners,
especially when learning structurally complex materials. For more experienced learners,
studying and integrating the externally provided detailed guidance with learners’ available
knowledge structures that provided essentially the same guidance could impose a greater
cognitive load than minimally guided forms of instruction. These learners were able to use
their relevant knowledge base to guide learning without overloading working memory.
Thus, instructional guidance that is essential for novices may have negative consequences
for experts by interfering with retrieval and application of their available knowledge
structures, especially if these learners cannot ignore or otherwise avoid processing the
redundant explanations.

In situations when intrinsic cognitive load exceeds cognitive capacity of novice learners,
initially presenting complex material as a set of isolated elements of information that could
be processed serially, rather than simultaneously, may eliminate the cognitive overload in
working memory. Pollock et al. (2002) demonstrated that artificially simplified isolated-
elements learning tasks followed by the fully interacting elements instruction benefited
low-knowledge learners. However, there were no differences between this method and the
traditional approach using complex materials during both stages for learners with higher
levels of prior knowledge in the domain.

Clarke et al. (2005) investigated interactions between the timing of acquiring specific
spreadsheet skills in learning mathematics from spreadsheet applications, and levels of
learner expertise in using spreadsheets. The sequential experimental condition provided
instructions on spreadsheets prior to applying this knowledge to learning mathematics. In
the concurrent condition, instructions on using spreadsheets and mathematical concepts
were presented in an integrated format. The results of the experiment indicated that students
with lower knowledge of spreadsheets learned mathematics more effectively in the
sequential formats in which the relevant spreadsheet skills were acquired prior to attending
the mathematical tasks. On the other hand, students who were more experienced in using
spreadsheets benefited more from an integrated format in which relatively new spreadsheet
skills were acquired during learning corresponding mathematical concepts. Reversed
measures of cognitive load (subjective ratings) supported the cognitive load interpretation
of the effect.

If instructions on both spreadsheet applications and mathematics are presented
concurrently for novices, their working memory may become overloaded and learning
inhibited compared to a sequential presentation. Concurrent learning may only be effective
for more technologically experienced learners who need to concentrate on learning the
relationship between their technology skills and mathematics. Thus, acquiring basic tech-
nology skills while learning a specific subject discipline is unlikely to be effective for
beginners, and the technology should be learned prior to learning a specific subject area
(Clarke et al. 2005).
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Expertise Reversal for Dynamic Visual Representations

A number of studies investigated interactions between levels of learner prior knowledge and
the effectiveness of dynamic visual representations (simulations and animations) vs. traditional
static representations. Ollerenshaw et al. (1997) observed that low prior knowledge students
benefited more from a text with computer-based animated simulation of the pump’s
operation (with labeled parts and operating stages) than from text-only or text with static
diagrams labeling parts. The limited static representations did not provide sufficient guidance
to match that of simulated animations. When the same formats were used with high
knowledge students, the beneficial effect of the animated format was substantially reduced
(although not actually reversed). These learners used their knowledge base to compensate for
limited external guidance. The level of provided instructional guidance seemed to be the
main factor that caused differences between the investigated instructional formats. To
determine how the representational dynamics influenced learning outcomes, levels of
external instructional support were equalized in the rest of studies reviewed in this section.

The interaction between levels of learner expertise and effectiveness of animated and static
procedural examples was studied by Kalyuga (2007) in the task domain of transforming
graphs of linear and quadratic equations in mathematics (e.g., transforming a given graph of
the line y=x2 into a graph of the line y=2(x − 1)2 − 3). Participants (university students)
were subdivided into groups of high- and low-prior knowledge learners based on results of
a pretest. A half of students in each group studied two sequential animated instructional
segments on how perform the transformations. Another half studied an equivalent set of
static diagrams showing major transformation stages on one screen. The posttest results
demonstrated that less knowledgeable learners performed significantly better after studying
static examples. Learners with higher levels of prior knowledge showed better results after
studying animated instructions. There was a significant interaction between knowledge and
instructional formats: as levels of learner expertise increased, the performance of the
animated instruction group improved more than performance of the static group.

Schnotz and Rasch (2005) compared effects of animated and static pictures about time
phenomena related to the Earth rotation on learners with different levels of learning pre-
requisites (a combination of pre-test scores of prior knowledge in the domain and intelligence
measures). Two different animated pictures were investigated: a picture that displayed visual
simulations of changes over time when circumnavigating the Earth (simulation picture) and a
more interactive picture that allowed students to manipulate the display by defining specific
day and time for specific cities (manipulation picture). The results of Study 1 that compared
animated with static pictures indicated that high learning prerequisite learners spent more
time on studying animated than static pictures, whereas low learning prerequisite students
spent more time studying static than animated pictures. For circumnavigation posttest
questions that requiredmental simulations, students with low learning prerequisites performed
significantly better after learning with static pictures than with animated pictures, while high
learning prerequisite students performed equally in both conditions. These students were able
to perform mental simulations by themselves and the external support was redundant. The
results of Study 2 that compared manipulation and simulation pictures indicated that for time-
difference posttest questions, students with high learning prerequisites performed significantly
better after learning from manipulation pictures than from simulation pictures, while lower
learning prerequisite students performed better after learning from simulation pictures than
from manipulation pictures.

According to cognitive load theory, continuous animations could be too cognitively
demanding for novice learners because of high levels of transitivity. If static and dynamic
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visualizations are equivalent in terms of provided supportive information, novice learners
would benefit more from studying a set of static diagrams. For more knowledgeable learn-
ers, available knowledge structures may help them to handle the transitivity of animated
instructions. On the other hand, details displayed in static graphics may need to be integrated
and reconciled with knowledge base of these learners imposing additional working memory
demands. Similar reversal patterns could be expected with interactive manipulations in
comparison with traditional non-interactive pictures: manipulation pictures could impose
extraneous load on novice learners but be optimal for more experienced learners. When
learners lack sufficient task-specific knowledge, it is important that the appropriate guidance
(to serve in the executive role and prevent unproductive search activities) is provided without
unnecessary cognitive overload.

Expertise Reversal for Instructional Hypertext and Hypermedia

In their recent overview of cognitive load issues in hypertext learning environments,
DeStefano and LeFevre (2007) noted that the general assumption about the role of prior
knowledge in learning from hypertext was that high prior knowledge learners could be
able to process and make sense of unordered segments of text, and handle interruptions in
reading by connecting these segments to existing knowledge structures without
overloading working memory. In contrast, low prior knowledge learners may experience
cognitive overload in hypertext environments that could inhibit learning outcomes. For
example, Shin et al. (1994) compared high and low prior knowledge 2nd graders using
either full access or limited access (with restricted navigation facilities) versions of
hypertext. The results indicated that there was no difference between these two hypertext
versions for students with higher levels of prior knowledge in the topic, whereas the more
structured limited-access version of hypertext was more beneficial for low prior
knowledge learners.

Calisir and Gurel (2003) investigated if linear text and two hypertext structures
(hierarchical and mixed) would interact with learner (university students) prior knowledge
in the domain of productivity management. While for non-knowledgeable learners, both
hypertext structures were significantly better than linear text, results reversed for knowl-
edgeable learners (although differences were not statistically significant). In the linear text
condition, knowledgeable learners had higher reading comprehension scores than non-
knowledgeable learners. Domain knowledge may have helped these learners to understand
and conceptualize the structure of the text. There were no significant differences between
knowledgeable and non-knowledgeable learners in the hierarchical and the mixed conditions.
In this study, the well structured hierarchical and mixed forms of hypertext enhanced
comprehension of less-knowledgeable learners by compensating for the lack of internal
conceptual structure of the domain.

Potelle and Rouet (2003) compared three hypertext environments based on different levels
of structural organization: a hierarchical map that provided the most explicit structure of the
content; a semantic network map; and an alphabetical list of topics without explicit high-level
relations. Low-knowledge readers learned global macrostructural concepts in the area of
social psychology more from the hierarchical map than from other two structures, while there
were no significant differences for high-knowledge readers (although there was a medium to
large size effect in favour of the semantic network map on content recall questions).
Hierarchical rather than semantic representations facilitated the construction of explicit global-
level representations and the integration of individual topics for low-knowledge learners.
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Shapiro (1999) studied the relationship between learner prior familiarity with elementary
zoology and ecology and interactive overviews as advanced organizers for structuring
presented textual descriptions in hypermedia-based learning environments. The study found
that the external structuring by interactive overviews produced significant benefits for
novices, however made little difference for learners with higher levels of prior familiarity
with the domain for whom the explicit external structuring was not necessary.

To conclude this section, even though the expertise reversal was demonstrated with
hypertext and hypermedia materials, specific manifestations of the effect depend on factors
that require further studies. Cognitive load in learning from textual materials usually depends
on the text structure relative to levels of learner expertise: low-knowledge learners benefit
from well structured content representations, whereas for high-knowledge learners, different
levels of structure may make little difference. When exploring a large number of navigational
choices in complex hypertext and hypermedia environments, the cognitive resources
required for such search processes (that essentially are extraneous to learning) may become
unavailable for constructing relevant knowledge structures. Unsupported hypertext/hyper-
media environments could be suitable for experienced learners with sufficient levels of
prior knowledge that could guide these learners in their exploration of the environment.

Thus, while for experts in a domain, both hypertext/hypermedia and linear text environ-
ments may work well, for novices the answer may depend on the specific nature of the learning
material. For example, if well structured hypertext explicitly represents the content better than
traditional linear text (e.g., in well structured domains with limited number of links to follow),
it still could be beneficial for novice learners; otherwise the linear text would remain a better
option. More studies are needed to determine characteristics of hypertext/hypermedia
learning materials in specific domains that make them suitable for appropriately balancing
the executive function between knowledge-based and instruction-provided guidance.

Expertise Reversal Involving Germane Cognitive Load

Cooper et al. (2001) demonstrated that imagining procedures and concepts related to using
spreadsheets produced better instructional outcomes than simple studying of worked
examples for students who had appropriate knowledge base to construct and run cor-
responding mental representations. However, the imagining procedure produced a negative
effect for low-knowledge students thus reversing the effect. When studying worked
examples, novices construct knowledge structures for interacting elements. More knowl-
edgeable learners already have such knowledge structures and studying worked examples is
a redundant activity for these learners who may benefit more from additional practice
provided by imagining corresponding procedures.

Ginns et al. (2003) conducted a similar study with the complexity of learning materials
as an additional experimental factor. The study demonstrated that low prior knowledge
university students learning structurally complex materials (HTML code) benefited more
from studying worked examples than from imagining them. On the other hand, more
knowledgeable students dealing with less complex materials (secondary school students
studying geometry materials) reached higher levels of transfer test performance when
imagining rather than studying examples.

These results were further supported by the study of Leahy and Sweller (2005) with primary
school students learning to read a bus timetable (Experiment 1) or temperature graphs (Exper-
iment 2). The same students were used initially as novices, and two weeks later as relative
experts in a domain. In Experiment 1, the study condition was more effective for novice
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learners than the imagination condition, whereas a reversed pattern was observed for more
experienced students. Experiment 2 allowed a greater spread between low and high element
interactivity materials, and the above pattern of results was replicated with stronger effects.

If specific techniques for engaging learners into additional cognitive activities designed
to enhance germane cognitive load (e.g., explicitly self-explaining or imagining content of
worked examples) cause overall cognitive load to exceed learner working memory limi-
tations, the germane load could effectively become a form of extraneous load and inhibit
learning. This especially applies to novice learners who lack relevant schematic knowledge
structures in long-term memory that could effectively increase working memory capacity
due to chunking effect. More experienced learners may have sufficient resources for effectively
accommodating additional germane load that would enhance their learning outcomes.

Expertise Reversal Effect and Aptitude–Treatment Interactions

The expertise reversal effect could be related to general studies of ATIs that were initiated
more than 40 year ago by Cronbach (1967). The concept of aptitude was defined broadly as
“a complex of personal characteristics that accounts for an individual’s end state after a
particular educational treatment, i.e., that determines what he learns, how much he learns,
or how rapidly he learns” (p. 23). Relevant aptitudes include knowledge, skills, learning
styles, personality characteristics, etc. ATIs occur when different instructional treatments
result in differential learning rates and outcomes depending on student aptitudes (e.g.,
Cronbach and Snow 1977; Lohman 1986; Mayer et al. 1975; Shute and Gluck 1996; Snow
1989, 1994; Leutner 1993; Snow and Lohman 1984). Learner prior knowledge is the
aptitude of interest in the context of the expertise reversal effect.

Tobias (1976) reviewed a series of studies that consistently demonstrated interactions
between prior familiarity with a domain and instructional treatments. In unfamiliar domains,
detailed and consistent instructional support (for example, appropriate sequencing of material
according to instructional objectives, feedback, etc.) provided to learners in programmed
learning environments produced better results than reading less structured materials,
although no significant differences were found for familiar materials. Similar results were
found in relation to other instructional methods used to improve text comprehension (e.g.,
reviewing the text, answering adjunct questions; Tobias 1987, 1988).

Thus, an inverse relationship existed between prior achievement in a domain and optimal
instructional strategies: the higher the level of prior achievement, the lower the levels of
instructional support and structure required for learners and vice versa. Even though the patterns
of these results are fully compatible with the expertise reversal effect, it should be noted that in
those studies, the instructional support was considered in a rather narrow sense as external
attributes of instructional procedures, e.g., assistance in eliciting responses and providing
feedback on their accuracy. In a later review, Tobias (1989) suggested that instructional support
should be considered in deeper terms of assisting students in using required cognitive processes.
This view of instructional support is essential for research in the expertise reversal effect.

It was indicated that prior achievement (or prior knowledge in the current terminology)
as determined by detailed pretests scores was an important variable due to its relatively
clear definition and meaning. Therefore, ATIs involving prior achievement were easier to
investigate and produced more convincing results than other, more vaguely defined, apti-
tudes. Pre-training learners within a specific task domain was suggested as an appropriate
experimental procedure for manipulating this variable (Tobias 1976). This suggestion was, in
effect, realized in previously described longitudinal studies of the expertise reversal effect.
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In regards to other than prior achievement categories of aptitudes, there was less con-
sistent empirical support found for stable aptitude-treatment interactions (Bracht 1970). The
suggested reasons included inadequate aptitude measures that were designed for selection
rather than diagnostic purposes (e.g., batteries of aptitude tests based on artificially simplified
tasks in laboratory conditions) and inability to apply such measures dynamically, thus
ignoring learning and practice effects. In the ATI approach, differences in aptitudes were
studied and instructional treatments selected without taking into account differences in
associated cognitive processes. Psychometric tools used for measuring aptitudes were
unsuitable for analyzing, evaluating, and facilitating ongoing cognitive processes involved in
knowledge acquisition (Federico 1980). As a result, traditional ATI research had no signif-
icant influence on classroom instruction and was difficult to use for guiding development
of practically useful learner-tailored instructional systems (Boutwell and Barton 1974;
Federico 1999).

Tobias (1989) suggested that inconsistency and variability of ATIs findings, including
those involving learners with different levels of domain-specific knowledge, were due to
unsupported implicit assumptions of ATI studies regarding cognitive processes involved.
He distinguished between macroprocesses as molar processes under learner control, and
lower-level processes that were less controlled by the learners (“molecular” processes, e.g.,
manipulating information in short-term memory). Contrary to ATI basic assumptions, it
appeared that different macroprocesses were neither directly associated with (or caused by)
specific instructional methods (unless they were experimentally manipulated), nor necessar-
ily correlated with learner characteristics (Tobias 1989).

Due to relatively recent studies of the role of our knowledge base in cognitive func-
tioning, we know that domain-specific knowledge structures fundamentally influence
learning and performance on the basic “molecular” level (which essentially is the level of
working memory processes). This makes the prior knowledge base a single most important
factor in studying interactions between learner characteristics and instructional methods and
signifies a special place for the expertise reversal effect among such interactions.

In addition to these differences in the theoretical approach, the expertise reversal studies
used different research methods. Typical ATI studies tested for differences in regression
slopes between treatment groups, while studies in the expertise reversal effect usually
contrast groups with different levels of expertise or follow learning in longitudinal pro-
cedures from novice to more expert states in a specific task domain. These differences in
methods reflect previously noted conceptual differences in the expertise reversal research
in comparison to the ATI tradition (e.g., considering working memory-based cognitive
processing; relating instructional guidance for specific cognitive processes to available
long-term memory knowledge; pre-training learners in specific cognitive processes to
manipulate levels of their expertise in a domain).

Tailoring Learning Environments to Levels of Learner Expertise

A major instructional implication of the expertise reversal effect is the need to tailor
dynamically instructional techniques, procedures, and levels of instructional guidance to
current levels of learner expertise as they gradually change during learning. The idea of
learner-tailored instruction was clearly articulated still within the original ATI approach.
Cronbach (1967) and Glaser (1977) suggested that knowledge of aptitude-treatment inter-
actions and measures of aptitudes could be used for adapting instructional treatments to
learner characteristics in order to reach learning goals more efficiently. Cronbach and Snow
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(1969) described different ways of dealing with learner individual differences “from pro-
crustean methods that involve little adaptation, through intuitive and little tested rules for
adaptation, up to, in principle, tested rules derived from theory” (p. 175). An advanced
theory-based approach requires understanding of factors that cause an individual to learn
better from one instructional method than from another.

Tennyson (1975) suggested a pre-task adaptation model according to which certain types
of students were assigned to specific instructional treatments based on pre-task measures
of aptitude taken before the learning session. The level of prior achievement was considered
as an important adaptation variable: “Students with high prior familiarity in a given area may
be assigned to an instructional treatment, with minimal instructional support, or to a forward-
ranching sequence. On the other hand, students with low prior achievement may require
maximal instructional support each step of the way. Such adaptation to individual differences
would be a notable step towards individualizing the method of instruction rather than merely
the instructional rate” (Tobias 1976, p. 72).

Federico (1999) described the pre-task adaptation model as a macro-treatment approach
typical of traditional ATI research. In contrast, an alternative micro-treatment approach
could be based on within-task measures taken while students are in the instructional situation.
These two approaches could be effectively used together by selecting macro-treatments based
on initial pre-task measures, and then refining and optimizing instructional procedures using
micro-treatments based on continuous monitoring of learning behavior (Federico 1999).
Such a combined macro-micro adaptation strategy is similar to the adaptation approach that
has been developed within the cognitive load framework based on the expertise reversal
effect (Camp et al. 2001; Kalyuga 2006a; Kalyuga and Sweller 2004, 2005; Salden et al.
2004, 2006; Van Merrienboer et al. 2003; Van Merriënboer and Sweller 2005).

According to cognitive load theory, optimizing executive function in learning processes
assumes presenting appropriate and necessary instructional guidance at the right time and
continuously removing unnecessary redundant information as the level of learner task-
specific expertise gradually increases. Detailed direct instructional support as a substitute
for missing knowledge structures should be provided (preferably, in integrated verbal-
pictorial and dual-modality formats) for novice learners. At intermediate levels of expertise,
a dynamically adjusted mix of direct external support for constructing new knowledge and
problem solving practice with reduced support for exercising and strengthening previously
acquired knowledge could be optimal for learning. At higher levels of expertise, minimally
guided problem-solving or exploratory learning tasks based on applying available knowledge
structures could provide cognitively optimal instructional methods. Changes in the task-
specific knowledge base need to be dynamically tracked and specific instructional techniques
and procedures tailored accordingly.

This general adaptive approach based on gradual decreases in the level of instructional
guidance with increases in the level of learner expertise could be implemented using available
instructional design principles. For example, the principle of scaffolding suggests using
worked examples, completion assignments, and conventional problems combined in a com-
pletion strategy (Van Merriënboer 1990; Van Merrienboer and Paas 1989; Van Merrienboer
et al. 2003). Faded worked examples (Renkl 1997; Renkl and Atkinson 2003; Renkl et al.
2002) gradually fade worked-out steps with increased levels of learner expertise by replacing
these steps with problem solving sub-tasks. As levels of learner task-specific expertise
increase, relatively less-guided exploratory, problem-solving, or game-based environments
could effectively assist in learning advanced knowledge and skills in specific task domains.

The described adaptive approach allows different levels of learner control, although it
has mostly been realized in a system-controlled format: a computer program or instructor
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dynamically select an instructional method that is most appropriate for the current level of
learner expertise. Still on the early stages of traditional ATI research, Merrill (1975) noted
that this research assumed the relative stability of aptitudes, treatments, and system- or
instructor-controlled decisions on what treatment is best for the learner. He suggested that,
since student attributes were dynamic rather than static and continuously changed from
moment to moment, learners should be enabled to adapt learning environments by actively
selecting treatments most appropriate to their cognitive states. The learner-controlled
approach to the individualization of instruction was considered as an alternative to dynamic
tailoring of instruction to learner characteristics.

Despite expected advantages of learner control (e.g., positive learner attitudes and a
sense of control), research findings have been inconclusive and more often negative rather
than positive in relation to learning outcomes (Chung and Reigeluth 1992; Niemec et al.
1996; Steinberg 1989, 1977). The effectiveness of this approach depends on student
abilities to select appropriate learning strategies. According to cognitive load theory, the
level of learner expertise is a defining factor: students could have control over the content
and instructional sequences when they have sufficient knowledge in the task domain. Low-
knowledge learners, on the other hand, require appropriate assistance.

One form of such assistance is providing advisement to learners for making their own
decisions (Tennyson 1980, 1981; Tennyson and Rothen 1979). The advisement strategy
combines a degree of learner control with system-controlled and evidence-based task
selection procedures. An advanced form of this approach is an adaptive guidance strategy
that provides learners with information on the current level of their knowledge, what to
study or practice to achieve mastery, how to sequence learning tasks for gradual transition
from basic to more complex strategies, and how to allocate cognitive resources (Bell and
Kozlowski 2002; Kozlowski et al. 2001). As learners acquire basic knowledge, adaptive
guidance tailors subsequently suggested more advanced learning tasks.

In summary, the research on cognitively optimized adaptive instruction strategies within
a cognitive load framework is still very limited. Optimal adaptive approaches, methodol-
ogies, and conditions of their applicability need to be established in controlled experimental
studies. In the absence of comprehensive research- and evidence-based recommendations,
most of existing adaptive online environments are based on monitoring learner external
characteristics (navigational patterns, learning styles, preferences etc.) rather than deep
cognitive characteristics, such as available knowledge base and levels of learner expertise.
The following two sections review preliminary studies initiated within a cognitive load
framework with an ultimate goal of changing this situation.

Rapid Online Evaluation of Levels of Expertise

The ability to diagnose levels of learner expertise rapidly in real time is an important
prerequisite to building dynamically tailored learning environments. As mentioned earlier,
our knowledge base in long-term memory effectively defines processing capabilities and
the current content of working memory during knowledge-based cognitive activities. There-
fore, tracing this content may provide indicators of levels of acquisition of corresponding
long-term memory knowledge structures and, consequently, levels of expertise in a given
class of tasks. Concurrent verbal protocols could obviously be used to obtain such infor-
mation, although this method is time consuming and not suitable for online use in adaptive
instructional systems. Alternatively, such information could also be obtained by observing
how learners approach briefly presented tasks. Based on their well structured knowledge
base, experts would immediately see a task within their higher-level schemas. Novices may
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only identify some random lower-level components. Organized knowledge base in long-term
memory is the main factor determining such differences. Learners with more extensive and
better organized knowledge would be able to retrieve appropriate higher-level solution
schemas.

This general idea was implemented in the first-step diagnostic method: learners were
presented with selected tasks for a limited time and asked to rapidly indicate their first step
towards solution of each task. Well learned (in many cases, automated) higher-level
solution procedures would allow more experienced learners to rapidly generate advance
steps of the solution and skip some intermediate steps (Blessing and Anderson 1996;
Sweller et al. 1983). Different first steps could be indicators of different levels of expertise.
This technique was validated in a series of studies in algebra, coordinate geometry, and
arithmetic word problem areas. Results indicated significant correlations (up to .92)
between performance on the rapid tasks and traditional measures of knowledge (Kalyuga
2006d; Kalyuga and Sweller 2004), with test times reductions by factors of up to 4.9.

In an alternative rapid testing method, learners were presented with a series of
potentially possible steps at various stages of the solution procedure, and asked to rapidly
verify the correctness of these steps. This rapid verification method is easier to implement
in online learning environments. It is also potentially usable for relatively poorly defined
task areas when solution steps could not be specified precisely (e.g., when the solution
procedure requires drawing graphical representations or when there are several possible
solution paths). The method was first validated using sentence comprehension tasks and
indicated a significant correlation between performance on rapid tasks and traditional
measures of reading comprehension, with test time reduced by factor of 3.7 (Kalyuga
2006c). For the rapid test, a sequence of gradually increasing in complexity sentences was
developed including simple, composite, and multiple-embedded sentences. Each sentence
was displayed for a limited but sufficient for reading time, and four simple statements
related to the content of the sentence were presented sequentially on the computer screen
for rapid verification.

Using task domains of kinematics (vector addition motion problems) and mathematics
(transforming graphs of linear and quadratic functions), students’ rapid verification test
scores were compared with results of observations of the same students’ problem solving
steps using video recordings and concurrent verbal reports. Results indicated significant
correlations (respectively .71 and .75), with reductions of testing times in rapid online tests
by factors of 3.2 and 3.5 (Kalyuga 2007). The above validation studies suggested a
sufficiently high degree of concurrent validity for the first-step and rapid verification
methods.

Applying Expertise Reversal Effect to the Design of Adaptive Instruction

The suggested diagnostic methods were used in adaptive online tutorials in the domains of
linear algebra equations (Kalyuga and Sweller 2004, Experiment 4; Kalyuga and Sweller
2005) and vector addition motion problems in kinematics (Kalyuga 2006a) for high school
students. According to the dynamic tailoring approach, the tutorials provided dynamic
selection of levels of instructional guidance that were optimal for learners with different
levels of expertise based on online measures of these levels. In learner-adapted groups, at
the beginning of training sessions, each learner was provided with an appropriate level of
instructional guidance according to the outcome of the initial rapid pretest. Depending on
the outcomes of the ongoing rapid tests during the session, the learner was allowed to
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proceed to the next learning stage or was required to repeat the same stage and then take the
rapid test again. At each subsequent stage, a lower level of guidance was provided to
learners (e.g., worked-out components of solution procedures were gradually omitted and
progressively replaced with problem solving steps), and a higher level of the rapid diagnostic
tasks was used at the end of the stage. In control non-adapted groups, learners either studied
all tasks that were included in the corresponding stages of the training session of their yoked
participants, or were required to study the whole set of tasks available in the tutorial.

In the first study (Kalyuga and Sweller 2004), the allocation of learners to appropriate
stages of instructional guidance was based on levels of expertise as measured by the rapid
online first-step test. Results indicated that learner-adapted condition resulted in signif-
icantly better knowledge gains (differences between post-instruction and pre-instruction test
scores) than non-adapted condition, with the effect size 0. 46. In another study (Kalyuga
and Sweller 2005), the rapid first-step measures of expertise were combined with measures
of cognitive load (subjective ratings of task difficulty). Since the expertise is associated
with not only relatively higher-level but also lower-effort performance, combining both
measures was expected to produce a better indicator of learner expertise in a domain. A
combined cognitive efficiency indicator was used for the initial selection of the appropriate
levels of instructional guidance, as well as for continuous monitoring of learner progress
and tailoring instruction to changing levels of expertise.

The instructional efficiency is usually defined as the difference between standardized
scores for performance and mental effort ratings (Paas and van Merriënboer 1993; Paas et al.
2003). Because in dynamic adaptive environments, such indicators are required in real time
during the session, the efficiency was defined as a ratio of the current level of performance
to the current indicator of cognitive load (according to the common notion of efficiency as a
result relative to the cost). Critical levels of efficiency were defined for a class of tasks as
criteria for achieving proficiency in this task domain. Results indicated that learner-adapted
instruction significantly outperformed non-adapted group on both knowledge and efficiency
gains, with effect sizes 0.55 and 0.69 respectively.

Kalyuga (2006a) compared non-adapted instruction with two learner-adapted instruction-
al procedures, one based on rapid verification tests and another on the efficiency indicator. A
simple threshold-based definition of the efficiency in this study was different from the
previous one. A learner was allowed to proceed to the next, more difficult class of tasks if, in
a rapid verification test corresponding to the current task level, the learner correctly verified
all the suggested steps up to, but not including, the final numerical answer, and rated the task
difficulty as below average (e.g., less than 5 on the 9-point rating scale). Both adaptive
conditions outperformed the non-adapted group on a number of indicators (cognitive load
rating scale, instruction time, and instructional efficiency). However, there were no sig-
nificant differences between the two adaptation procedures on all dependent variables.

Thus, adapting task selection procedures dynamically to levels of learner expertise
enhanced learning outcomes and supported previous results obtained by Camp et al. (2001)
and Salden et al. (2004) in air traffic control training. Despite differences in performance
assessment methods, definitions of instructional efficiency, and task selection algorithms,
learner-adapted conditions were superior to non-adapted formats in all these studies. Salden
et al. (2006) also demonstrated that personalized learner-adapted approaches to selection of
learning tasks were superior to non-adapted formats (effect size 0.58) with no differences
obtained between specific adaptation procedures (task selection using a system-controlled
efficiency-based procedure vs. learner-controlled personalized preference procedure).

Most of the above task selection procedures were system controlled. Possible disadvan-
tages of such models could be decreased levels of motivation and the lack of opportunities
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for the development of self-regulation skills. Alternative task selection models that may
eliminate or reduce these disadvantages are shared-responsibility and advisory models (Van
Merriënboer et al. 2006). Corbalan et al. (2006) investigated a shared control model that first
selects a subset of tasks based on learner performance scores and cognitive load ratings (a
system-controlled component), and then presents this subset to the learner who makes the
final decision (a learner-controlled component). This model was compared to a fully system-
controlled procedure in a pilot study using a simulation-based learning environment in the
domain of dietetics. Results indicated that learners in the shared control condition demon-
strated higher posttest performance scores (effect size 0.25) with lower cognitive load (effect
size 0.37) than learners in the system control condition.

Shared responsibility models may vary the level of student control as learners develop
self-regulation skills sufficient for selecting learning tasks independently. Advisory models
could provide learners with additional support in the task selection process. Based on their
adaptive guidance approach, Bell and Kozlowski (2002) demonstrated that providing students
with adaptive guidance in addition to learner control in a complex learning environment was
beneficial for learners. It significantly improved the acquisition of basic knowledge and
skills for novice learners and strategic knowledge and transfer capabilities for more advanced
students. In their study, guidance was adapted to three levels of performance (low, medium,
and high). More refined levels of adaptability to the individual learner progress need to be
investigated. Also, the development of learner skills in self-managing levels of cognitive
load (as an essential part of self-regulation skills) needs to be investigated in conjunction
with adaptive guidance, shared responsibility, and advisory models.

The quality of adaptive environments depends significantly on the accuracy of information
about levels of learner knowledge and skills. It is important to have rich and diagnostically-
informative learner models that represent true levels of learner expertise in specific task
domains. Using traditional (usually multiple-choice) tests and tracing user interactions with
the system are usually imprecise and incomplete. Applying modern artificial intelligence
approaches and developing sophisticated intelligent tutoring systems using fine-grained
production rule-based learner models (e.g., Anderson et al. 1992) allowed a significant
increase in the precision of adaptive methodologies. However, implementations of such
approaches require complex computational modeling procedures and, therefore, have been
limited to few well defined and relatively simple for modeling domains (e.g., programming
and mathematics). On the other hand, the models that are used in most adaptive hypermedia
and web-based environments are based on few discrete coarse-grained levels of user exper-
tise (e.g., high, intermediate, low levels; De Bra and Calvi 1998). Therefore, an important
advantage of the suggested embedded rapid diagnosis-based approach to the design of
learner-adapted environments is combining sufficiently high levels of diagnostic precision in
constructing learner models with simplicity of implementation.

Conclusion

This paper reviewed empirical findings related to the expertise reversal effect and presented
a theoretical explanation of the effect within a cognitive load framework. The reviewed
studies provided overall support for the described model. They revealed the predicted pattern
of results in relation to expert–novice differences. The effect has been consistently replicated
in many experiments with a large range of instructional materials (e.g., tasks requiring
declarative and/or procedural knowledge in mathematics, science, engineering, program-
ming, ESL, management, social psychology) and participants (from the primary school to
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university levels) either as a full reversal (with substantial differences for both novices and
experts) or, more often, as a partial reversal (with a non-significant difference for either
novices or experts, but with a significant interaction). More than 2200 students participated
in the reviewed experimental studies, without counting those in previously reviewed studies
of Mayer (2001) and in ATI studies with learner prior knowledge as the aptitude of interest.

The conservative estimates for effect size differences ranged from 0.45 to 2.99, with the
overall mid-range value of 1.72. A simplistic interpretation of this number is that if there
are effects of a similar magnitude on both sides (for novices and experts), the effect size for
each side would be around 0.86, a large-size effect by accepted standards. If there is an
effect of relatively lower magnitude on one side (the case in most studies), then there would
be an accordingly stronger effect on the other side. Surprisingly, the full reversal (a strong
form of the effect) was obtained not only and not mostly in strictly controlled longitudinal
studies in which the same novice learners were gradually trained to eventually become
experts in specific task domains (e.g., Kalyuga et al. 1998), but also and mostly in cross-
sectional studies (e.g., Calisir and Gurel 2003, Cooper et al. 2001, Leahy and Sweller 2005,
Lee et al. 2006, Yeung 1999). In some of these studies, expert–novice differences were
assumed based only on years of schooling rather than established by objective prior knowl-
edge measures.

In cognitive load theory, the expertise reversal effect is associated with imbalances
between learner organized knowledge base and provided instructional guidance. Two major
indicated types of such imbalances are cased by an insufficient learner knowledge base that
is not complemented by appropriate instructional guidance (especially at the initial stages of
novice learning) and by overlaps between available knowledge of more advanced learners
and provided instructional guidance. The need for higher knowledge learners to integrate
and cross-reference redundant instructional guidance with available knowledge structures
that relate to the same situations may consume additional cognitive resources. A minimal
instructional guidance would allow these learners to take advantage of their knowledge base
in the most efficient way. In order to balance the executive function and optimize cognitive
load, instructional guidance should be provided at the appropriate time, while unnecessary
support removed as learners progress to more advanced levels of proficiency in a specific
task domain. Adaptive learning environments that dynamically tailor levels of instructional
support to changing individual levels of learner expertise in a domain have the best
potential for optimizing cognitive load.

Goals represent an important part of a learner knowledge base and play an important
executive role in regulating cognitive processing and directing attention. Balancing external
guidance with learner internal goal structures is important in maintaining high levels of
motivation. Therefore, the inclusion of affective and motivational factors in research on
expertise reversal phenomena remains an essential direction for future research (Paas et al.
2005; Tobias 1989). There is a close relationship between our motivational states and the
operation of working memory that are linked through attention mechanisms (Eysenck
1982). This close relationship was first noted by Simon (1967): “We can use the term
motivation... simply to designate that which controls attention at any given time” (p. 34).
Exploring instructional implications of these mechanisms may provide an important con-
tribution to research in expertise reversal effect and cognitive load theory.

The expertise reversal effect is a logical extension of the aptitude-treatment interaction
approach. Although the need to consider levels of learner prior knowledge was recognized
early within that approach, few research studies and instructional design recommendations
demonstrated explicitly how to use the ATI approach in practice. Aptitudes and instructional
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treatments were investigated without taking into account associated cognitive processes, and
applied psychometric rather than cognitive diagnostic measurement instruments were not
suitable for real-time use in adaptive instructional systems.

Even though a cognitive load approach may effectively handle these shortcomings, a
limited number of studies in optimal instructional methods that could be used for balancing
executive guidance at different levels of learner expertise is a major limitation of the
research on expertise reversal effect. Identifying a broader range of instructional methods
and procedures that are optimal for learners with different levels of expertise placed in the
environments with different task characteristics and formats remains an essential direction
for future research. Also, in previous research, mostly well-defined technical domains have
been investigated. Extending findings to relatively poorly defined tasks and domains
represents another important research direction.

The recent studies in rapid diagnostic assessment methods may offer appropriate real-time
tools for the dynamic optimization of instruction, providing adequate fine-grained measures
of levels of expertise with sufficient diagnostic power for learner-tailored instructional
procedures. The development of adaptive learning environments in different domains (not
only for well-defined tasks in technical areas) would also require rapid diagnostic instruments
for measuring levels of learner expertise in poorly defined task areas.

The expertise reversal effect represents an important phenomenon that provides an
insight into the operation of our cognitive architecture. It has been observed in many studies
within and outside of a cognitive load paradigm, as well as supported by previously con-
ducted studies in aptitude-treatment interactions. In practical terms, it provides a valuable
guidance for instructional design, especially for the design of learner-adapted instructional
systems.
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