Software Architecture
and Standardization

/\n elaborate software infrastructure joins the equipment
emphasized in Chapter 3 in providing many capabilities benefiting
all networked applications.

ANALOGY: In creating a new business, much existing infrastruc-
ture—such as real estate and telephone and transportation—is
available and analogous to the computer and network equipment.
A services infrastructure analogous to the software infrastructure
includes package delivery, legal and accounting firms, and real
estate property management. Incorporating these existing capabil-
ities rather than building them from scratch makes it much easier to
build the business.

Like the equipment emphasized in Chapter 3, the software infra-
structure has an architecture, but one that is quite distinct from the
equipment. This software infrastructure is based on layering, in
which new capabilities are incrementally added to existing capabili-
ties. Like the equipment infrastructure, the software infrastructure is
typically integrated from components supplied by different ven-
dors. This makes it necessary for vendors to get their software to
work together properly, and this is the role of a business process
called standardization.

4.1 What Makes a Good Architecture

The concept of an architecture was defined in Section 3.1.1 on
page 78 and applied to the decomposition of a networked comput-
ing system into hosts and network in Chapter 3. Recall that an




114

4 Software Architecture and Standardization

architecture decomposes a system into subsystems (where those
subsystems may be components if they are purchased without
modification from an outside vendor), with specific functionality and
interaction among subsystems. A good architectural design
requires an appreciation for what distinguishes “good” from “bad”
architectures and the criteria used in determining what is “good.”
Architecture follows some well-established principles that aid in
understanding the software infrastructure. Application software is
deferred to Chapter 6.

A major challenge in software design is complexity. Because soft-
ware is not constrained by physical limits, its complexity tends to
expand to the limits of the designer’s ability to cope (discussed fur-
ther in Chapter 6). This problem is accentuated for infrastructure
software, because its design and development is spread over multi-
ple vendors. Artificial design constraints have to be established to
contain complexity, and that is one role of architecture.

Architecture is one phase in the design of the software—both the
infrastructure (considered here) and application (considered in Sec-
tion 3.4.2 on page 106)—after analysis and before implementation.
Important inputs are functionality and performance requirements,
and an outcome is the specification of the architectural subsystems
sufficiently detailed to set about their implementation.

ANALOGY: The framers of the U.S. Constitution (who were the archi-
tects of the U.S. government) first decided on the roles and limita-
tions of the federal government. Taking this “functionality” into
account, they decomposed the government into executive, legisla-
tive, and judicial branches. Next, they determined the responsibili-
ties and powers of each branch and their interactions.

4.1.1 Decomposition and Modularity

Decomposition—the first and most important phase of architec-
ture—is a divide-and-conquer strategy that allows subsystems to be
implemented individually and, ideally, even autonomously. It allows
individual firms to participate in the design, manufacture, and
deployment of the infrastructure without excessive coordination,



4.1 What Makes a Good Architecture

Janitor
Underwriter Broom
Loan portfolio Lightbulbs
Loan department Physical plant department

Figure 4.1 Partial decomposition of a bank.

and thus it affects the supplier industry organization as well as the
technology.

The decomposition should be modular, which means the sub-
systems—called modules—have some special properties summa-
rized in Table 4.1. The major property is separation of concerns;
that is, the internal concerns of one module are mostly not of con-
cern to other modules [Boo%4]. This allows the modules to be
designed and maintained relatively independently by different
design groups or firms, with minimum interaction among them.

ANALOGY: A bank is a system providing financial services to its cus-
tomers. A partial decomposition of a bank is shown in Figure 4.1. It
has departments with relatively little concern about the internal
operation of others. The loan department focuses on managing its
loan portfolio, underwriting (assessing the risk of a loan in the con-
text of a portfolio), and issuing new loans, while the physical plant
department maintains the buildings. There is interaction between
departments, but it is less frequent and involved than activities
within each department. For example, the loan department may
report a dark room to the physical plant department but cares only

115



116

4 Software Architecture and Standardization

Table 4.1 Some desirable characteristics of a modular architecture.

Property Desirable characteristics Analogy
Functionality The modules are chosen as In government, establishing and
distinct functional groupings. enforcing laws and sitting in

judgement of lawbreakers are
distinct and well-defined functions.

Hierarchy Each module can itself be a The executive branch of government
system, internally decomposed  is decomposed into agencies and
into modules (see Section 3.1.2  departments, each of which has an

on page 79). internal modular structure.
Separation of The functional groupings Law enforcement requires internal
concerns incorporated within each module coordination, but its operations are

are strongly associated and of little concern to the legislature or

weakly associated with judiciary.

functionality internal to other

modules.

Interoperability =~ Modules can successfully interact Law enforcement has well-defined
to realize the higher purposes of procedures for bringing alleged

the system. lawbreakers before the judiciary,
which results in their successful
prosecution.

Reusability Modules are defined, Some modules of the U.S.
implemented, and documented  government structure have been
independently of a specific adopted by other countries, without
system, so they can be reused in the need to adopt them all.
other systems.

that light is restored and not how this happens. The physical plant
department concerns itself with details, such as diagnosing the
problem.

EXAMPLE: The architecture of a computer is an example of modular-
ity. Figure 4.2 presents a simplified view, including major modules:
® A processor executes a program.

® The memory stores program instructions and data currently
being used.

® The storage, such as magnetic disks, CD-ROMs, etc., keeps
massive amounts of data, programs, etc.

® The network adapter connects the host to a network.



4.1 What Makes a Good Architecture

Processor [

)

 J

A A A Bas
Y Y
Storage | Memory Network .
l I ! adapter Peripherals
Network

Figure 4.2 The simplified modularity in a computer system.

The storage and network adapter are called peripherals, because
they assist the processor, and are connected to the processor by a
bus (a very high speed connection shared by all the modules). Each
of these modules has lots of internal activity, but their interaction
with others is relatively straightforward. Modules can be designed
and manufactured by different firms because of that well-defined
and well-documented interaction; thus, these modules are compo-
nents (see "Subsystems and Components" on page 80).

4.1.2 Granularity and Hierarchy

Granularity determines the number of modules and the range of
functionality of each. The architecture designer can choose a fine
granularity, with many small modules, or a coarse granularity, with a
few large modules. Hierarchy—meaning modules are themselves
composed of internal modules—avoids defining a single granular-
ity (see Section 3.1.2 on page 79). This “decomposition within mod-
ules” architecture allows the system to be viewed at different
granularity, as appropriate.

ANALOGY: In the bank organization of Figure 4.1, each of the two
departmental modules has an internal decomposition into smaller
modules. For example, the loan department is internally composed
of a receptionist, an underwriter, a loan officer, etc. As there may
be multiple underwriters and loan officers, there are finer-granular-
ity modules associated with the loan officers (the “loan service

117



118

4 Software Architecture and Standardization

group”) and all underwriters (the “risk management group”). At a
coarser granularity, the bank is decomposed into “customer ser-
vices” and "business management” divisions, in which the former
groups modules dealing with customers (loans, withdrawals,
deposits, etc.) and the latter encompasses internal functions
(accounting, property management, physical plant, etc.).

EXAMPLE: The single computer, whose internal composition into
modules is shown in Figure 4.2, is itself a module (called a host) in
the larger client/server architecture discussed in Chapter 3. The
overall hardware architecture is thus a two-level hierarchy.

4.1.3 Interfaces: The Module’s Face to the World

Each module must interact with others to accomplish the higher
purposes of the system. The architecture designer should be quite
thoughtful about this interaction to ensure that the system operates
correctly under all circumstances and is flexible enough to ac-
commodate future change. This is assisted by defining an interface
to each module. The interface is the view that one module presents
to others, encompassing everything that other modules must know
to interact with it. It has a second purpose, which is to guide the
module implementers.

EXAMPLE: In the bank example of Figure 4.3, the interface to the
loan department expects certain standard actions, such as a
request for a loan (from a customer) and the submission of a com-
pleted loan application (from the customer). Each request has pre-
determined responses, such as returning a blank loan application
and responding yes or no to the loan request.

More generally, each module typically has a standard “menu” of
actions it will take, where each action has a set of parameters and
returns. The interface description includes all actions a module is
prepared to take, together with a definition of the parameters and
returns of those actions.

A general approach to module interaction is shown at the bottom
of Figure 4.3. That interaction includes a series of invocations of



4.1 What Makes a Good Architecture

Loan application

7] Loan agreement

Fix problem

Loan Physical plant
department department

returns

Client Server
module module

Figure 4.3 Examples of module interfaces in the bank example.

actions defined at the module interfaces (only one such invocation
is shown). In each invocation, the module invoking the action is
called the client module, and the module whose action is invoked is
called the server module. (Note that the terminology was used to
describe the role of hosts in Chapter 3.) Rarely does a module act
exclusively as a client or server; at different times, it is each.

EXAMPLE: In Figure 4.3, when a customer makes a loan application
(“invokes the loan application action”), she is a client of the bank,
and the bank loan department is a server to her.

4.1.4 Abstraction

People use abstraction to make complicated things easier to deal
with. Its proper use in architecture design makes that architecture
more transparent and flexible to future change.

Abstraction is concisely defined as “generalization; ignoring or hid-
ing details.” In the context of architecture, abstraction is used to
simplify the perspective of a module as viewed through its inter-
face, focusing on the important overall goals of the system and
avoiding becoming mired in a clutter of unnecessary details (see the
sidebar “Example of Abstraction: The Flora” for another example).

119



120

Example of Abstraction:
The Flora

Physical and social scientists
abstract complicated and
interdependent natural and
social systems. To make the
study of complicated systems
feasible, they focus on the
aspects most relevant to the
investigation at hand, ignor-
ing other less germane
details. This is not limited to
scientists; for example, con-
sider the following perspec-
tives on the flora taken by
different occupations:

® The botanist classifies
plants based on evolution-
ary family dependencies.

® The master chef studies a
plant’s taste and smell,
whether it is edible or poi-
sonous, how long it takes
to cook, etc.

® The gardeneris concerned
with the adult size of the
plant, what type of soil and
climate conditions it
favors, how much fertilizer
it needs, etc.

® The pharmacologist looks
for medicinal effects in
each plant.

Although there is overlap and
dependency, each profession
finds germane a different
aspect of the flora. Each is
abstracting the flora for its
own purposes.

4 Software Architecture and Standardization

EXAMPLE: To atop executive of the bank, the loan department is a
module that makes money for the bank by accepting loan applica-
tions and issuing loans likely to be repaid. This abstract perspec-
tive—when turned into reality by the manager setting up the loan
department—has to be made concrete by setting up detailed
steps for the loan department to determine whether a loan is a
good bet. Those details may actually change over time—based on
experience—without affecting the abstract view taken by the
executive.

As this example suggests, abstraction and “management hier-
archies” in organizations go hand in hand. Each higher layer in the
management hierarchy takes an increasingly abstract view of the
organization’s architecture. When it comes to actually setting up
the lower-level departments, there are a plethora of details han-
dled internally.

EXAMPLE: The manager of the bank’s loan department is responsi-
ble for determining the detailed processes within that module for
achieving the abstracted vision of that department held by top
management. She may set up a multistep loan approval process,
such as running a credit history on the loan applicant, appraising
any collateral offered by the loan applicant, seeking the advice of
an experienced underwriter, etc. Meantime, the higher manage-
ment views the department in abstract terms like "quarterly profit
and loss.”

Abstraction is effective because it enables issues of importance to a
system as a whole to be considered without being obscured by dis-
tracting details. At lower levels of hierarchy, those details are dealt
with, but in a smaller context constrained by the higher-level
abstractions. An important issue is choosing the appropriate
abstractions, using them to make the system simpler and easier to
deal with, but not so simple as to be unrealistic. As Albert Einstein
stated, “Everything should be made as simple as possible, but no
simpler.”



4.1 What Makes a Good Architecture

4.1.5 Encapsulation

An architecture focuses on the external behavior of the modules—
as manifested by their interfaces—and how they interact. Imple-
menters must take this interface and determine the internal design
of the modules. An important architectural and implementation tool
is encapsulation, which ensures internal details are invisible and
inaccessible at the interface. This avoids other modules becoming
dependent on internal details, making the system more difficult to
change.

EXAMPLE: In an abstract interface to the loan department, the cus-
tomer is not responsible for invoking the steps of the loan approval
process—that is entirely the business of the loan department.
Encapsulation goes further and ensures these steps are invisible to
the customer. For example, encapsulation ensures there are no
other actions at the interface that provide visibility into the out-
come of individual approval steps (such as the credit history report
or the advice of the underwriter).

Abstraction and encapsulation are complementary. Both seek sepa-
ration of concerns (see Table 4.1 on page 116), the former by sim-
plifying the external view and the latter by dogmatically enforcing
abstractions by hiding internal details from the interface. Encap-
sulated details can be safely changed without affecting other
modules.

EXAMPLE: Which credit bureau the loan department consults to
obtain a credit report on the loan applicant is encapsulated so that
the bureau can be changed at any time without affecting the cus-
tomer. Indeed, the entire credit bureau step is encapsulated so that
it can be eliminated entirely if it proves ineffective.

4.1.6 Modularity and Interfaces in Computing

For the remainder of the book, the principles of architecture design
will be applied to computing (although they apply in other contexts
as well). First, it is helpful to reflect briefly on the meaning and
implications of architecture in computing.

121



122

4 Software Architecture and Standardization

Hardware/Software Dichotomy

The computer embodies many ideas, but the most powerful is pro-
grammability: Unlike earlier products, the functionality of a com-
puter isn't determined at the time of manufacture, but is added
later by software.

This makes the computer almost infinitely extensible. What can be
accomplished with a computer is limited primarily by the program-
mer’s imagination (and pragmatic constraints such as complexity
and cost) rather than physical limitations.

Software Architecture

A software program running on a computer tells it what to do each
step of the way. Although it isnt subject to the same physical limita-
tions as the hardware, it is important to impose an architecture on
software. The two most important reasons are to manage the inher-
ent complexity (see Chapter 6) and to coordinate software provided
by a number of competing and complementary firms (which is con-
sidered in this chapter). Software should be designed to be modu-
lar—decomposing it according to functionality—so that different
firms or programming groups can implement different modules
with minimum dependence among them. The principle of modular-
ity as a “separation of concerns” is critically important in software.

Hardware and Software Interfaces

Interfaces are an integral part of the computing world for both
hardware and software (see Section 4.1.3 on page 118). A hardware
interface is a physical wire or fiber and connector and the precise
definition of the electrical or optical signals it carries.

EXAMPLE: Incomputers, the assorted jacks on the back (serial port,
parallel port, moniitor jack, power plug, etc.) are examples of inter-
faces. Each is associated with a set of physical (number of pins,
geometry, etc.), electrical (voltage, etc.), and logical (order and
meaning of bits) specifications.

In software, an interface is the boundary between two software pro-
grams, or the boundary between two modules within the same soft-
ware program. lts purpose is to allow the modules or programs to
interact to accomplish some higher purpose, while encapsulating



4.2 Architecture of the Software Infrastructure

the inner workings, denying other modules access to them. The
form of this interface is similar to interfaces found within organiza-
tions (see Section 4.1.3 on page 118). In particular, a software mod-
ule interface consists of a set of actions, each action having a set of
parameters passed to the module that customizes that action, and
a set of returns from the module reflecting the results of that action.
The action may change data within the modules as well as return
values.

EXAMPLE: It might be useful within a larger software system to have
a module that provides the same capabilities as a pocket calculator,
such as adding, subtracting, multiplying, dividing, taking square
roots, etc. Its interface could be similar to a pocket calculator,
except there aren’t physical keys and a physical display. The equiv-
alent functions are invoked by other modules using actions like
“add,” “subtract,” etc., with appropriate parameters consisting of
the numbers to be added or subtracted.

This calculator module can serve other programs needing numeri-
cal calculations. Significantly, the calculator interface reveals noth-
ing about how the calculator performs these functions—these
details are encapsulated, as they are in a real calculator.

4.2 Architecture of the Software
Infrastructure

The architectural concepts, including decomposition, modularity,
hierarchy, granularity, interface, abstraction, and encapsulation, aid
the understanding and appreciation of the software infrastructure
supporting networked applications. They are also applied to appli-
cation design in Chapter 6. The more detailed functionality of the
infrastructure is deferred to Chapter 7 and later chapters.

4.2.1 Goals of the Infrastructure

Well-principled architecture design is one goal of the infrastruc-
ture—in part to contain complexity—but there are others, such as

® Minimizing the cost and maximizing the performance (see Chap-
ter 10).

123



124

4 Software Architecture and Standardization

® Minimizing the effort required to develop and maintain new
applications, in part by including capabilities in the infrastructure
required by a wide range of applications.

® Providing capabilities to support the operation of the system and
contribute to its trustworthiness and reliability (see Chapter 8).

The layered architecture described next was not designed top-
down by a single individual or organization. It is the result of the
evolution of computing systems over many years, an evolution
almost Darwinian in nature because it has involved many hundreds
of hardware and software suppliers and tens or hundreds of thou-
sands of individual contributors. Standardization plays an important
role in coordinating these many players (see Section 4.3 on page
132). Many nontechnical considerations that help explain the tech-
nological trajectory are discussed in Chapter 5.

4.2.2 Layering

The form of modularity seen in the software infrastructure, at the
top level of hierarchy, is layering, similar to the rings of an onion.
The modules composing the infrastructure are layered, one
“above"” the other, where the terms “above” and “below” are inter-
preted logically, not physically. Each layer utilizes the capabilities of
the layers below it and adds capabilities of its own to provide to the
layers above it. Thus, layering is a way to achieve additional capabil-
ity to adding infrastructure, making use of what already exists rather
than building from scratch.

The software and hardware follow this modularity; in particular, the
software is thought of as “riding on top of” the hardware, utilizing
hardware capabilities to run programs, but abstracting the hard-
ware's detailed characteristics from the application and user (this is
the role of the operating system layer).

The layering principle sets out the constraints (see Figure 4.4):

® Each layer acts as a server to the layer above, providing actions
whose implementations are encapsulated.

® Each layer is a client to the layer below, utilizing its available
actions in the course of providing services to the layer above it.



4.2 Architecture of the Software Infrastructure

O @ ) | Layern+1
T i

Layer n

Figure 4.4 The layering principle in software/hardware modularity.

e Each layer is permitted to interact with only layers immediately
above and below. Thus, each layer serves to hide (encapsulate)
the layers below it from the layers above it.

Functionally, the idea is to provide increasingly abstract and special-
ized services at each higher layer. Each layer is thus “simplifying, by
hiding unnecessary detail” the layer below.

ANALOGY: Consider a company that manufactures cyberwidgets.
The architecture of the company defines four layers—supply,
receiving, inventory, and assembly—and a building designed
around these modules. The inventory layer is a module that is a
server to the assembly layer and a client of the receiving layer, etc.
The building has three floors, one for each of the receiving, inven-
tory, and assembly modules. The supply layer encapsulates all the
suppliers of parts assembled into cyberwidgets and is external to
the building, but interacts through the trucks and drivers they
send. The interaction among modules follows the layering principle
in that the module corresponding to each floor (one layer) makes
direct use of the capability of the floor below, but no others. The
four layers are described in Table 4.2.

The architecture of the building can support these layers by includ-
ing means for each floor to make requests of the floor below (say,
by an intercom system) and means to convey parts to the floor
immediately above (such as conveyer belts) in response to
requests.

This analogy has other features similar to the computer infrastruc-
ture. For example, specific functions analogous to “supply,”
“receiving,” and “inventory” are required in networked computing

125



126

4 Software Architecture and Standardization

Table 4.2 A layered architecture for the manufacturer of
cyberwidgets.

Layer Functionality Interaction with layer below

Assembly Assembles parts into Requests specific parts as needed for assembly.
(third floor) finished cyberwidgets.

Inventory Stores parts awaiting Indicates which parts are needed (in danger of
(second floor)  assembly. starving assembly layer) or in excess supply

(filling up allotted space). Requests and stores
any parts that have arrived in receiving.

(Receiving Coordinates the supply ~ Orders and receives parts, unloads, counts, and
(first floor) of parts, receives parts, authorizes payment.
and pays suppliers.

Supply Manufactures and There is no layer below.
(external) conveys parts to be

assembled into

cyberwidgets.

(see Chapter 7). The coordination of supplier with assembly illus-
trates a problem in computing called flow control, described in
Chapter 11.

The Layers in a Computing Infrastructure

Figure 4.5 illustrates the major infrastructure layers in a networked
computing system. The functionality of each layer is summarized in
Table 4.3.

How do the layers interact to get things done? Figure 4.6 shows
two hosts participating in a networked application, each host exe-
cuting a piece of that application and these pieces collaborating by
communicating data through the network (as indicated by the
arrow). The application does not access the network directly—this
would violate the layering principle—but rather it involves the mid-
dleware and operating system layers. The middleware presents a
standard interface to the application independent of the operating
system and networking technology.

The middleware logically spans the two hosts (shown by dotted
lines) because its goal is to hide the details of the operating system
and network, including the distribution across hosts.



4.2 Architecture of the Software Infrastructure

O D1

L R kT
| Application components E

127

......................................................................... OPEH horizontal interface

Network l

Figure 4.5 A simplified layered architecture for networked comput-
ing software infrastructure.

Table 4.3 The major layers in a computer infrastructure.

Layer Function Analogy
Application  Provides specialized functionality A firm is in a particular line of
(Chapter 6)  directly needed by a user or business (e.g., automobile
organization (e.g., electronic manufacture) and defines various
commerce, information retrieval, or  processes tailored to the operation of
collaboration). that business (e.g., assembly lines).
Application  Specialized modules incorporated  All automobile manufacturers buy
components by many applications and purchased components, such as tires and
(Chapter 6)  as a product from an outside batteries, from commeon suppliers.
company.
Middleware Hides the heterogeneity and Professional services, such as
(Chapter 9)  distribution of operating system and  accounting, law, private investigation,
network from the application. Also  etc., benefit all firms.
provides capabilities useful to a wide
range of applications.
Operating ~ Manages and hides the details of Resource management services, such
system resources such as storage and as real estate, janitorial, and
(Chapter 10)  printing. Also manages the details of gardening, are useful to firms.
interhost communications.
Network Provides communication of data To support interaction among its
(Chapter 11) from one host to another. different locations, a firm uses

telephone and overnight package
delivery companies.




128

A Layered View of the
Life and Social Sciences

At the risk of serious oversim-
plification, both the life and
social sciences can be viewed
in layers. The biological sci-
ences draw upon understand-
ing of physical phenomena
from physics and chemistry
and can be viewed as layered
upon them. Physiology builds
on biology to understand the
overall organism, and medi-
cine in turn builds on physiol-
ogy. Of course, each “layer”
adds substantial understand-
ing to that supplied by lower
"layers.”

Similarly, the social sciences
begin with an understanding
of individuals in psychology
and linguistics, and sociology
adds understanding of the
behavior of groups of individ-
uals. Economics, political
science, and law—which deal
with the organization of com-
merce and society for higher
purposes—are the "archi-
tects” of the social sciences.

4 Software Architecture and Standardization

Processor A Processor B

L Application module l [

N 72
| Middleware \ f 1 /
| N A ]
Operating system i Operating system
\/

J Network |

Application module I

Middleware ]

Figure 4.6 An example of application modules communicating
through layers.

ANALOGY: The mailroom in a large firm (analogous to middleware)
provides workers with an abstracted letter and package delivery
service. It relies on the post office and package delivery compa-
nies, or sometimes it may deliver a package directly inside the
building. Those details are hidden (encapsulated) from mailroom
clients.

A top-down approach is followed in this book: Each layer is exam-
ined successively—starting with the application in Chapter 6—
abstracting the layer below and appreciating what services it pro-
vides to the layer above. Much detail is ignored, focusing on issues
important from an application perspective. This approach is quite
similar to how computer systems are actually designed and imple-
mented. Typically, in any given host, the layers are purchased from
different companies, and it all works because of the layered modu-

larity.

EXAMPLE: Intel focuses on microprocessors, Compaq on desktop
computers, Microsoft on operating systems, and lona on middle-
ware. Each is focused on one layer of the infrastructure, providing
an interface promised to layers above.

Data and Information in Layers

In Table 2.1 on page 18, data was described as “a collection of bits
representing information.” The infrastructure—both hardware and
software—concentrates on storage and communication of data. On
the other hand, what the application presents to the user is cer-



4.2 Architecture of the Software Infrastructure

Table 4.4 How layers deal with data and information.

Structure and interpretation of
data Storage Communication

The lowest layers deal with data The file system storesand ~ The network

in its most primitive form: a retrieves bits without communicates packets
collection of bits. This portion of interpretation (see "File and messages, both of
the infrastructure does not System" on page 91). which are presumed to
interpret those bits in any way. contain bits without

interpretation (see “The
Network" on page 86).

The operating system layer, which manages both
storage and communication of data, usually assigns no
interpretation to the data it manipulates on behalf of
the application.

The middle layers presume Arelational DBMS presumes The middleware layer
some structure for the data. that data is structured into  communicates a struc-
Typically data is structured into  tables (rows and columns of tured composition of basic
numbers, character strings, and  basic types) (see "Shared types (see Chapter 9).
compositions of these basic Data Tier: Database

types. In some cases, additional Management" on page 94).

structure may be presumed.

The application assigns Within the application, data is interpreted within the
additional interpretation to the  specific application context (for example, a number
data. may be interpreted as a bank account balance).

tainly information. The question then arises: Where and how is data
turned into information? A rough answer is that this happens in the
layers, where each layer adds structure and interpretation to the
data it obtains from the layer below. As a rule, the infrastructure
tries to make minimal assumptions about the structure of data, so
that it can benefit a wide range of applications. However, moving
into the middle layers, structure is added to the data so that more
specific and useful facilities can be provided. The specific structure
typically assigned to the data in different layers is described in Table
4.4.

The changing view of (often the very same) data as it moves
through the infrastructure layers is at the heart of the separation of
concerns that underlies the modularity of layering. Each layer
avoids attaching any more structure and interpretation to the data

129



130

4 Software Architecture and Standardization

it manipulates than is necessary to realize its functionality, thereby
reducing its mutual dependence on other layers, including the
application.

With this in mind, a definition can be assigned to the term “informa-
tion” from the infrastructure and software perspective. If data is a
collection of bits representing information, then information can be
defined as structure and interpretation attached to data.

The Horizontal Layer Interface

Given the layered architecture, a key aspect of the infrastructure is
the horizontal layer interface—illustrated by the dashed lines in
Figure 4.5—which defines how each layer interacts with the layer
below. Each layer interface is carefully documented, informing the
layer above precisely how to invoke its services. One aspect of this
interface is a presumed structure for data that passes between
layers.

ANALOGY: Inthe manufacturing example of Table 4.2 on page 126,
the receiving floor provides a set of actions, such as “send next
part that has arrived” and “obtain more parts with this number.”

These horizontal interfaces are said to be open when they are
publicly available and not encumbered by intellectual property pro-
tections (see Chapter 5). Thus, any vendor is free to design, imple-
ment, and sell software that builds on an open interface without
fear of violating legal protections, assuming the vendor possesses
sufficient documentation to do so. Open interfaces not only enable
different layers of the infrastructure to be designed (and manufac-
tured, in the case of hardware) by complementary vendors but also
support competition among vendors at each layer.

The Spanning Layer

The layered architecture just described is actually a simplification of
reality. In practice—as a concession to competition in the industry—
the infrastructure has some horizontal structure.

EXAMPLE: In Figure 4.7, the layers are divided into modules at the
granularity of an individual host. This heterogeneity arises not from
the desire to have radically different functionality on different



4.2 Architecture of the Software Infrastructure

} |  Applications | \
Windows NT MacOs | UNIX
TcP | uDP | TcP | UDP TCP | UDP
T
ICTI G

Figure 4.7 In reality, the architecture has structure in the horizontal
as well as vertical direction.

hosts, but from the reality that different suppliers in the market-
place are providing products similar in functionality but distinct as
to details. The two layers shown in Figure 4.7 with this characteris-
tic are the operating system (where there are several major OSs in
the marketplace, including Windows 95/NT, MacOS, and UNIX—
see Chapter 10) and the network (where there are a number of dif-
ferent technologies, such as Ethernet, wireless, asynchronous trans-
fer mode, etc.—see Chapter 11).

Layers that are homogeneous in the horizontal direction, and can
be assumed to be virtually ubiquitous on all computing platforms,
have special significance because they divide the infrastructure into
guasi-independent components that can be developed and
advanced separately and can hide any heterogeneity below. Fur-
ther, such layers provide a large existing market to vendors selling
products at the layers both above and below and thus attract
investment and competition. A layer with these characteristics is
called a spanning layer [Cla97]. The following examples are illus-
trated in Figure 4.8.

EXAMPLE: The internet protocol (IP) layer provides communication
services to applications using a variety of network technologies
(see Chapter 7). It is the foundation of the internet protocols and
has reached such wide acceptance among consumers, universities,
and many companies that it is virtually a spanning layer.

131



132

4 Software Architecture and Standardization

I l I Applications [ | |

 Distributed object management |
Windows NT Mac OS UNIX
TCP | UDP TCP | UDP TCP | UDP

Network 1 | l Network 2 i

Figure 4.8 A spanning layer (shaded above) is uniform in the horizon-
tal direction and almost ubiquitous.

The heterogeneity across different operating systems presents a
problem to application developers. They must produce different
versions for each operating system, creating a need for a spanning
layer above the operating system. One candidate is distributed
object management (DOM) (see Chapter 9).

How Layers Enable Business Applications

Evolving from departmental to enterprise and cross-enterprise
applications (see Section 2.6 on page 52) creates difficult technical
challenges. The legacy client/server departmental applications cre-
ated an obstacle to data integration across an enterprise because
they proliferated heterogeneous infrastructure and applications.
Similar problems arise in social applications (see Section 2.3 on
page 19), particularly those serving interest groups and the citi-
zenry, where the groups are so large that users are not coordinated.
Fortunately, these challenges can be addressed by the layers
described in Table 4.3. The challenges and technologies addressing
them are summarized in Table 4.5.

4.3 Standardization

The modular layered architecture and open horizontal interfaces
provide a way to coordinate vendors of infrastructure and applica-
tion software and encourage competition in the industry. However,



4.3 Standardization

Table 4.5 Challenges to integration of data across an enterprise.

Problem
(layer addressing
this problem)

Nature of the problem

Selution

Communication
of data
(network)

MNumerous networking
technologies, such as Ethernet,
token ring, asynchronous transfer
mode, etc., use different ways of
transferring data.

The internet—since IP is a
spanning layer—allows data to be
communicated across
heterogeneous networks by
subsuming and interconnecting
them (see Chapter 11).

Representation of
structured data
(middleware)

Different computer systems
represent standard data values
(e.g., character strings and
numbers) in terms of bits in
different ways (see the sidebar
"Any Information Can Be
Represented by Bits" on page
10).

Transparently to an application,
the representation of data can be
automatically converted when
communicated from one host to
another (see Chapter 9).

Interpretation
of data
(middleware)

The application must consistently
interpret data values. For
example, a character string might
represent a person’s name rather
than his address, or a number
might represent a person’s zip
code rather than her telephone
number.

The structure and interpretation
of data can be described in
mutually agreed-upon ways using
metadata (see "Assistance from
the Author or Publisher" on page
43) or through interface
specifications (see Chapter 9).

they raise a daunting problem: At each horizontal interface, the
products of different suppliers must be interoperable—they must
work together correctly. To achieve this, there must be a single
standard interface definition, so that each product at one layer is
interoperable with all products at the layers above and below. The
solution is to standardize the interface, through the process of stan-
dardization. A standard is a specification generally agreed upon,
precisely and completely defined, and well documented, so that
any supplier can implement it.

ANALOGY: Standardization is common in many industries and pro-
fessions. For example, standards are set for the legal profession by
the Uniform Commercial Code and for the accounting profession
by the Financial Accounting Standards Board.

133



134

Standardization within
Applications

Standardization applies not
only to infrastructure but also
to some applications, particu-
larly those that cross enter-
prise boundaries (see Section
2.6.3 on page 64).

EXAMPLE: EDI(see
"Electronic Data Inter-
change" on page 67)
was stimulated by a stan-
dard, ANSI X12 [Kee97].
X12 specifies the formats
for the exchanges of
many standard business
messages, including the
invoice (X12-810), tax in-
formation reporting
(X12-826), purchase or-
der (X12-850), notice of
employment status (X12-
540), mortgage appraisal
request (X12-261), and
many others. Without
ANSI X12 (and an equiv-
alent European standard,
EDIFACT), EDI would be
far less prevalent.

The significance of standards
like ANSI X12 is that many
businesses can exchange
messages without prior coor-
dination or negotiation of for-
mats. They can purchase
rather than develop software
to generate and interpret
messages particular to spe-
cific business partners.
Another example of applica-
tion standardization is digital
payments (see Chapter 8).

4 Software Architecture and Standardization

A standardized interface offers more value to users and organiza-
tions because it empowers them to mix and match products from
different vendors complying with the standard. There are thus mar-
ket pressures on suppliers to create and adopt standardized inter-
faces. The dynamics of standardization are influential in determining
the direction of computing as well as the winners and losers among
vendors. Some economic foundations for standardization are dis-
cussed in Chapter 5.

4.3.1 Reference Models and Interfaces

Recall that an architecture defines decomposition, functionality, and
interaction. In order to standardize interfaces, the decomposition
and functionality have to be determined, so these are the first
issues in standardization. Together they constitute a reference
model, which is an overall definition of modularity—including the
location of standardized interfaces—and the decomposition of
functionality.

ANALOGY: The human heart and circulatory system, as illustrated in
Figure 4.9, define a decomposition into lungs, heart, body, and
veins and arteries that carry the blood between them. The simple
connectivity is defined in the diagram. Interfaces might specify the
constituents of the blood, the rate of heartbeats, the blood pres-
sure, etc.

The layered architecture of Figure 4.5 is a useful reference model.
After agreement on a reference model, the interfaces among the
modules can be standardized, including (in the case of software) a
set of actions, parameters, and return values, which are called for-
mats. In addition, there are often constraints or expectations
related to the sequence of invocation of actions, which are called
protocols (see Chapter 7). Once a reference model is established,
the standardization process focuses on the detailed specification of
interfaces, including formats and protocols. A goal is to leave room
for vendors to differentiate their products based on the standards,
for example, with proprietary extensions.



4.3 Standardization

(

L

Figure 4.9 The circulatory system as a reference model.

4.3.2 Organization of the Standardization Process

Any formal standardization process requires a recognition of need
by a standards body, industry organization, or government. A stan-
dardization body is an organization set up for the express purpose
of promulgating standards (see the sidebar “International Organiza-
tion for Standards (ISO)” for an example). The standards process
also requires the commitment of monetary and human resources by
a set of participating companies. A standards process may produce
a single standard and dissolve, but more often there is an ongoing
process of refinement and extension.

EXAMPLE: The Internet requires complementary technologies and
the coordination of a set of hardware suppliers (such as Cisco,
3Com, and Bay Networks), service providers (such as MCI and
AT&T), and application suppliers (such as Netscape and Microsoft).
These companies, together with university researchers, cooperate
in a process of continuous refinement through the IETF (see the
sidebar “Internet Engineering Task Force (IETF)").

An increasingly popular approach in computing is a technology
web, which is a set of companies coordinating complementary tech-
nologies without a formal process. (This isn‘t related to the Web
information access application, except that the companies enhanc-
ing the Web are themselves a technology web.)

EXAMPLE: The desktop personal computer is based on Intel micro-
processors, the Microsoft operating system, various hardware sup-
pliers, and various application software vendors—the Wintel

135

International Organiza-
tion for Standards (ISO)

I1SO is an international, non-
governmental federation of
national standards bodies
from over 100 countries, one
from each country (the Ameri-
can National Standards Insti-
tute (ANSI) is from the United
States). Its stated role is to
“promote the development of
standardization and related
activities in the world with a
view to facilitating the interna-
tional exchange of goods and
services.” The technical work
is carried out in a hierarchy of
some 2,700 technical commit-
tees, subcommittees, and
working groups with represen-
tatives from industry, research
institutes, government author-
ities, consumer bodies, and
international organizations.
They come together as equal
partners in the resolution of
global standardization issues.

ISO standards are not always
successful in the marketplace.
For example, the Open Sys-
tems Interconnection (OSI)
was an elaborate standard for
networking protocols that has
been supplanted by the inter-
net protocols (see the sidebar
"Internet Engineering Task
Force (IETF)").



136

Internet Engineering Task
Force (IETF)

The IETF is a “large open
international community of
network designers, opera-
tors, suppliers, and research-
ers concerned with the
evolution of the Internet archi-
tecture and the smooth oper-
ation of the Internet.” The
internet technologies are
actually in direct competition
with the OSI standards pro-
mulgated by ISO (see the
sidebar “International Organi-
zation for Standards (ISO)"),
but they have won hands-
down in the marketplace. The
reasons are several. The Inter-
net standards have been
developed incrementally from
simple beginnings, always
accompanied by a working
implementation funded
largely by government
research budgets. OSl, in con-
trast, attempted a complete
“paper” design without
implementation. The Internet
standards reached the mar-
ketplace much faster and
were distributed free, as part
of the Berkeley UNIX system.
The result is that the Internet
standards had already devel-
oped a large suite of applica-
tions before the OSI
standards could be com-
pleted. This is an illustration of
the importance of "time-to-
market” and "“winner-take-all”
effects (see Chapter 5).

4 Software Architecture and Standardization

Table 4.6 Two types of standards.

Type Description Examples

De facto A technology so commonplace that it is a standard in  Market power: Windows

standard  reality, even if not recognized by any formal body. It operating system and
can be established in a couple ways: market power  the Hayes command set;
and voluntary cooperation. With market power, voluntary cooperation:
some product categories have winner-take-all effects internet protocols
resulting over time in a dominant solution (see (Chapter 7), Java
Chapter 5). With voluntary cooperation, companies  (Chapter 9), and CORBA
who recognize the need for interoperability (Chapter 9).
voluntarily work together to recommend standards
(see the sidebar "Object Management Group”).

De jure A standard established by a formal process ISDN telephone

standard  organized by government, an industry association, or interface; X.500

standardization body. It may actually be mandated
by law.

directory service; GSM
digital cellular
telephone.

technology web. Intel is particularly active in promulgating hard-
ware interface standards through its Architecture Laboratory, and
Microsoft is similarly active in software interface standards.

While the formal standards process is at times slow, technology
webs support a rapid continual technology refinement. A technol-
ogy web is typically limited to a small set of suppliers (often only
one supplier for each of the complementary technologies), while
most standards processes welcome all comers.

Two distinct types of standards—de facto and de jure—are
described in Table 4.6. The computer industry moves so quickly that
the de facto standard is increasingly popular.

4.3.3 Control and Enforcement of Standards

Issues with commercial, legal, and political implications surround
the control and enforcement of standards. These issues heavily
influence the competitive outcomes in the industry, and standards
are increasingly a battleground for supremacy [Sha98].



4.3 Standardization

As described in "The Horizontal Layer Interface” on page 130,
many standards are open (publicly documented and unencumbered
by intellectual property restrictions). For them, the primary
“enforcement” is the marketplace, which favors products comply-
ing with the standard, in part because they are interoperable with
complementary products.

A de facto standard may in principle be available for use by anyone,
but there is a dominant proprietary implementation (an example is
Adobe’s Postscript). While a competitive vendor is permitted to
build a standard-compliant product, the dominant vendor hopes
the development cost would be prohibitive and market acceptance
would be minimal.

EXAMPLE: Competing implementations have occurred, contrary to
the wishes of the dominant supplier, in the PC BIOS (code embed-
ded deeply within the bowels of a PC implementation). Originally
designed by IBM, it was successfully reverse engineered and imple-
mented by Phoenix Technologies. Another example is the Intel
Pentium microprocessor, which has been cloned by Advanced
Micro Devices and others. They created a design independently by
replicating the functionality and specifications and without using
the original design.

De jure standards are rare in the computer industry, but occur in
communications, which is often subject to government regulation
(see Chapter 12). The regulatory process may dictate a single stan-
dard but leave it up to industry to determine its details.

A standard may be publicly documented but incorporate patented
ideas and require adopters to pay royalties. In this case, companies
contributing technology to a standard are able to retain patent
rights but are obligated by the standards organization to freely
license the technology to all comers for a “reasonable and nondis-
criminatory” royalty.

Further Reading

An extensive discussion of architecture design and the processes
involved in creating them can be found in [BCK98]. A much more

137

Object Management
Group

An important voluntary coop-
erative standardization effort
is the Object Management
Group (OMG) focused on
object-oriented systems (see
Chapter 6) and enterprise
computing (see Section 2.6.2
on page 56). The OMG
includes over 700 software
companies who have found it
in their best interest to join in
promoting cross-platform
standards, so that their prod-
ucts can participate together
in enterprise applications.
Strictly speaking, the OMG is
not a standardization body,
but rather simply makes rec-
ommendations as to the best
technologies. Thus, it views its
charter as the cooperative
promulgation of de facto stan-
dards. The process followed
by OMG is to identify areas
that need standardization,
request participating compa-
nies to contribute, evaluate
those contributions by a tech-
nical committee, and make a
final recommendation. Occa-
sionally they ask members to
merge their best ideas into a
single proposal.



138

4 Software Architecture and Standardization

technical introduction to the design of distributed systems is
[CDK94]. The business process reengineering described in [Dav93]
is not dissimilar to the architecture design for software systems.
Finally, strategies for using standardization as a competitive tool are
discussed in [Sha98).



