

Project SAAS – June 30th, 2015

Project-enhanced Units

A project-enhanced unit is designed to foster common content learning (via benchmark lessons) by all students in the class, and to help students gain a deeper conceptual understanding of a sub-set of the larger content unit (via group project research).

Project-enhanced Units

- Features for a project classroom:
 - Driving Research Question (Krajcik et al. 2006) guided by STEM standards, practices, and crosscutting concepts
 - Sub-driving Research Questions studentgenerated
 - Milestones (Polman, 2000) Serves as a continuous assessment to gauge learning throughout the unit implementation
 - Benchmark Lessons and Innovative Technologies to scaffold understanding

PBI with the REAL Unit

(Realistic Explorations in Astronomical Learning)

The unit and driving question should be guided by standards.

- Students who demonstrate understanding can (Disciplinary Core Ideas from NGSS):
 - MS-ESS1-1.Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases.
 - MS-ESS1-3.Analyze and interpret data to determine scale properties of objects in the solar system.

An example driving question:

Why does the Moon's appearance always seem to change?

Comparing the Practices

Mathematical Practices	Scientific & Engineering Practices	
1. Make sense of problems and persevere in solving them	1. Asking questions and defining problems.	
2. Reason abstractly and quantitatively	2. Developing and using models	
3. Construct viable arguments and critique the reasoning of others	3. Planning and carrying out investigations	
4. Model with mathematics	4. Analyzing and interpreting data	
5. Use appropriate tools strategically	5. Using mathematics and computational thinking	
6. Attend to precision	6. Constructing explanations and designing solutions	
7. Look for and make use of structure	7. Engaging in argument from evidence	
8. Look for and express regularity and repeated reasoning	8. Obtaining, evaluating, and communicating information.	

Comparing the Practices

Mathematical Practices	Scientific & Engineering Practices		
1. Make sense of problems and persevere in solving them	1. Asking questions and defining problems.		
2. Reason abstractly and quantitatively	2. Developing and using models		
3. Construct viable arguments and critique the reasoning of others	3. Planning and carrying out investigations		
4. Model with mathematics	4. Analyzing and interpreting data		
5. Use appropriate tools strategically	5. Using mathematics and computational thinking		
6. Attend to precision	6. Constructing explanations and designing solutions		
7. Look for and make use of structure	7. Engaging in argument from evidence		
8. Look for and express regularity and repeated reasoning	8. Obtaining, evaluating, and communicating information.		

Next Generation Science Standards: Crosscutting Concepts

- Patterns
- Cause and Effect
- Scale, Proportion, and Quantity
- Systems and System Models
- Energy and Matter
- Structure and Function
- Stability and Change

Literature Review What misconceptions do students hold regarding the content of your unit?

- Research has shown students have difficulty understanding the cause of lunar phases (Abell, Martini, & George, 2001; Lightman & Sadler, 1993; Trundle, Atwood, & Christopher, 2002; Zeilik & Bisard, 2000).
- Students need well-developed spatial skills do understand many astronomical concepts (Plummer, 2014; Wilhelm et al., 2013; Black, 2004)

How do you ensure that students have the opportunity to learn specific content material in a project classroom?

REAL Benchmark Lessons

Lesson One: Can I see the Moon every day and night, and why does it appear to change its shape?

Lesson Two: How do I measure the distance between objects in the sky?

Lesson Three: How can I say where I am on the Earth?

Lesson Four: How can I locate things in the sky?

Lesson Five: What are the Global Features of the Moon?

Lesson Six: What can we learn by examining the Moon's surface?

Lesson Seven: What affects a crater's size?

Lesson Eight: The Scaling Earth/Moon/Mars NASA Activity

Lesson Eight A: The Moon Finale

- Lesson nine: What Makes a Planet Geologically Active?
- Lesson ten: Surface Activity on Planets and Moons
- Lesson eleven: Crater Number Density
- Lesson twelve: Experts' Lesson
- Lesson thirteen: Martian Surface Age Exploration

http://www.uky.edu/~jwi229/real/ real_main.html

Components of the Project (Including your Moon Hoax Project Investigations)

- Sub-driving Research Question (studentgenerated question)
- Methods of Investigation and Data Collection
- Analysis of Data
- Data Representation

 Graphs/Charts/ Models and/or Technology-generated Visuals
- Results and Conclusions
- Follow-up Question

Assessments in Project-enhanced Classrooms

Example As	ssessments
------------	------------

- Concept Maps
- **Project Rubrics**
- Pre/post surveys
- Journaling

Facets of Understanding

- Explain
- Interpret
- Apply
- Perspective
- Empathetic
- Self-knowledge

Project Rubric

	4 (high)	3	2	1 (low)
Hypothesis/Conjecture/	Student(s) posed a thoughtful,	Student(s) posed a focused question	Student(s) constructed a question that	Student(s) relied on teacher-
Sub-Driving Research Question	creative question that engaged them	involving them in challenging	lends itself to readily available	generated questions or developed a
	in challenging or provocative	research.	answers.	question requiring little creative
	research. The question breaks new			thought.
	ground or contributes to knowledge			
	in a focused, specific area.			
Methods of Investigation and Data	Student(s) gathered their own data as	Student(s) gathered information from	Student(s) gathered information from	Student(s) gathered information that
Collection	well as information from a variety of	a variety of relevant sourcesprint	a limited range of sources and	lacked relevance, quality, depth and
	quality electronic and print sources,	and electronic sources.	displayed minimal effort in selecting	balance.
	including appropriate licensed		quality resources.	
	databases. Sources are relevant,			
	balanced and include critical readings			
	relating to the research question or			
	problem. Primary sources were included (if appropriate).			
Analysis of Data	Student(s) carefully analyzed the	Student (s) product shows good	Student(s) conclusions could be	Student(s) conclusions simply
Analysis of Data	information collected and drew	effort was made in analyzing the	supported by stronger evidence.	involved restating information.
	appropriate and inventive	evidence collected	Level of analysis could have been	Conclusions were not supported by
	conclusions supported by evidence.	CYTACHEC CONFESSES	deeper.	evidence.
	Voice of the student writer is evident.		and part	
Data Representation/	Student(s) thoughtfully used	Student(s) representations related to	Student(s) used visuals but did not	Student(s) used no representations of
Graphs/Charts/Models and/or	representations and/or	their research project.	adequately support or add to their	technologically produced visuals.
Technologically-generated Visuals	technologically produced visuals to		research project.	
	assist them in their own			
	understandings of the project			
	research and to assist in the			
	communication of their research			
	findings.			
Synthesis	Student(s) developed appropriate	Student(s) logically organized the	Student(s) could have put greater	Student(s) work is not logically or
	structure for communicating project	product and made good connections	effort into organizing the product	effectively structured.
	findings, incorporating a variety of quality information. Logically and	among ideas		
	creatively organized with smooth			
	transitions.			
Documentation	Student(s) documented all sources.	Student(s) documented sources with	Student(s) need to use greater care in	Student(s) need to work on
Documentation	Sources are properly cited, both in-	some care, Sources are cited, both in-	documenting sources.	communicating more effectively and
	text/in-product and on Works-	text/in-product and on Works-	Documentation was poorly	relate their findings to their original
	Cited/Works-Consulted pages/slides.	Cited/Works-Consulted pages/slides.	constructed or absent.	research question.
	Documentation is error-free.	Few errors noted.		4
Product/Process	Student(s) effectively and creatively	Student(s) effectively communicated	Student(s) showed limited evidence	Student(s) showed little evidence of
	used appropriate communication	the results of research to the	of thoughtful research.	thoughtful research. Product does not
	tools to convey their conclusions and	audience.		effectively communicate research
	demonstrated thorough, effective			findings.
	research techniques. Student(s)			

Characteristics of Driving Questions

- Feasible: Students can design and perform investigations to answer the questions.
- Worthwhile: They contain rich science and/or mathematics content, relate to what scientists or mathematicians really do, and can be broken down into smaller questions.
- Contextualized: They are pertinent to the world, nontrivial, and important.
- Meaningful: They are interesting and exciting to learners.
- Sustainable: They lead to the pursuit of detailed answers over time.

Let's examine some driving questions:

Are they good driving questions?

Crafting your PBI Unit and Overarching Driving Question

Brainstorm with your group about a potential PBI unit that you would like to design.

By End of Workshop

- Overall goal of unit (See PBI template)
- Driving question
- 2 potential Sub-driving questions
- 1 Benchmark lesson

(Engagement, Exploration, Explanation, Elaboration, and Evaluation)

By August Meeting (Be prepared to share)

- 1 Benchmark Lesson that utilizes technology
- 1 type of Assessment
- Locate, read, and summarize one article concerning misconceptions concerning your unit's topic. This should be done by each person in your group of 3 or 4.

By December Meeting

- Complete Unit
 - Overarching Goal
 - Driving Question
 - STEM Standards and Practices (and Crosscutting Concepts)
 - Potential Student sub-driving questions
 - Benchmark Lessons (at least three with one utilizing technology)
 - Formative and Summative Assessments (Milestones)