
   

 7.1 

Answers to Chapter 7 Problems.   

1.  Most of the Chapter 1 problems appear as end-of-chapter problems in later chapters.   

2.  The first reaction is an ene reaction.  When light shines on O2 in the presence of light and Rose 

Bengal, singlet oxygen is obtained.  This compound can do cycloadditions or ene reactions.  If the 

reaction were a free-radical autoxidation, neither light nor Rose Bengal would be required.   

 

Second reaction.  Air is not required for formation of the keto-enol.  The C1–C6 and O7–O8 bonds are 

broken, and a new C1–O bond is made.  It makes sense that the driving force for breaking the C1–C6 

bond should be provided by migrating C1 from C6 to O7 (note: a 1,2-shift) and expelling O8.  Then O8 

can add back to C6 to give a hemiketal which can open up to the ketone.   
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Air is required for conversion of the keto-enol to the endoperoxide.  The most likely reaction is 

autoxidation.  The O2 makes bonds to C2 and C6, neither of which has an H atom attached for 

abstraction.  But abstraction of H· from O7 gives a radical, A, that is delocalized over O7 and C2.  

Addition of O2 to C2 gives a hydroperoxy radical, which abstracts H· from O7 of the starting material to 

give a hydroperoxide and A again.  The hydroperoxide thus obtained can then add to the C6 ketone in a 

polar fashion to give the observed hemiketal.  
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Polar reaction (acid is still present): 

 

The fourth reaction is transformation of the aldehyde into an acetal.  This proceeds by acid-catalyzed 

addition of an alcohol to the carbonyl, loss of H2O, and then addition of the acid O to the carbocation.  

Other perfectly correct sequences of steps could be written here.   
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3.  (a)  Compound 1 is obviously made by a Diels–Alder reaction between cyclopentadiene and methyl 

acrylate.  Cyclopentadiene is made from the starting material by a retro-Diels–Alder reaction.  The 

product is obtained stereoselectively because of endo selectivity in the Diels–Alder reaction.   

 

The starting material is called “dicyclopentadiene”.  Cyclopentadiene itself is not stable: it dimerizes to 

dicyclopentadiene slowly at room temperature by a Diels–Alder reaction.  It does this even though it is 

not an electron-deficient dienophile, demonstrating the enormous reactivity of cyclopentadiene as a 

diene in the Diels–Alder reaction.   

(b)  LDA is a strong base.  Compound 2 is obtained from the enolate of 1 by a simple SN2 substitution 

reaction.   
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Now DMSO is treated with NaH, then with 2, then with Zn and NaOH, to give overall substitution of 

CH3 for CH3O.  The CH3 group must come from DMSO, so we need to make a new bond between the 

DMSO C and the C=O carbon.  NaH is a good base; it deprotonates DMSO to give the dimsyl anion.  

This adds to the carbonyl C, and then loss of MeO– occurs to give the b-ketosulfoxide.  This is a very 

good acid (like a 1,3-dicarbonyl), so it is deprotonated under the reaction conditions to give the enolate.  

Workup gives back the b-ketosulfoxide.  This part of the mechanism is directly analogous to a Claisen 

condensation.   

 

 

To get to 3, we need to cleave the S–C bond.  Zn is an electron donor, like Na or Li.  Electron transfer to 

the ketone gives a ketyl, which undergoes fragmentation to give the enolate.  The second electron from 

the Zn goes to the S leaving group to give MeSO–.  Workup gives the methyl ketone.   
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(c)  The conversion of 3 to 4 is a [2+2] cycloaddition, the Paterno–Büchi reaction.  This four-electron 

reaction proceeds photochemically.   

(d)  The conversion of 4 to 5 is an E2 elimination.   

 

The conversion of 5 to 6 is a Swern oxidation.  The O of DMSO is nucleophilic, and it reacts with oxalyl 

chloride.  Cl– then comes back and displaces O from S to give a S electrophile.  The OH of 5 is then 

deprotonated, whereupon it attacks S, displacing Cl–.  Then deprotonation of a Me group and a retro-

hetero-ene reaction occur to give the ketone.   
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The conversion of 6 to 7 is a dissolving metal reduction.  Number the atoms.  The key atoms are O1, C2, 

C6, C10, and C9.  Make: none.  Break: C3–C4.   

 

The first step is formation of the ketyl of 6.  This species can undergo fragmentation to form the C2–C3 

enolate and a radical at C4.  A second electron transfer gives a carbanion at C4, which deprotonates 

NH3.  Upon workup, C10 is protonated to give 7.   

 

 

The conversion of 7 to 8 is a simple hydrolysis of an acetal.  Acetals are functionally equivalent to 

alcohols + carbonyls and can be interconverted with them under acidic conditions.  Several reasonable 

mechanisms can be drawn for this transformation, but all must proceed via SN1 substitutions.   

 

The conversion of 8 to 9 uses PPh3 and I2.  The former is a nucleophile, the latter is an electrophile, so 
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displaces Ph3PO from C to give the alkyl iodide.   

 

The next reaction is obviously a free-radical chain reaction.   

 

 

 

Finally, conversion of 10 to 11 involves addition of the very nucleophilic MeLi to the ketone; workup 

gives the alcohol.  Then E1 elimination promoted by the acid TsOH gives the alkene.   
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4.  (a)  The transformation of 1 to 2 (not shown) is a simple deprotonation with LDA, followed by SN2 

substitution on Se, displacing –SePh.   

The conversion of 2 to 3 requires making C3–C6 and C4–C6, and breaking C6–S.  The BuLi deproto-

nates C6 to give a sulfur ylide.  This makes C6 nucleophilic.  It adds to C4, making an enolate and 

making C3 nucleophilic.  The enolate at C3 then attacks C6, displacing Me2S to give the product.   

 

 

 

The conversion of 3 to 4 is a free-radical chain process.  Note two equivalents of Bu3SnH are required.  
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from Bu3SnH to regenerate ·SnBu3.  The C3–C4 bond still needs to be broken, and C3 and C4 both need 

to have H attached to them.  We know that a cyclopropane ring cleaves very easily if a radical is 

generated at a C attached to it, e.g. at C2.  We can generate a radical at C2 by having Bu3Sn· add to O1.  

Then the C3–C4 bond cleaves, making a C4 radical and a tin enolate at C3–C2–O1.  The C4 radical 

abstracts H from Bu3SnH to propagate the chain.  The tin enolate is protonated upon workup to give 4.   
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(b)  LiAlH4 is a source of very nucleophilic H–.  It must add to an electrophilic C.  If you obey Gross-

man’s Rule, you will see that C4 and C6 in the product have extra H’s.  Of these two only C6 is electro-

philic, because when H– adds to C6, a very stable (aromatic) cyclopentadienyl anion is obtained.  This 

anion is protonated at C4 upon workup to give the alcohol.  (Actually, the anion can be protonated on 

C3, C4, or C5, but all three isomers are in equilibrium with one another, and only the isomer protonated 

on C4 is able to undergo the subsequent Diels–Alder reaction.)  When the alcohol is oxidized to the 

ketone, the C9=C10 π bond becomes electron-deficient and electronically suitable to undergo an 

intramolecular Diels–Alder reaction with the cyclopentadiene to give 6.   

 

 

 

(c)  Make: C4–C11.  Break: C3–C4.  The first step is electron transfer to form the ketyl.  Fragmentation 
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put the radical on C12.  A second electron transfer gives a carbanion at C12.  Upon workup it is 

protonated, as is C14, to give 8.     

 

 

 

 

5.  First step.  Make: C3–O8, C2–C5.  Break: C7–O8.   

 

The product is a g,d-unsaturated carbonyl compound (a 1,5-diene), hinting that the last step is a Claisen 
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The diazo compound combined with the Rh(II) salt tells you that a carbenoid is involved.  The carbenoid 

can be drawn in the Rh=C form or as its synthetic equivalent, a singlet carbene.  In either case, C3 can 

undergo one of the typical reactions of carbenes, addition of a nucleophile, to form the C3–O8 bond.  

After proton transfer to O4 and loss of [Rh], a Claisen rearrangement can occur to give the product.   

 

Second step.  Make C3–C5.  Break C2–C5.  The reaction proceeds by a 1,2-shift.   
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Third step.  Standard ozonolysis with Me2S workup.   

 

The Criegee mechanism should be drawn.  The initially formed 1,2,3-trioxolane can be split up in two 

ways, one of which gives the desired aldehyde, but the mechanism can’t stop there.   
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First step is protonation of one of the carbonyl O’s.  An intramolecular addition is likely to occur faster 

than an intermolecular one.  Because a better carbocation can be formed at C2 than at C5, addition of O7 

to O5 is more likely than addition of O6 to C2.   

 

 

 

It should be stressed that this mechanism is not the only reasonable one for this reaction.  Any 

reasonable mechanism should avoid an SN2 substitution, however.   
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The base may deprotonate either C3 or C4.  Deprotonation of C3 makes it nucleophilic.  We need to 

form a new bond from C3 to C8 via substitution.  The mechanism of this aromatic substitution reaction 

could be addition–elimination or SRN1.  The requirement of light strongly suggests SRN1.  See Chap. 2, 

section C.2, for the details of drawing an SRN1 reaction mechanism.   

 

After the substitution is complete, all that is required is an aldol reaction, dehydration by E1cb, and 

deprotonation.  Workup then gives the product.   

 

Alternatively, deprotonation of C4 makes it nucleophilic, and an aldol reaction and dehydration by E1cb 

gives an enone.   
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We still need to form C3–C8.  Deprotonation of C3 gives a dienolate.  The more stable, (E) isomer will 

form.  Light causes this isomer to isomerize to the (Z) isomer.  An electrocyclic ring closing, which may 

also require light because it destroys aromaticity, gives the C3–C8 bond.  Expulsion of Br– and 

deprotonation gives the conjugate base of the product.   
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a neutral enamine and a 1,5-diene.  Cope rearrangement of the diene gives the C7–C9 bond, but it breaks 

the C3–C11 bond that was just formed!  However, C11 can be made electrophilic again by protonation 

of C10.  Attack of nucleophilic C3 on C11 gives an iminium ion again, and deprotonation of C7 gives 

the product.   

 

 

 

 

 

 

8.  First reaction.  Make: N1–C8, C7–C8.  Break: C5–Si6, C8–O9.   
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The combination of an amine and an aldehyde under weakly acidic conditions almost always gives an 

iminium ion very rapidly.  Such a reaction forms the N1–C8 bond.  Nucleophilic C7 can then attack this 

iminium ion to give a carbocation.  Fragmentation of the C5–Si6 bond gives the product.   
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  7.20 

Pd(0) to the C5–Br bond.  (The reduction of Pd(II) to Pd(0) can occur by coordination to the amine, b-

hydride elimination to give a Pd(II)–H complex and an iminium ion, and deprotonation of Pd(II)–H to 

give Pd(0).)  The C10–C11 π bond can then insert into the C5–Pd bond to give the C5–C10 bond.  b-

Hydride elimination then gives the C11–C12 π bond and a Pd(II)–H, which is deprotonated by the base 

to regenerate Pd(0).  The overall reaction is a Heck reaction.   
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