CSC 528 LABORATORY TECHNIQUES FOR NON-CLS STUDENTS. (2)
Basic clinical laboratory principles and techniques; includes laboratory safety, sterilization procedures, pipetting, microscopy, routine culture and staining procedures, chamber counts, laboratory math calculations and statistics, quality control, quality assurance, chain of custody and laboratory reporting. Consent of instructor required for non-CSC students.

CSC 600 HUMAN PATHOPHYSIOLOGY. (4)
A study of disease processes, pathognomonic parameters, and pathologic factors that mediate disease. Diagnostic testing used to validate disease process will be used to emphasize to the student the role of clinical sciences in the diagnosis of these complex disease states. Variances in disease in relationship to age will be examined. Prereq: Admission to the Clinical Sciences graduate program or consent of the course faculty committee.

CSC 601 HEALTH CARE POLICY AND ETHICS. (3)
The focus of this integrative course will be on policy and ethical issues confronting health care providers, health care systems, and particularly those issues specific to clinical sciences. Emphasis will be placed on current trends and anticipated challenges in providing humane and cost-effective health care services, with particular reference to the medically underserved and other at-risk populations. The different needs of special populations such as the aging, socioeconomically disadvantaged, insured and underinsured persons, ethically and culturally diverse groups such as recent immigrants and minorities will be explored. Discussion of technology dissemination delivery models, funding sources, human resources required to provide health care, alternative methods of coordinating these resources, and shifting from an “illness” orientation to a “wellness” approach will be included. The bioethics of health care delivery addressed will also include global considerations relative to health care, population dynamics, health care rationing, health care economics and assisted reproduction and transplantation issues.

*CSC 602 CLINICAL SCIENCES SEMINAR (Subtitle required). (1)
Provides skills required of successful scientist to communicate effectively with peers, clients and general public. Each student will demonstrate an ability to interact with community, to function in an educator role by investigating a topic and preparing and delivering a presentation to the class and a community group. May be repeated up to five times. Prereq: Admission to the Clinical Sciences graduate program or consent of instructor.

CSC 603 QUALITY ASSURANCE AND LABORATORY REGULATIONS. (4)
Accreditation processes are evaluated with special emphasis on standards established by agencies and organizations such as JCAHO, CAP, FDA, NCCLS (FCC). The continuing quality control demands of the Clinical Laboratory Improvement Act of 1988 (CLIA ’88) and the various accrediting bodies are addressed through a statistical approach that examines descriptive and inferential analysis to include hypothesis testing (t-test), power and confidence intervals, OVA-testing and regression analysis, TEA algorithms, reference range establishment, interference studies, bias studies, method comparison, validation studies, and, unstable error studies. Performance and utilization management systems, standard compliance issued related to Medicare laboratory fee schedules, CPT and ICD coding, reimbursement strategies and other billing practices are presented. The course concludes with a unit on OSHA that delineates chemical and infectious hazards and safety in the laboratory. Prereq: Admission to the Clinical Sciences graduate program or consent of the course faculty committee.

CSC 604 RESEARCH METHODS FOR THE CLINICAL SCIENCES. (3)
Introduction to experimental design, data collection and data analyses for clinical biomedical research. Students will also examine ethical issues in biomedical science research using a case-study approach. Representative issues to be addressed may include data selection and retention, plagiarism, scientific review of grants and manuscripts, review of protocols by human studies committees (institutional review boards or IRB) and informed consent.

CSC 605 EPIDEMIOLOGY AND BIOSTATISTICS. (3)
This course will provide a foundation in the principles and methods of the epidemiological investigation of disease with special emphasis on the distribution and dynamic behavior of disease in a population. Etiologic factors, modes of transmission and pathogenesis will be examined. Topics to be covered include epidemics and the spread of infectious disease, epidemiological aspects of non-infectious disease; rates of morbidity and mortality; sensitivity, specificity, and predictive values; strategies used in epidemiological studies to include measures of disease effect, validity, reliability, sampling methods and computer-based biostatistical analysis that emphasize the generalized linear model and forms of SEM.
CSC 606 ADVANCED LABORATORY STATISTICS AND ADMINISTRATIVE ANALYSIS. (3)
Applications-based statistical and analytical software is used to demonstrate Continuing Quality Improvement (CQI) adherence to Federal regulation, NCCLS/IFCC protocols, and other accrediting agency requirements. Special emphasis is on defining and controlling unstable error through a statistical modeling approach. Documentation structures for quality operations policy; and processes, procedures and implementation of a quality system are examined with special attention to assuring quality of point-of-care testing. Detailed computerized study of method comparison includes receiver operator charting (ROC). Computerized diagnostic screening programs are used to evaluate prevalence, sensitivity, specificity, and predictive values. Utilization of management systems to track expenses, budget/inventory management, employee scheduling, productivity evaluations, process improvement and restructuring are demonstrated. Computerized performance management systems and innovations in compliance strategies are featured. Student evaluation will be based on examinations, projects, and papers.

CSC 620 ANDROLOGY. (3)
Review of the male reproductive system including hormonal control, early development, spermatogenesis and fertilization. Basic and advanced andrology procedures will be discussed and laboratories will focus on semen analysis, sperm function tests, and preparation of partner and donor semen for artificial insemination. Prereq: BIO 549.

CSC 621 EMBRYOLOGY/ASSISTED REPRODUCTIVE TECHNOLOGY. (3)
Review of female reproductive system including hormonal control, early development, oogenesis, the menstrual cycle, fertilization and early implantation. Assisted reproductive technology procedures will be discussed with the aid of photographs and videos and laboratories will focus on culturing and manipulating mouse embryos. Prereq: BIO 549, CSC 620.

CSC 623 REPRODUCTIVE IMMUNOLOGY. (1)
Immunology associated with fertilization, implantation, and early development in humans. Various procedures for detecting antibodies associated with reproduction will be discussed and the laboratories will assess both direction and indirect antibodies on spermatozoa. Prereq: BIO 494G, CSC 620, CSC 621.

CSC 624 GAMETE AND EMBRYO CRYOPRESERVATION. (1)
Principles of cryopreservation will be covered; includes sessions on cryopreservation of human sperm and mouse embryos. Legal, ethical and policy issues associated with cryopreservation will be introduced. Prereq: CSC 620 and CSC 621.

CSC 625 POLICY, MANAGEMENT, ETHICAL AND LEGAL ISSUES IN ASSISTED REPRODUCTION. (2)
Current and anticipated regulations of assisted reproductive technology will be discussed. Legal and ethical concerns associated with ART will be introduced and case studies will focus on specific issues. Prereq: CSC 620, 621, 624.

CSC 626 CLINICAL PRACTICUM IN ANDROLOGY LABORATORY. (2)
Students must complete the checklist procedures while working under supervision. Andrology procedures will include semen analysis, sperm function tests, microbiology, preparation for artificial insemination, and cryopreservation of male gametes. Prereq: CSC 620, 621, 623, 624, 625.

CSC 627 CLINICAL PRACTICA IN ART LABORATORY. (3)
Students must complete the checklist procedures while working under supervision. All ART procedures including in vitro fertilization, ICSI, zona hatching and cryopreservation of gametes and embryos will be practiced under supervision using appropriate models for practice. Prereq: CSC 620, 621, 623, 624, 625.

*CSC 630 RLS RESEARCH. (1-5)
Research projects for students in Reproductive Laboratory Science. Students will complete web-based modules, “The Scientific Method and the Art of Research” prior to project initiation. Projects should be related to the student’s individual interest and should address an area in reproductive laboratory science. Projects should be under the supervision of a faculty member with expertise in the project area. Prereq: CSC 528, CSC 615, CSC 616, and CSC 617 or consent of instructor. Additional CSC courses in the RLS track may be required as prerequisites depending on the nature of the research project.
CSC 670 HISTOCOMPATIBILITY AND IMMUNOGENETICS. (3)
In-depth study of the human histocompatibility polymorphisms will include genetic inheritance, alleles, typing methodologies, and matching requirements for solid organ and tissue transplantation. The human leukocyte antigen (HLA or MHC) system and its role in transplant rejection will be the major focus, however minor histocompatibility systems will also be examined. Specific and detailed correlation of didactic information will be integrated with case studies to explore current concepts of immunologically-based molecular methods of antigen detection and their impact on clinical practice. Prereq: Immunology course.

CSC 671 MOLECULAR IMMUNOPATHOGENESIS. (3)
Human immunology with an emphasis on experimental methods, signal transduction, cell-cell interactions, cytokine production and activity, cell marker expression during normal cell development, pathogenic expression of cell markers and their detection, immunotherapy, vaccine production and acquired immunity. Analysis of immunologic systems mediating the response to allogenic foreign molecules such as transplanted tissues and organs will be emphasized. Contemporary issues and trends in immunology, with an emphasis on malignancy and immunodeficiencies, will be examined. Prereq: Immunology course.

CSC 672 TRANSPLANTATION SCIENCE. (3)
Course content includes immunological, biochemical and genetic concepts and molecular biology related to the clinical process of transplantation. Cellular and molecular mechanisms will be an intense focus of this course. Solid organ and tissues transplantation, the need for donor organs and tissues, compatibility requirements for successful transplantation of each type of organ and tissue, immunosuppressive therapy, and research opportunities that may impact successful transplantation and tissue availability will be examined. Literature review and presentation of papers on assigned topics will be required. Prereq: CSC 670 and 671.

CSC 673 FLOW CYTOMETRY. (3)
This course focuses on principles, applications and quality assurance of flow cytometry in research and clinical use in hematology and transplantation. Emphasis is placed on the biological and physical principles underlying flow cytometry, specimen processing, operation and specific application in the identification of various hematopoietic and other cells. The use of flow cytometry to screen transplant recipients, cross-match donor and potential recipient, post-transplant monitoring, identifying HLA antigens, diagnosing hemoproliferative disorders, monitoring immunosuppressive therapy and stem cell isolation is presented. Evolving applications in other disciplines such as microbiology and clinical chemistry, will also be explored. Prereq: CSC 670, CSC 671 and CSC 672 or CSC 674 and CSC 675.

CSC 674 HEMOPOIESIS. (3)
Normal and abnormal hemopoiesis is examined. Special emphasis is placed on understanding the relationship of hemopoiesis to hemoproliferative and immunologic disease; transplantation science, and medical applications. Prereq: Course(s) in hematology and hematologic disease, or consent of instructor.

CSC 675 MYELOPROLIFERATIVE DISORDERS. (3)
Advanced review of hemoproliferative disorders, including acute and chronic leukemia, and lymphomas. Current knowledge and theory of disease course, laboratory diagnosis, testing techniques, and treatment are emphasized. Prereq: CSC 674.

CSC 676 ADVANCED HEMOSTASIS. (3)
This course will review current knowledge and hypotheses regarding both hypo and hyper coagulable states, drug induced disorders of hemostasis, treatment regimes, and the present state of the art in laboratory testing for high-risk individuals. Prereq: Course in hemostasis including normal mechanisms and pathological states, or consent of instructor.

CSC 690 CLINICAL SCIENCES THESIS RESEARCH. (1-6)
Research, design, protocol development and production of thesis are included. Grade will be reported following evaluation of written product by the thesis committee. Prereq: Successful completion of final/comprehensive examinations for the Clinical Sciences graduate program.

CSC 772 GENE THERAPY. (3)
Processes involved in constructing vectors with desired genes for implantation and examples of effective gene therapy will be discussed. The application of gene therapy to areas of student interest and research approaches to such applications will be examined. Prereq: CSC 600 and 601.
CSC 774 BIOSYNTHESIS, STRUCTURE AND FUNCTION OF MACROMOLECULES. (3)
The molecular biology and molecular genetics of protein synthesis, assembly and configuration of macromolecules, and the functions of the biological molecules involved in signal transduction, cell reproduction and fertilization will be addressed. Biochemical structure, physiological function, and cellular metabolism of carbohydrates, amino acids, nucleotides and lipids will be stressed. Prereq: Course work in cell biology and genetics, or consent of instructor.

CSC 776 MOLECULAR GENETICS AND CHROMOSOME ANALYSIS OF HEMATOPOIETIC DISORDERS. (3)
This course explores laboratory methods in molecular diagnostics and their application in the diagnosis and assessment of hematologic diseases. Special emphasis is on clinical utility of gene rearrangement studies and other emerging research topics. Prereq: CSC 673, 674 and 675.

CSC 777 HEMATOPOIETIC STEM CELL AND BONE MARROW TRANSPLANTATION: NONTRADITIONAL APPLICATIONS. (3)
Innovative efforts to treat or cure various disorders by transplantation of hematopoietic stem cells or bone marrow will be explored. Analysis of the research design of current and recent clinical investigations, ex vivo expansion of stem cells and other contemporary topics will be explored. Prereq: CSC 671, 674 and 676.

CSC 778 CLINICAL MOLECULAR CYTOMETRY. (3)
In-depth examination of cytometric analysis of DNA in neoplasms and tumors, ploidy and proliferative fractions, gene product and nucleic acid analysis and quality assurance measures. Prereq: CSC 600 and 673.

CSC 787 TEACHING APPRENTICESHIP. (2)
Candidates for the doctoral degree in Clinical Sciences will complete a teaching assignment in collaboration with and with direct supervision by a graduate faculty member. Students will apply educational principles, including those related to course development, delivery of instruction, and evaluation. Principles will be applied and experience acquired in classroom, laboratory and distance learning environments. Prereq: Admission to the Clinical Sciences doctoral program.

CSC 789 RESEARCH APPRENTICESHIP. (1-4)
The goal of this course is to ensure that the student understands and can apply research methods to identifying a research problem, developing a proposal, conducting an investigation, and preparing a journal-quality research paper. Students will work closely with a clinical sciences researcher to develop these research skills. The course requirements and format will vary depending upon the student’s prior experience. Prereq: Admission to the Clinical Sciences doctoral program.

*CSC 790 CLINICAL SCIENCES DISSERTATION RESEARCH. (0-12)
Research design, protocol development and production of written dissertation after completion of the dissertation research. Grade will be issued following evaluation of the dissertation by committee. Candidates for the degree must complete nine credit hours in each of two successive semesters of dissertation research. Prereq: Successful completion of the Clinical Sciences qualifying examinations.